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Charge radii of neon isotopes across the sd neutron shell
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We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable 20Ne, based
on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on
a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical
detection based on optical pumping and state-selective collisional ionization, which was complemented by an
accurate determination of the beam kinetic energy. The new results provide information on the structural changes
in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and
halo candidate 17Ne up to the neutron-rich 28Ne in the vicinity of the “island of inversion.” Within this range the
charge radius is smallest for 24Ne with N = 14 corresponding to the closure of the neutron d5/2 shell, while it
increases toward both neutron shell closures, N = 8 and N = 20. The general trend of the charge radii correlates
well with the deformation effects which are known to be large for several neon isotopes. In the neutron-deficient
isotopes, structural changes arise from the onset of proton-halo formation for 17Ne, shell closure in 18Ne, and
clustering effects in 20,21Ne. On the neutron-rich side the transition to the island of inversion plays an important
role, with the radii in the upper part of the sd shell confirming the weakening of the N = 20 magic number. The
results add new information to the radii systematics of light nuclei where data are scarce because of the small
contribution of nuclear-size effects to the isotope shifts which are dominated by the finite-mass effect.
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I. INTRODUCTION

Studies of light unstable nuclei have revealed many interest-
ing phenomena absent or little visible in heavier systems [1].
To these belong unexpected nucleon density distributions such
as the well-established neutron halos and skins, hints (or
predictions) of proton halos, and clusterlike structures. In
addition, changes were observed in magic numbers, which
have been the cornerstone of the nuclear shell model for half
a century.

The Ne, Na, and Mg isotopic chains, with Z = 10–12 and
spanning the neutron sd shell and beyond, have provided
us with examples or candidates of all above phenomena.
Proton-rich 17Ne is a candidate for a two-proton halo [2,3],
cluster structures have been found in 20−22Ne and 24Mg [4],
and the isotopes around N = 20 make up the so-called island
of inversion [5], where a weakening or even disappearance of
the neutron magic number is visible.

The purpose of this paper is to extend our knowledge of
the nuclei in this region by investigating the charge radii
of neutron-rich neon isotopes based on their optical isotope
shifts compared to stable 20Ne. Until now sodium was the
only element for which isotope shift measurements cover the
neutron sd shell between the N = 8 and 20 shell closures.
However, the presence of only one stable isotope in this
chain set a serious constraint on the accuracy of the radii
differences extracted from isotope shifts [6,7]. On the other
hand, neon, with three stable isotopes, is the first element

for which accurate radii can be obtained from the proton
drip line at N = 7 (17Ne) over most of the sd shell, up to
N = 18 (28Ne). The neutron drip line of neon (N = 22) is very
close to the magic number N = 20 and therefore the study of
these isotopes is a good testing ground to examine both the
systematics of deformation and the possible erosion of the
N = 20 spherical shell closure in the vicinity of the neutron
drip line. These phenomena allude to the persistence of shell
gaps and magic numbers away from the valley of stability.

The reported hyperfine structures and isotopes shifts of ra-
dioactive Ne isotopes with A = 17–26, 28 have been measured
by collinear fast-beam laser spectroscopy, which provides
information on the changes of nuclear mean square charge
radii δ〈r2〉, nuclear spins, and electromagnetic moments μ

and Q. In our previous work [8] the magnetic dipole moments
of 17Ne, 23Ne, and 25Ne, as well as the electric quadrupole
moment of 23Ne, were either reported for the first time or
improved considerably. These measurements also decided for
a 1/2+ ground state of 25Ne. Recently, we have also reported on
the charge radii of neutron-deficient isotopes 17−22Ne together
with high-precision data on their masses [9], the latter obtained
by Penning trap mass spectrometry. Microscopic calculations
within the fermionic molecular dynamics (FMD) approach
describe remarkably well the behavior of the charge radii and
binding energies, and can explain them by pronounced changes
in the structure of the nuclear ground states.

Isotope shift measurements using laser spectroscopy tech-
niques meet serious limitations for light elements with proton
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number below Z = 20. This is because of the fact that the
field shift contribution, considered to be proportional to δ〈r2〉,
becomes very small relative to the total isotope shift which is
dominated by a second part, namely the finite-mass shift. Thus,
systematic effects which do not disturb studies on heavier
nuclei have to be well under control. In particular, collinear
laser spectroscopy on a fast beam involves large Doppler shifts
of which the uncertainty, arising from voltage measurements,
can mask the field shift effects. The requirement of high
experimental accuracy and knowledge of the mass shift
scaling constant then adds to the standard sensitivity problem
faced by experiments on weak beams of short-lived isotopes.
In the reported studies the accuracy requirement was met
by an accurate determination of the beam kinetic energy
[10] utilizing a novel method of comparing Doppler-shifted
transition frequencies. At the same time, the high sensitivity
and selectivity were achieved using ultrasensitive nonoptical
detection based on optical pumping, state-selective collisional
ionization, and observation of the β decay of collected
radioactive ions [11,12].

The experimental setup and the methods used to achieve
the accuracy of measurements are discussed in Sec. II. The
experimental results are presented in Sec. III, while the
measured nuclear radii are discussed and compared to other
data and to nuclear models in Sec. IV.

