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Deformation effect on total reaction cross sections for neutron-rich Ne isotopes
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The isotope dependence of measured reaction cross sections in the scattering of 28−32Ne isotopes from a 12C
target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne g matrix. The density of
the projectile is calculated by the mean-field model with the deformed Woods-Saxon potential. The deformation
is evaluated by antisymmetrized molecular dynamics. The deformation of the projectile enhances calculated
reaction cross sections to the measured values.
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I. INTRODUCTION

Exploring unstable nuclei is one of the most important
subjects in nuclear physics. Actually, it was reported that
unstable nuclei have exotic properties such as the halo structure
[1–3] and the loss of magicity for nuclei in the so-called island
of inversion. The term “island of inversion” was first applied
by Warburton [4] to the region of unstable nuclei from 30Ne
to 34Mg. In the region, the low excitation energies and the
large B(E2) values of the first excited states suggest strong
deformations [5–9], which indicates that the N = 20 magic
number is no longer valid. These novel quantum properties
have inspired extensive experimental and theoretical studies.

Important experimental tools for exploring unstable nuclei
are the reaction cross section σR or the interaction cross section
σI and the nucleon-removal cross section σ−N with radioactive
beams [1–3,10]; for the scattering of unstable nuclei, σI agrees
with σR in general, since projectile excitations to its discrete
excited states do not exist. Very recently, σI was measured by
Takechi et al. [11] for 28−32Ne located near or in the island of
inversion. Furthermore, a halo structure of 31Ne was reported
by the experiment on the one-neutron removal reaction [12].
This is the heaviest halo nucleus in the present stage suggested
experimentally and also resides within the region of the island
of inversion.

As a useful theoretical tool of analyzing σR, we can consider
the microscopic optical potential constructed by the double-
folding model (DFM) with the g-matrix effective nucleon-
nucleon (NN) interaction [13–21], when the projectile breakup
is weak. For the nucleon-nucleus scattering, the single-folding
model with the g matrix well reproduces the data on σR

and the elastic-scattering cross section systematically [13].
For the 31Ne scattering from 12C at 240 MeV/nucleon, the
breakup cross section is at most 1.5% of σR [22]. Hence,
DFM is applicable also for analyses of measured isotope-
dependence of σR in the scattering of 28−32Ne from 12C target at
240 MeV/nucleon [11].

In DFM, the g matrix is folded with the projectile and target
densities. If the projectile deforms, the density profile changes;
the surface diffuseness increases because of the elongation.
This gives rise to the effective growth of the root-mean-square
(rms) radius and eventually the increase of σR. Therefore, the
amount of deformation is important. Nuclei in the island of

inversion are spherical or only weakly deformed in the Skyrme
and/or Gogny HF (HFB) calculations; see, e.g., Refs. [23,24].
It is even pointed out that the observed large B(E2; 2+ → 0+)
values can be understood as a large amplitude vibration around
the spherical shape [25]. In such a situation, the additional
correlations by the angular momentum projection (AMP)
often leads to possible deformed shapes; see Ref. [26] for
Ne isotopes.

Recently a systematic investigation employing the antisym-
metrized molecular dynamics (AMD) with the Gogny D1S
interaction has been performed for both even and odd N

nuclei in the island of inversion [27]. The AMD (with AMP
performed) gives rather large deformations, which is consistent
with the AMP-HFB calculations [24,26]. A consistent picture
of even and odd isotopes has been obtained, where the n-
particle m-hole excitations of the Nilsson orbits play important
roles to determine deformed configurations. Although it is
difficult to distinguish the dynamic shape-fluctuation and static
deformation in these light mass nuclei, one may use the
deformed shape suggested by the AMD calculation to see
its effect on σR.

In this paper, we analyze the measured isotope-dependence
of σR in scattering of 28−32Ne isotopes from 12C target at
240 MeV/nucleon, using DFM with the Melbourne g matrix
[13] and the deformed projectile density suggested by the
AMD calculation.

II. THEORETICAL FRAMEWORK

A microscopic optical potential U between a projectile (P)
and a target (T) is constructed with DFM. The direct and
exchange parts, UD and UEX, are obtained by [28,29]

UD(R) =
∫

ρP(rP)ρT(rT)vD(ρ, s)d rPd rT, (1)

UEX(R) =
∫

ρP(rP, rP + s)ρT(rT, rT − s)