II. EXPERIMENT

A. Experimental setup

The experiment was performed at the ISOLDE on-line
isotope separator using a 1.4-GeV pulsed beam of about
3 × 1013 protons every 2.4 s from the CERN PS-Booster
synchrotron. Radioactive neutron-deficient neon isotopes were
produced by spallation reactions in a CaO target, while
neutron-rich isotopes were obtained from fragmentation of
uranium in a UC2 target (see Table I). Together with stable
isotopes of a neon-xenon gas mixture these are ionized in a
plasma source, accelerated to 60 keV and mass selected by the
ISOLDE GPS separator [13].

TABLE I. Half-lives T1/2 of the investigated Ne isotopes; targets
used for production and yields.

A T1/2 Target Yield per pulse
(or current)

17 109.2 ms CaO 3.6 × 103

18 1.67 s CaO 2.5 × 105

19 17.34 s CaO 2.0 × 106

20 stable – <40 nA
21 stable – <4 nA
22 stable – <100 pA
23 37.24 s CaO/UC2 3 × 106

24 3.38 min UC2 3.5 × 105

25 602 ms UC2 7 × 104

26 197 ms UC2 3.2 × 104

27 32 ms UC2 <200
28 17 ms UC2 <70

FIG. 1. (Color online) Partial atomic level scheme [15] of neon
including transitions involved in the charge-exchange neutralization,
optical pumping, and collisional ionization.

The isotope shifts and hyperfine structures of the investi-
gated isotopes were measured in the transition 2p53s[3/2]2 →
2p53p[3/2]2 (λ = 614.5 nm) of the atomic spectrum of neon,
using the technique of collinear fast-beam laser spectroscopy
combined with ion detection of optical resonance [14]. The
mass-separated ion beam is superimposed collinearly on
a cw dye laser beam. The ions are then neutralized by
charge exchange in a sodium vapor cell. The charge-exchange
reaction populates predominantly the metastable 2p53s[3/2]2

state, because its binding energy matches well the ionization
energy of the sodium atom. A sodium vapor pressure of
the order of 10−2 mbar, at a temperature of about 550 K,
was sufficient to achieve charge-exchange efficiencies up to
90%. Atoms in the metastable state are excited resonantly
by laser light to the 2p53p[3/2]2 level which decays either
back to 2p53s[3/2]2 or cascades with high probability via the
intermediate 2p53s[1/2, 3/2]1 states to the 2p6 1S0 ground
state (see Fig. 1).

The experimental apparatus, procedure, and detection
technique have already been described in our previous papers
[8,12,16] (see Fig. 2). The nonoptical detection of atomic
resonance is based on collisional ionization [14] for which
different cross sections discriminate between the population of
the metastable state and the ground state. At resonance, optical
pumping occurs from the metastable state to the ground state
and thus gives rise to a decrease in the ionization rate. The ions
are deflected out of the original beam direction and counted
with the help of a secondary electron multiplier. For short-
lived isotopes it is more favorable to detect the radioactive
β decay of the collected ions, because it is insensitive to
background from isobaric (stable) beam contamination. To
eliminate fluctuations of the ion signal caused by intensity
fluctuations of the primary ion beam, we have introduced a
normalization procedure as described below. Reasons for these
fluctuations are variations of the proton-beam intensity and
changing target heating conditions from an irregular proton
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FIG. 2. (Color online) Schematic view of the experimental setup with fluorescence and alternative ion- and β-detection schemes. The inset
shows a normalized experimental spectrum for 28Ne, which was obtained using β detection and summation of individual scans (each of duration
of about 1.5 min) over 4.5 h.

pulse time structure caused by the distribution of pulses to
different accelerators and experiments at CERN.

The selective ionization of metastable atoms occurs in the
passage of the beam through a thin Cl2 gas target. The ions
are then deflected onto a tape surrounded by scintillators for
β-radioactivity counting. Every collected sample corresponds
to the activity produced by one proton pulse, and the tape is
moved after counting, thus carrying away long-lived daughter
activity or background, before another sample is taken for the
next data point.

The problem of normalization was overcome by installing
another detector system in the forward direction, identical
to the one in the deflected direction (see Fig. 2). Thus, the
count rate from the neutral fraction of the beam was recorded
in parallel. Normalizing the ion signal to the total beam
intensity gives a signal which is independent of beam intensity
fluctuations:

S = N (ion)

N (ion) + N (atom)
. (1)

Here S is the normalized signal, N (ion) and N (atom) are
the corresponding count rates of ions and neutral atoms. The
sensitivity of this scheme is demonstrated in the inset of Fig. 2,
where a resonance curve for 28Ne with a half-life of 17 ms and
a yield of about 45 ions per pulse from ISOLDE is shown.

Spectra of longer-lived isotopes taken by direct ion counting
were recorded in a fast repeated scanning mode, thus averaging
over all systematic variations and statistical fluctuations of the
beam intensity. As for some of the isotopes the measuring
times added up to a few hours, we used a long-term laser
frequency stabilization based on a frequency-stabilized HeNe

laser in addition to the standard active frequency stabilization
(Coherent 699-21 system).

B. Voltage calibration

Most conveniently for collinear laser spectroscopy mea-
surements the laser frequency νL is kept constant. Tuning the
excitation frequency is then achieved by changing the atom
beam velocity, with the neutralization region at a variable
electrical potential. The position of an atomic resonance
is determined by the total kinetic energy of the atoms
(about 60 ± 10 keV) at resonance with the optical transition.
The Doppler-shifted frequency is related to the resonance
frequency ν0 of the atomic transition in the rest frame of the
atoms:

ν(β) = νL=ν0
1 ± β√
(1 − β2)

, with β =
√

eU (eU + 2mc2)

eU + mc2
.

(2)

Here the + (−) sign denotes the Doppler shift for atomic
and laser beams propagating in the same (opposite) direction.
The relative beam velocity β = v/c is given by the relativistic
expression in terms of the beam energy eU and isotope mass m.
According to Eq. (2), the difference in Doppler shift between
two neighboring neon isotopes is of the order of 30 GHz. The
expected nuclear volume shift is about 10 MHz or smaller.
Measuring this very small effect of 3 × 10−4 requires an
accuracy better than 3 × 10−5 for the atom kinetic energy (i.e.,
less than 2 eV on 60 keV).
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The actual beam energy is determined by the total electrical
potential difference experienced by the ions:

Utot = Ubeam − Upost = Uacc + Uion − Upost , (3)

where Uacc is the ISOLDE acceleration voltage which deter-
mines largely the initial velocity of the mass-separated ion
beam. Upost is the postacceleration voltage applied to the
charge-exchange cell for tuning the atoms into resonance
by the Doppler effect. Both, Uacc being typically 60 keV
and Upost being in the range of −10 kV to +10 kV, are
routinely measured by precision voltage dividers with absolute
accuracies of 10−4. This already turns out to be insufficient for
the measurement of field isotope shifts in an element as light
as neon.

However, the beam energy from ISOLDE is not only
determined by the applied acceleration voltage, but also by
the plasma potential Uion at which the ions are created in
the ion source. To ionize noble gases, the plasma source is
operated at typically 130 V, however the ionization takes place
in a volume inside the source of which the potential is not
accessible to a direct measurement.1 Therefore, without any
better knowledge about the beam energy, the poorly known
plasma potential Uion would be the most important accuracy
limitation for isotope shift measurements.

1. Beam energy measurement by collinear laser spectroscopy

We have used a convenient method of directly measuring
the beam kinetic energy [10], which is offered by the atomic
spectrum of neon. This is a modification of the technique
described by Poulsen [17] and is based on the fact that two
optical transitions, separated by twice the Doppler shift, can
be excited with the same laser frequency applied in collinear
and anticollinear laser beam versus atom beam geometry. This
frequency can be expressed by the condition

νL = ν0
+

mc2
[mc2 + eU+ +

√
eU+(2mc2 + eU+)]

= ν0
−

mc2
[mc2 + eU− −

√
eU−(2mc2 + eU−)], (4)

where ν0
+ and ν0

− are the rest frame frequencies and U+ and
U− are the acceleration voltages at resonance for collinear and
anticollinear excitation, respectively. The resonance positions
coincide at a beam energy eUc = eU+ = eU− which can be
determined from Eq. (4):

eUc = mc2(
√

ν0
+ − √

ν0
−)2

2
√

ν0
+ν0

− . (5)

The corresponding laser frequency according to (4) and (5) is
given by

νL =
√

ν0
+ν0

−. (6)

1In earlier works on collinear laser spectroscopy with noble gases it
was estimated, based on the voltage applied to the plasma ion source,
to be close to the anode potential with an uncertainty of about 20–
30 V [12].

Equation (5) can then be used to determine the energy of an ion
beam at resonance with the laser, if the transition frequencies
are known with sufficient accuracy.

2. Neon levels used in the experiment

Two transitions offered by the neon atomic spectrum can
be used to calibrate beam energies of about 60 keV. Both
of them start from the common 2p53s[3/2]2 metastable
state, populated in the charge-transfer reaction (see Fig. 3).
Then the collinear excitation 2p53s[3/2]2 → 2p53p′[3/2]1

with ν0
+ = 16730.2704470(87) cm−1 [18], and the anti-

collinear excitation 2p53s[3/2]2 → 2p53p′[3/2]2 with ν0
− =

16816.666340(20) cm−1 [19] can be detected in the same
way by collisional ionization and ion counting as described
in Sec. II A. The quoted wave numbers for 20Ne serve as a
secondary wavelength standard and are very precisely known
(to about 10−10) from literature.

Calibration measurements were performed with the stable
neon isotopes 20Ne and 22Ne. For 20Ne, the beam en-
ergy corresponding to coinciding resonances according to
Eq. (5) is eUc = 61758.77 eV. This is well inside the working
range used for collinear laser spectroscopy on the different
isotopes. The Doppler-shifted transition frequency at this beam
energy according to (6) becomes νL = 16773.4128 cm−1,
corresponding to the easily accessible dye laser wavelength
of λ = 596.2 nm.

For 22Ne the corresponding wave numbers are obtained
using known values of the isotope shifts in both lines: δν+ =
1728.79(16) MHz [18] and δν− = 1715.3(1.8) MHz which
is the weighted mean value from [20–23]. In this case the
resonances coincide at a beam energy of eUc = 67932.53 eV.

3. Collinear-anticollinear measurements and results

To excite the atoms simultaneously in the collinear and
in the anticollinear direction, a mirror was installed at the
end window of the vacuum beam line. It reflects the laser

FIG. 3. (Color online) Partial atomic level scheme of neon [15]
showing the transitions excited simultaneously with a collinear and
anticollinear laser beam of the given laser frequency νL (thick full-line
arrows). The dashed-line arrows indicate the radiative de-excitation
to the ground state.
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FIG. 4. Typical spectrum of 20Ne with simultaneous collinear-
anticollinear excitation.

beam back in itself. The excitation and detection of both the
collinear and anticollinear resonances is performed in a narrow
scan of the postacceleration voltage at fixed laser frequency.
An example of a recorded spectrum for 20Ne is shown in Fig. 4.
The laser frequency is detuned from the value given by Eq. (6)
by a few 100 MHz and both lines, originating from the collinear
and anticollinear excitations, are well separated instead of
overlapping. This facilitates the precise determination of the
peak positions and the small correction according to their
voltage difference has no influence on the accuracy of the
beam energy measurement which is accurate to less than 1 eV.