× vEX(ρ, s) exp [i K (R) · s/M]d rPd rT, (2)

where s = rP − rT + R for a position vector R of P from T.
The original form of UEX is a nonlocal function of R, but
it has been localized in Eq. (2) with the local semiclassical
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approximation [14], where h̄K (R) is the local momentum of
the scattering considered and M = APAT/(AP + AT) for the
mass number AP (AT) of P (T). The validity of this localization
is shown in Ref. [30]. Here, the effective NN interactions, vD

and vEX, are assumed to depend on the local density

ρ = ρP(rP + s/2) + ρT(rT − s/2) (3)

at the midpoint of the interacting nucleon pair.
The microscopic potential U is not spherical, if one or

both of the densities ρP and ρT are nonspherical. As shown
in Ref. [17], however, the effect is found to be negligible for
heavy-ion scattering. For intermediate incident energies of our
interest, this can be understood with reasonable approxima-
tions. For such energies, the rotational motion of deformed P
(rotor) is negligible compared with the center-of-mass motion
of P. Hence, the adiabatic approximation is applicable for the
rotational motion. Under the approximation, P is scattered by
U depending on not only R but also � the direction (Euler
angles) of the symmetry axis of rotor in the space-fixed frame.
Using the eikonal approximation for the center-of-mass motion
of P, one can obtain

σR =
∫

db(1 − |S|2) (4)

with

S =
∫

d�

8π2
exp

[
− i

h̄v

∫ ∞

−∞
dzU (R,�)

]
(5)

for R = (b, z) and the velocity v of P. Here, we have assumed
that the ground state of P is a 0+ state for simplicity. The
S-matrix element S includes back-coupling effects of the
rotational excitations on the elastic scattering. Separating U

into the spherical and nonspherical parts, U0 and �U , we can
get

S = S0 + S0

∫
d�

8π2

(
δ2

2
+ · · ·

)
(6)

with

S0 = exp

[
− i

h̄v

∫ ∞

−∞
dzU0(R)

]
, (7)

δ = − i

h̄v

∫ ∞

−∞
dz�U (R,�). (8)

The nonspherical correction to the spherical part S0 starts
with δ2, since the correction of order δ vanishes because of
the angle average. The leading-order correction is significant
only at large b, since S0 vanishes at small b as a result of
the strong absorption. For large b, δ remains small because
v is large and the range of the z integration is small.
Actually, we confirmed through numerical calculations that
the leading-order correction to σR is 0.01% for the 30Ne+12C
scattering at 240 MeV/nucleon; note that the error of the
eikonal approximation is less than 1% for this scattering. Also
for the case that the spin of P in its ground state is nonzero,
it is possible to prove that the leading-order correction to σR

is of order δ2. Thus, the effect of �U on σR is negligible.
Therefore, only the spherical part of the density is taken in this
paper. Detailed discussion on this nonspherical effect will be
made in the forthcoming paper.

As for ρT, we use the phenomenological 12C density
deduced from the electron scattering [31] by unfolding the
finite-size effect of the proton charge in the standard manner
[32]. Meanwhile, ρP is calculated by the mean-field model
with a given average potential or with the self-consistently
determined potential by the Hartree-Fock (HF) method. No
effect of pairing is included for simplicity. The Ne isotopes
(projectiles) under discussions are supposed to be in the island
of inversion (or at its boundary), and expected to be strongly
deformed. In order to investigate the effect of deformation, we
take a deformed Woods-Saxon (WS) potential [33], in which
the axially deformed surface �(β) is specified by the radius,

R(θ ; β) = R0cv(β)[1 + ∑
λβλYλ0(θ )], (9)

with the deformation parameters β ≡ {βλ} and a volume
conserving factor cv(β). The potential value is determined
by replacing the quantity (r − R0) in a spherical potential to
the distance from the surface �(β) (with minus sign if the
point is inside it). The Coulomb potential created by charge
(Z − 1)e distributed uniformly inside the surface �(β) in
Eq. (9) is included for protons. The single-particle eigenstates
are calculated by the (cylindrical) harmonic oscillator basis
expansion. More than twenty oscillator shells are included
and the convergence of the result is carefully checked to obtain
reliable density distributions. The nucleon density is obtained
by summing up the contributions of occupied Nilsson levels.
The density distribution thus calculated ρ

(in)
P (r, θ ) is the one

in the intrinsic (body-fixed) frame, and depends on the polar
angle θ from the symmetry axis. As mentioned above, the
density in the laboratory frame used in DFM [Eqs. (1) and (2)]
is obtained by the angle average:

ρP(r) = 1

2

∫ π

0
ρ

(in)
P (r, θ ) sin θ dθ. (10)

We have checked that the angle-averaged density agrees with
high accuracy with the density calculated by the angular
momentum projection from the Slater determinantal wave
function composed of the occupied WS orbits.

No center of mass (CM) correction is included for the
calculation of the density. We have checked by the spherical
Gogny HF calculation that the CM correction (including
the two-body contributions) to the rms radius is about 1%
reduction for all the isotopes. The amount of reduction is
smaller than the enhancement caused by the deformation
effect, but is nonnegligible; we will return to this point latter.