Applying this procedure for both 20Ne and 22Ne, and using
Eqs. (3) and (4) we are able to calibrate independently the
effective acceleration voltage (Uacc + Uion) and the scaling
factor Ddiv involved in the measurement of the postacceleration
voltage using a voltage divider. The uncertainties of ±0.31 V
on (Uacc + Uion) and on Ddiv = 1000.00(3) are mainly system-
atic, arising from the uncertainty in the wave numbers of the
transitions, the atomic masses of 20Ne or 22Ne expressed in
eV, possible deviation from collinearity of the laser and atom
beams and linearity of the tuning voltage. The ion sources used
in different experimental runs are optimized for maximum
yield. It turns out that for most sources this is equivalent to
plasma conditions where the ions start from a potential surface
very close (i.e., less than ±5 V) to the anode potential.

C. Experimental procedure

Beam energy calibration measurements were performed at
the beginning and at the end of each experimental run of
typically three days. During the measurements on radioactive
isotopes the acceleration voltage was monitored and the
ion-source parameters were kept constant. Before and after
each measurement on a radioactive isotope, resonances of
two stable reference isotopes, 20Ne and 22Ne, were recorded
using the fluorescence detection method which is suitable
for much stronger beams. This was performed by switching
simultaneously between different masses transmitted through
the separator magnet and between preselected postacceleration

voltages to which the scanning voltage was added for
recording the spectra. These consist of single resonances for
even-A isotopes or complete hyperfine structure patterns
for odd-A isotopes. The frequency difference between the
reference isotopes 20Ne and 22Ne as well as the absolute line
positions provide an on-line test for the stability of the laser
frequency and the high voltage.

All resonances of radioactive isotopes were detected nonop-
tically utilizing the collisional ionization method. Special care
was taken to account for any artificial shifts between these
and the reference lines observed in fluorescence. Such shifts
could arise from different line shapes caused by different ex-
perimental conditions: Only atoms within the light collection
region contribute to the fluorescence signal, whereas the ion
signal is produced by optical pumping all along the beam
from the charge-exchange cell to the ionizing gas target. In
addition, low laser power is used with fluorescence detection to
prevent optical pumping while high power is needed to produce
maximum pumping and ionization efficiency with weak beams
of unstable isotopes. Tests on the stable isotopes (20Ne or 22Ne)
were performed by measuring the same resonance using both
methods in parallel. As a result of numerous measurements at
various conditions, a small systematic deviation was observed
for the positions of the lines detected by ion counting (U ID)
against those detected in fluorescence (UFD):

δUcorr = UFD − U ID = −0.145(12) V, (7)

corresponding to a frequency shift correction of about
−1.5 MHz. All signals recorded with optical detection and
low laser power were corrected by this voltage difference.

Centroids of all observed peaks were determined by fitting
the lines with a convolution of a Lorentzian-shaped resonance
and an exponential function. As shown and discussed before
[24], this is a realistic model for the line shape, accounting
for the partial energy loss in inelastic channels of the charge-
transfer reaction by which the ion beam is neutralized. For any
particular hyperfine structure or isotope shift measurement
it is important to use common line-shape parameters of all
resonances involved.

III. EXPERIMENTAL RESULTS

A. Isotope shifts

Isotope shifts in the transition 3s[3/2]2 → 3p[3/2]2 mea-
sured for 24−26,28Ne, together with already published data on
17−22Ne [9] are listed in Table II. The statistical errors of
the isotope shifts arise from uncertainties of the resonance
positions (even-A isotopes) or the positions of centers of
gravity of the hyperfine structure (odd-A isotopes). They are
mainly from counting statistics and contain a small digitizing
error from the reading of the postacceleration voltage. The
statistical errors are given in parentheses. The errors in square
brackets are systematic errors. This error notation will be
followed throughout the paper. For the isotope shifts δν20,A

systematic errors arise mainly from the uncertainty of the
acceleration voltages used to account for the Doppler shifts.
The uncertainty of atomic masses [9,25] contributes less than
1 MHz, except for 28Ne where it contributes 3.2 MHz.
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TABLE II. Isotope shifts and changes in mean square charge radii
of Ne isotopes. Errors in parentheses are statistical. Errors quoted in
square brackets are systematic. For the isotope shifts δν20,A these
are essentially from uncertainties of the acceleration voltages. The
systematic errors of δ〈r2〉20,A reflect the uncertainty of the field and
mass shift constants (see text).

A δν20,A (MHz) δ〈r2〉20,A (fm2)

17 −3183.3(1.2)[3.3] 0.220(29)[123]
18 −1995.53(62)[2.09] −0.207(15)[112]
19 −947.39(74)[99] 0.017(19)[41]
21 874.94(56)[90] −0.217(14)[24]
22 1663.58(17)[1.72] −0.321(4)[43]
23 2393.8(1.4)[2.5] −0.571(34)[64]
24 3053.54(75)[3.16] −0.627(19)[75]
25 3653.48(66)[3.79] −0.429(16)[122]
26 4215.79(71)[4.37] −0.484(18)[143]
28 5208.8(1.4)[5.4] −0.239(35)[213]

The isotope shift between the stable 20Ne and 22Ne was
already reported by several authors [20–23,26], the value of
1663.7(5.0) MHz given in [21] being closest to our data. The
weighted mean value of δν20,22 from all previous papers is
1662.3(1.7) MHz, which is also in agreement with the result
of the present work.

B. Extraction of the mean square nuclear charge radii changes

The isotope shift can be decomposed into the field shift
δν

20,A
FS and two terms accounting for the finite mass of the

nucleus, the normal and specific mass shifts, δν20,A
n and δν20,A

s

[27]:

δν20,A = δν
20,A
FS + δν20,A

n + δν20,A
s

= F δ〈r2〉 + (Mn + Ms)
mA − m20

mAm20
. (8)

Here, Mn and Ms are the normal and specific mass shift
constants, and F is the electronic field shift factor. The
latter can be calculated using a semiempirical approach based
on the Goudsmit-Fermi-Segrè formula [27]. Following this
procedure outlined in [28], we obtain for the investigated
transition of neon:

F = −40[4] MHz/fm2, (9)

conventionally assuming an error of 10%. A similar value is
obtained from an analysis of the hyperfine structure in the
2p53s[3/2]2 metastable state.

The normal mass shift constant is Mn = νme =
267.6 GHz u, where me is the electron mass. The specific
mass shift constant Ms takes into account correlations of
the electron motion. Theoretical calculations of specific mass
shifts are very difficult and the results available for a few
cases reproduce the experimental values only to some extent.
For the case of neon, a calculation based on the many-body
perturbation approach was performed in the optical transitions
2p53s → 2p53p [29]. Although it reproduces fairly well the

measured isotope shifts, the results are not accurate enough to
reveal the small field shifts.

We separate the field shift and the mass shift in Eq. (8)
using an empirical method. It is based on the knowledge of the
differences between the mean square nuclear charge radii of
the stable isotopes,

δ〈r2〉20,21 = −0.233(16)[23] fm2 and

δ〈r2〉20,22 = −0.310(16)[31] fm2. (10)

The quoted values were deduced from the model-dependent
nuclear charge radii derived from muonic atom spectra as
compiled by Fricke et al. [30]. Thus, we have two independent
values for δ〈r2〉20,A corresponding to two experimental isotope
shifts, δν20,A

exp , from which in principle both the mass shift
constant (Mn + Ms) and the electronic factor F can be
determined using Eq. (8). However, such a procedure would
give too large uncertainties. Making use of the fact that the
electronic factor F is known independently, we adopt this
value and extract from the known radii only the mass shift
constant.

Using this procedure we also take advantage of the feature
that systematic uncertainties of the isotope shift arising from
the high-voltage calibration cancel out in the evaluation of
mean square charge radii differences. These uncertainties have
in very good approximation the same mass dependence as
the mass shift [12]. They can be expressed in terms of two
parameters, kU and k�U , accounting for deviations of the
measured acceleration voltage U and postacceleration voltage
differences �U from their true values:

ε(δν20,A) ≈ (kU + k�U )
mA − m20

mAm20
. (11)

By adding this as a correction to Eq. (8), we obtain for the
experimentally determined isotope shift:

δν20,A
exp = F δ〈r2〉 + (Mn + C)

mA − m20

mAm20
, (12)

where

C = Ms + kU + k�U (13)

can be treated as an effective specific mass shift constant.
Thus a fit of the isotope shifts according to Eq. (8), using
the known reference radii and the field shift factor as given by
Eq. (9), yields this constant modified by the effect of systematic
voltage deviations and leaves the field shifts unaffected. We
obtain

C = 95.43[42] GHz u. (14)

The error in (14) is from the uncertainties of the muonic radii
and the semiempirical electronic factor.

The dominating experimental systematic errors arising
from the voltage measurements have to be included only if we
identify the quantity C with the specific mass shift constant
Ms . These are obtained by varying the correction factors kU

and k�U within the limits given by the known calibration
uncertainties of U and �U , yielding

Mexp
s = 95.43[80] GHz u. (15)
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FIG. 5. (Color online) Changes in mean square charge radii δ〈r2〉
for 17−28Ne, with respect to 20Ne (exp). The error bars represent
statistical errors; systematic calibration uncertainties are indicated by
upper (dashed) and lower (dashed-dotted) boundary lines. Droplet
model predictions (DM) are based on quadrupole deformation
from experimental B(E2) values [31] and spectroscopic quadrupole
moments. Predictions from recently published B(E2) values are
shown separately (see Fig. 7; for the droplet model, see Sec. IV B).

In conclusion, uncertainties of the voltage calibration do not
influence the field shift which is separated for each isotope
from the experimental isotope shift by means of Eq. (12),
independently of a deviation of C from the real mass shift
constant. The values of δ〈r2〉20,A compiled in Table II have
been derived using the scaling factors (9) and (14).

The accuracy of the changes in mean square charge radii
δ〈r2〉 derived from measured isotope shifts is determined by:
(i) the errors of the individual measurements, which are shown
in parentheses and arise from the statistical errors of the isotope
shifts; (ii) the systematic uncertainty in the field shift from the
evaluation of the effective specific mass shift represented by
the scaling factor (14); (iii) the error assumed for the electronic
factor F from Eq. (9) which relates the nuclear parameters to
optical frequencies. Errors from the measured values of atomic
masses [9,25] are largely negligible. Total systematic errors
of δ〈r2〉20,A are presented in Table II (square brackets). The
data of δ〈r2〉20,A collected in Table II are plotted in Fig. 5,
with statistical errors as error bars and systematic errors as
contour lines enclosing the permissible range of slopes. It is
important to note that nuclear structure effects show up as
relative changes of δ〈r2〉 between the isotopes, independently
of the general slope.