III. RESULTS

We test the accuracy of DFM with the Melbourne g matrix
for 12C+12C scattering at 250.8 MeV/nucleon. As shown in
Table I, σR calculated with the Melbourne g matrix is
consistent with the experimental data; more precisely, the
latter is slightly smaller than the former by the factor F =
0.982. The table also shows the result of the Love-Franey
t-matrix nucleon-nucleon interaction in which the nuclear
medium effect is not included. The difference between the
two theoretical results is about 122 mb that corresponds
to 16% of the experimental data. Thus, the medium effect
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TABLE I. Reaction cross sections for 12C+12C scattering at
250.8 MeV/nucleon for two types of effective nucleon-nucleon
interactions. The cross sections are presented in units of mb.

Exp. [34] Love-Franey [35] Melbourne g [13]

782.0 ± 10 918 796

is important at this incident energy. For the 27Al + 12C
scattering at 250.7 MeV/nucleon, σR calculated with the
phenomenological 27Al density [31] and the normalization
factor F is 1164 mb, while the experimental value is 1159 ± 14
mb [34]. The normalization procedure thus justified is applied
for the 28−32Ne +12C scattering at 240 MeV/nucleon analyzed
below.

As for the parameter set of the WS potential, i.e., the depth,
the radius, and the diffuseness of the central as well as the
spin-orbit potentials, we employ the one provided recently
by R. Wyss [36]; see Table I of Ref. [37] for the actual
values of the parameters. This set is intended to reproduce
the spectroscopic properties of high-spin states from light to
heavy deformed nuclei, e.g., the quadrupole moments and the
moments of inertia, and at the same time the rms radii crucial
for the present analysis. In order to check that the present WS
potential gives reasonable results, we compare in Fig. 1 the
reaction cross sections calculated by using two densities; one
obtained by the Gogny D1S HF calculation and another with
the WS potential: The spherical shape is imposed with the
filling approximation in this calculation. The good agreement
shown in the figure indicates that the density distributions in
the two models are similar, which is also confirmed by the
calculated rms radii (see Fig. 3).
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FIG. 1. (Color online) Reaction cross sections for scattering of
Ne isotopes from 12C at 240 MeV/nucleon. The results obtained with
the calculated density with the Woods-Saxon potential are denoted
by dashed line, and those with the Gogny HF by solid line. The
spherical shape is imposed. The nuclei with A > 30 are unbound.
The experimental data are taken from Ref. [11].

TABLE II. Deformation parameter β2 used in the calculation of
density of Ne isotope (those with higher multipoles λ > 2 are not
included).

Nuclide 28Ne 29Ne 30Ne 31Ne 32Ne

β2 −0.291 0.445 0.400 0.422 0.335

The reaction cross section is sensitive to the amount of
deformation. We then employ the deformed shapes suggested
by the AMD calculation to see the effect on σR. As a simple
estimate we only include the Y20 deformation in Eq. (9) and
the deformation parameter β2 in each isotope is determined
to reproduce the calculated ratio of rms radii along the long
and short axes by AMD; the resultant values used in the
following analyses are given in Table II. With these β2 values,
the Nilsson orbits of the last odd neutron in 29Ne and 31Ne
are [200]1/2 and [321]3/2, respectively, in accordance with
the AMD calculation. Note that the nucleus 28Ne is at the
boundary of the island of inversion, and AMD predicts strong
mixing between the states with oblate and prolate deformation.
In the present calculation, we have employed the β2 value of
the oblate minimum, which is the main component.

The results of σR including the effect of quadrupole
deformation (see Table II) are shown in Fig. 2. Compared
to the results with the density of the spherical cases, the
effect of deformation increases the cross section considerably.
The enhancement makes the calculated cross sections almost
consistent with the measured cross sections for 28−32Ne,
although the difference of σR between 30Ne and 31Ne is small
in the model calculation compared with the difference deduced
from the measured cross sections. We will return to this point
later.

The increase of σR caused by the deformation can be rather
nicely understood if one looks into the (matter) rms radii
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FIG. 2. (Color online) Reaction cross sections for scattering of
Ne isotopes from 12C at 240 MeV/nucleon. The dashed and solid
lines represent results of the spherical and deformed WS potentials,
respectively. The experimental data are taken from Ref. [11].
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FIG. 3. (Color online) Matter rms radii for Ne isotopes for
the spherical WS potential (crosses), the deformed WS potential
(squares), and the Gogny HF (circles).