IV. DISCUSSION

Beyond the statistical errors the evolution of the mean
square charge radii of the neon isotopes as a function of
neutron number (Fig. 5) is characterized by fluctuations at
the lower end of the sd shell, large radii for the deformed
isotopes around the stable 20Ne and a pronounced minimum
in the middle of the shell around 24Ne. Toward the upper end

of the sd shell the radii increase again, probably indicating the
influence of deformation, which is related to the occupation
of intruder states from the f7/2 shell in the N = 20 region.
The behavior is similar to that observed in the neighboring
element sodium (see [6]) where Campi et al. [32] showed by
deformed Hartree-Fock calculations that the particular features
of binding energies and radii in this region can be understood in
terms of deformation effects. For this reason, we will consider
how deformation shows up along the neon isotopes in the sd

shell.

A. Nuclear charge radii and quadrupole deformation

1. Even-even neon isotopes

An overview of the deformation properties in the full
range of 18 � A � 28 can be gained from a compilation
of the first 2+ excitation energies E(2+

1 ) and the ratios
E(4+

1 )/E(2+
1 ), in combination with reduced transition prob-

abilities B(E2; 0+
1 → 2+

1 ) and deformation parameters β2

deduced from them (see Sec. IV B). This is shown in
Table III and in Figs. 6 and 7. The generally large B(E2)
values indicate a collective nature for all these nuclei.

For 18Ne at the N = 8 shell closure there are conflicting
results of B(E2) values from conventional lifetime measure-
ments [31,36] and recently from intermediate energy Coulomb
excitation cross sections [36,39]. Both clearly indicate a
deformation minimum as expected for the magic neutron
number, but with the intermediate energy value this appears
somewhat more pronounced.

The deformation properties of stable 20Ne, which we use as
a reference isotope for the measured changes in mean square
charge radii, are well known and have long been discussed
(see [40] and references therein). This nucleus is specified as
a good rotor with large quadrupole deformation. The 20Ne
ground state is associated with a dominant cluster structure of
a 16O core plus an α particle [9,41,42]. Within this model it
is obvious that the α particle outside the spherical core gives
rise to an intrinsically deformed charge distribution. Similarly,

FIG. 6. Energies E(2+
1 ) of the first excited states (open squares)

and energy ratios E(4+
1 )/E(2+

1 ) of the lowest 4+ and 2+ excited states
(solid circles) for even-even Ne isotopes.
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FIG. 7. (Color online) Experimental β2 deformation parameters
versus atomic number (solid circles) from B(E2) values [31] or
from spectroscopic quadrupole moments [8] obtained as described in
Sec. IV B. Deformations from more recently published B(E2) values
for 18Ne (Riley et al. [36]), 26Ne (Gibelin et al. [37]), and 28Ne
(Iwasaki et al. [38]) are shown separately.

22Ne with two additional neutrons is strongly deformed [40].
According to experimental data [31] and several shell-model
or mean-field calculations (see Sec. IV C and [44]) the isotopes
around 20Ne and 22Ne belong to the most deformed nuclei in
the sd shell. These features explain why they have the largest
charge radii.

A deformation minimum is approached for 24Ne in the
middle of the sd shell [31] corresponding to the closure of
the d5/2 subshell. Accordingly, 24Ne has the smallest charge
radius of all neon isotopes. It is worth noting that for 24Ne as
well as for 26Ne the energy ratios E(4+)/E(2+) indicate that
collectivity originates from vibrations rather than rotations (see
Table III).

For 26Ne and 28Ne the excitation energies and B(E2) values
of the lowest Jπ = 2+ state were first measured [35] via
intermediate energy Coulomb excitation. The E(2+

1 ) value of
26Ne is consistent with the sd-shell model description [43,45]
which predicts that E(2+

1 ) remains almost constant for N =
16–20. However, for 28Ne the experimental value of E(2+

1 )

drops considerably and is in good agreement with calculations
in an extended sd-fp model space [46]. The B(E2) value
of 28Ne was found to be correspondingly large. On the other
hand, more recent and more accurate B(E2) values for both
isotopes [37,38] are considerably smaller, suggesting much
smaller deformation for 28Ne than expected from the 2+

1
energy. So far the inconsistencies remain unexplained, but they
may be from differences in the method of extracting B(E2)
values from 2+ excitation cross sections.

Additional information on the level structure of 26Ne and
28Ne was obtained from in-beam γ -ray spectroscopy using
fragmentation reactions [34,47], confirming the 2+ and also
providing 4+ excitation energies. A shell-model interpretation
suggests that the interaction between coexisting normal and
intruder configurations significantly perturbs the energy of the
2+

1 state in 28Ne, thus producing large quadrupole deformation.
Reaction studies on 28Ne (see, e.g., [48,49]) are also consistent
with the presence of fp-shell configurations at low excitation
energy, meaning that for Z = 10 the neutron sd-fp shell gap
starts to vanish already at N = 18. This can also explain the
observed increase in the mean square charge radius toward
28Ne. For 30Ne the first excited state was found at about
800 keV [50], lower than for any other Ne isotope, which
strengthens all other evidence that N = 20 is not magic for
Z = 10.

2. Odd-A neon isotopes

The deformation properties of the investigated odd-A
neon isotopes 19Ne, 21Ne, 23Ne, and 25Ne are supported
by their spins, which contradict the spherical shell model.
Assuming deformed nuclei, the single-particle levels can
be described within the Nilsson model. The most probable
Nilsson configurations accounting for the experimental spin-
parity values are given in Table IV. For 21Ne and 23Ne the
spectroscopic quadrupole moments Qs have been measured
by laser spectroscopy [8]. From these the intrinsic quadrupole
moments Q0 and β2 are obtained via the strong-coupling
projection formula which is expected to hold in the case of
axially symmetric and strongly deformed nuclei (Table IV).

3. Shell structure in the neon isotope chain

The known Ne isotopes span the full neutron sd shell and
cross the magic numbers N = 8 and N = 20. However, the

TABLE III. Comparison of J π = 2+ and 4+ level energies and B(E2; 0+ → 2+) values for even-A Ne isotopes. Deformation parameters
are derived from experimental data using droplet model (DM) formulas for Q0 = √

16π/5 × B(E2) (see Sec. IV B). Values for 18−24Ne are
taken from [31,33] and for 26,28Ne partly from [34,35]. More recent alternative B(E2) values are given for 18Ne [36], 26Ne [37], and 28Ne [38].

18Ne 20Ne 22Ne 24Ne 26Ne 28Ne 30Ne

E(2+) (keV) 1887 1634 1275 1982 2024 1293 791
E(4+) (keV) 3376 4248 3357 3962 3523 3000
E(4+)/E(2+) 1.79 2.60 2.63 2.00 1.74 2.32
B(E2; 0+ → 2+)(e2fm4) 269(26) 340(30) 230(10) 170(60) 228(41) 269(136)

222(20) 141(18) 132(23)
β2(DM) 0.640(27) 0.690(27) 0.568(10) 0.482(74) 0.541(43) 0.554(138)

0.590(24) 0.439(25) 0.419(33)
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TABLE IV. Measured spin and assigned parity [8] with corre-
sponding Nilsson configurations for the odd-A Ne isotopes. Spec-
troscopic (Qs) and intrinsic (Q0) quadrupole moments for isotopes
with spin I > 1/2. For comparison Q0 deduced from rotational
level lifetimes [51] is shown for 21Ne. Deformation parameters were
calculated from Q0 using droplet model formulas (see Sec. IV B).

A Iπ Nilsson Qs (b) Q0 (b) β2(DM)
state

17 1/2− 1/2−[101]
19 1/2+ 1/2+[220]
21 3/2+ 3/2+[211] 0.1029(75) 0.515(38) 0.610(40)

0.55(6)
23 5/2+ 5/2+[202] 0.145(6)[12] 0.406(50) 0.483(53)
25 1/2+ 1/2+[211]

shell structure derived from stable nuclides changes further
away from stability, and as a result some traditional magic
numbers disappear and new magic numbers take their place.

The cancellation of the magic neutron numbers N = 8 and
N = 20 in exotic light nuclei and the appearance of new magic
numbers such as N = 14 or N = 16 is widely discussed in
the literature from the experimental and theoretical point of
view (see [52,53] and references therein). The N = 20 shell
gap between d3/2 and f7/2 (and p3/2) orbits was the first gap
shown to be weakened far from stability [5,54]. The first
evidence from mass measurements of Na [55] and Mg [56]
isotopes in this deformation region named the “island of
inversion,” was strengthened by multiple other observables
such as excitation energies and transition strengths, or spins
and electromagnetic moments. In the last decade it was shown
that the disappearance of N = 20 magicity is accompanied by
the emergence of a new magic number N = 16, which is from
the upward shift in the neutron d3/2 orbital with the proton
number approaching Z = 8 [46,57]. Experimental evidence
was found in the systematics of neutron separation energies and
interaction cross sections [58]. Further studies were based on
neutron-removal reactions mainly in the neutron-rich oxygen
isotopes up to the drip line at 24O (see [53]). Because of
the separated position of the neutron s1/2 orbital between
d5/2 and d3/2, also N = 14 was discussed as a possible shell
closure [59].

In the development of charge radii, shell closures manifest
themselves as minima superimposed on the continuous in-
crease of 〈r2〉 as a function of the neutron number N . This gives
rise to the characteristic slope changes (kinks) at magic neutron
numbers, which are observed at all neutron shell closures with
N � 28 [60]. For the neon radii a distinct minimum is observed
for 18Ne at the classical shell closure N = 8. However, this
appears as a local effect, which does not influence the trends
of the isotopes in the neighborhood because the proton halo
component develops in 17Ne (see Sec. IV C and [9]) and strong
deformation sets in as soon as neutrons are occupying the sd

shell. In contrast to the behavior expected for a shell closure,
the radii increase steeply when approaching N = 20. This
supports the evidence for a breakdown of the N = 20 magic
number, which was already discussed above. Deformed 2p-2h
states intrude below the normal spherical states forming the

island of inversion, and several experiments have consistently
indicated that already 28Ne with N = 18 belongs to this island.