〈r2〉1/2
P shown in Fig. 3. They are calculated by using the

projectile density ρP based on the spherical and deformed WS
potentials. The increase of 〈r2〉1/2

P in Fig. 3 nicely corresponds
to that of σR in Fig. 2, which is reasonable because of a simple
estimate,

σR ≈ π
[〈r2〉1/2

P + 〈r2〉1/2
T

]2
, (11)

where 〈r2〉1/2
T is the rms radius for the target. Note that the

amount of increase of the rms radii from the spherical shape,
which is roughly proportional to β2

2 , is only 4%–6%: It is
surprising that such a small effect is detectable in experimental
data. The present analysis clearly tells us that σR reflects
very precise information, and its measurement is extremely
useful to study the nuclear structure of unstable nuclei. The
radial dependence of the matter density is plotted in Fig. 4.
The deformed WS density (solid curve) is enhanced by the
deformation effect from the spherical WS density (dashed
curve) at r � 4 fm. The enhancement of the reaction cross
section is caused by that of the density in this tail region. This
is the main reason why we do not directly use the calculated
AMD density, which decreases more rapidly in the tail region
because of the usage of one-range Gaussian wave functions.

IV. DISCUSSION

The enhancement of the reaction cross sections caused by
the deformation effect is conspicuous as shown in Fig. 2.
The enhancement makes the calculated cross sections almost
consistent with the observed ones for 28−32Ne; more precisely,
the calculated cross sections slightly overshoot the data for
30,32Ne, but slightly undershoot the data for 31Ne. In the
spherical HF calculation, the CM correction to the rms radii
yields 1% reduction. This leads to 1.1% reduction of σR

through relation (11). It is very likely that the deformed WS
model has almost the same amount of σR reduction. After this
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FIG. 4. (Color online) The radial dependence of the matter
density for 29Ne. The dashed and solid lines show results of the
spherical and deformed WS potentials, respectively.

reduction, the calculated cross sections agree with the data
for 28−30,32Ne, but underestimate the data by 32 ± 22 mb for
31Ne. Thus, the theoretical results are consistent with the data
for 30Ne but not for 31Ne, because the difference of σR between
the two nuclei is smaller in the model calculation than in the
data.

The difference of σR between 31Ne and 30Ne corresponds to
the one-neutron removal cross section of 31Ne, if the breakup
cross section of 31Ne is negligible [22]. The difference between
the observed reaction cross sections is 86 mb, while the direct
measurement on the one-neutron removal cross section yields
79 mb [12]. Thus, the two experimental data are consistent
with each other, indicating that the breakup cross section is
small. Meanwhile, the difference of the calculated reaction
cross sections between the two nuclei is 41 mb and smaller
than the experimental results.

As for 31Ne, the single-particle energies of the last neutron
are about −2 MeV in the present deformed WS potential
with the β2 value given in Table II. The underestimation of
the present value for 31Ne may mean that either the depth of
the present WS potential is too deep or β2 is too small. For
example, compared with the WS potential in Ref. [38], the
binding energies of relevant Nilsson orbits are about 2 MeV
larger in the present case, though the Nilsson diagrams are
very similar to each other. It turns out that we can obtain good
agreements of σR for 31Ne either by shallowing the potential
depth by a factor of 0.943 or by increasing the deformation up
to β2 = 0.590.

In the case of 31Ne, its spin parity and neutron configuration
are still under debate. Our prediction of the last-odd-neutron
orbit is [321]3/2 with the single-particle energy −1.947 MeV.
The energy increases to −0.974 MeV when the potential is
reduced by a factor of 0.943 to account for the observed
central value of σR, while the last-odd-neutron orbit changes
to [200]1/2 and the energy decreases to −2.803 MeV when
β2 is increased to 0.590. The measured separation energy of
31Ne, 0.29 ± 1.64 MeV [39], is more consistent with the
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single-particle energy of the shallower potential rather than
that of larger β2.

It should be mentioned that the present calculation of σR

is not sensitive to the isovector properties, e.g., the neutron
skin. Although the matter radii calculated with the present
WS and with the Gogny D1S HF (imposing the spherical
shape) perfectly agree and so do the reaction cross sections
(see Fig. 1), the skin thicknesses in the two calculations are
rather different: e.g., 〈r2〉1/2

n − 〈r2〉1/2
p ≈ 0.67 and 0.41 fm with

the WS and the Gogny HF, respectively, in 30Ne. Additional
information is necessary to probe properties such as the skin
thickness.

V. SUMMARY

The isotope dependence of measured reaction cross sections
in the scattering of 28−32Ne isotopes from a 12C target at
240 MeV/nucleon is analyzed by the double-folding model
with the Melbourne g matrix. The density of the projectile
is calculated by the mean-field model with the deformed
Woods-Saxon potential. The deformation is evaluated by the

antisymmetrized molecular dynamics. The deformation of
the projectile enhances calculated reaction cross sections to
the measured values. The increase of the rms radii by the
deformation is only 4%–6%, but it is quite important that
such a small effect is detectable in the experimental data.
Owing to this effect, the calculated reaction cross sections
reproduce the data for 28−30,32Ne. For 31Ne, however, the
present results still underestimate the measured cross sections.
The underestimation may suggest that the extra weak-binding
effect for neutrons plays an important role particularly for
31Ne.
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