In the middle of the sd shell, the development of the radii
around the minimum observed at N = 14 (see Fig. 5) shows
the characteristic features of a magic shell closure. A similar
behavior is observed in the sodium radii [6]. This neutron
number corresponds to a completed d5/2 subshell, suggesting
an increased N = 14 gap between d5/2 and s1/2. One would
expect that this is associated with a deformation minimum for
24Ne as it is shown in tabulated data [31] on B(E2) values.
However, these are only partly consistent with the results
of recent experiments [37,38] in which intermediate-energy
Coulomb excitation cross sections have yielded decreasing
B(E2) values up to 28Ne. On the other hand, the appearance
of an increased subshell gap at N = 14 and/or N = 16 is in
line with observations of unusual stability reflected in nuclear
masses. The evidence for a shell closure is found in a significant
drop of the two-neutron separation energy above the magic
neutron number. Surprisingly, in the Ne isotopes this occurs
for the odd neutron number N = 15, and a possible reason
for such a behavior was discussed in an early conference
report [61]. A further exception from the usual behavior at
shell closures is that the steep decrease of two-neutron binding
energies continues over three neutron numbers, up to N = 18.
Based on this, further investigations [62] have again advocated
the dominance of a shell gap at N = 16.

The 2+
1 energies of both isotopes, 24Ne and 26Ne, are even

larger than for 18Ne at the N = 8 shell closure. Together with
all other aspects this probably means that N = 14 and N = 16
are involved in the shell closure effect observed in the middle
of the traditional sd shell. The energy ratio E(4+)/E(2+)
decreases considerably above N = 12, reaching a minimum at
N = 16 (see Table III and Fig. 6) which is slightly lower than
the ratio of 1.79 observed for 18Ne. While these values indicate
close-to-spherical vibrational nuclei, the E(4+)/E(2+) ratios
for 20,22Ne are closer to 3.33 as found for deformed rotors.

The question whether N = 14 or 16 should be considered
as a magic neutron number depends sensitively on the position
of the 2s1/2 level between 1d5/2 and 1d3/2 as a function of the
proton number Z. These neutron numbers separate j = l +
1/2 and j = l − 1/2 orbits in analogy to the magic numbers
in the heavier-mass region. At least for neon with Z = 10
the behavior of radii slightly favors N = 14 as being “more
magic” than N = 16.

B. Droplet model nuclear charge radii of neon isotopes

Features of deformation are present in the neon isotopes
throughout the sd shell, and we can try to attribute the
observed changes in nuclear charge radii to known deformation
properties of the individual isotopes. The β2 values in [31]
were calculated from B(E2) values using the first-order for-
mula β2 = (4π/3ZR0

2)[B(E2; 0+ → 2+)/e2]1/2. However,
this limitation to the lowest order in β2 leads to overestimated
deformation values. This is especially important for large de-
formations, where higher-order terms contribute substantially
to the quadrupole moment. In addition, the assumption of a
spherical radius R0 = 1.2A1/3 fm is not a good approximation
for light nuclei. In this paper the deformation parameters and
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radii were calculated using the droplet model [63] according to
which the dependence of the intrinsic quadrupole moment Q0

on the quadrupole deformation parameter α2 = (5/4π )1/2β2

is given by

Q0 = 6

5
ZRZ

2

(
α2 + 4

7
α2

2 − 1

7
α2

3 + · · ·
)

+ 48

157
C ′ZRZ

2

(
α2 + 6

7
α2

2 − 4

5
α2

3 − · · ·
)

. (16)

Here RZ is the effective sharp radius of the proton distribution
and C ′ is the Coulomb redistribution correction. In the
evaluation of β2 from Eq. (16) we have included terms up
to the third power in α2 and omitted terms accounting for
higher-order deformation.

The mean square charge radii are equally influenced
by static and dynamic deformation of the nuclear charge
distribution. Both of them are inherently included [64] in
the effective β2 values (Table III)—literally expressed as√

〈β2
2〉—which are deduced for the even isotopes from

experimental B(E2; 0+
1 → 2+

1 ) values. For the odd-A isotopes,
the values of Q0 and β2 shown in Table IV were deduced
from measured spectroscopic quadrupole moments and they
represent static deformation only. The trend of these empirical
deformation parameters β2 according to Eq. (16) is displayed
in Fig. 7.

With deformations from B(E2) values and from spec-
troscopic quadrupole moments the droplet-model description
[63] of mean square charge radii,

〈r2〉A = 3

5
RZ

2

(
1 + α2

2 + 10

21
α2

3 − · · ·
)

+ 12

175
C ′RZ

2

×
(

1 + 14

5
α2

2 + 28

15
α2

3 − · · ·
)

+ 3b2, (17)

where b accounts for the surface diffuseness, can be used to
make a prediction for δ〈r2〉20,A along the chain of isotopes.
The result is included in Fig. 5. Apart from a somewhat
different general slope, which is determined by the droplet
model coefficients adjusted to ground-state masses over the
whole nuclide chart, the radii obtained from such a simple
collective picture reproduce the experimental data quite well.
The description of irregularities in the charge radii in terms
of a single shape parameter appears to be a valid approach.
This is surprising in a region where single-particle orbitals and
clustering are supposed to dominate the nuclear properties. It is
in contrast to the behavior of other light nuclear systems such as
the Ca and Ar isotopes [12] in the neighborhood of the Z = 20
shell closure, where deformation is small and single-particle
contributions dominate over collective properties. Similarly,
for heavier systems it was found that the semiempirical droplet
description is most suitable in regions of strong deformation.

We note that all quadrupole moments Q0 and thus all
deformation parameters β2 were assumed to be positive,
although the sign cannot be determined from B(E2) values
alone. The leading terms in Eqs. (16) and (17) are independent
of this sign assumption. However, by including α, α2, and α3

terms, the picture can change to some extent, if mainly surface
vibrations or oblate deformations are responsible for the
B(E2) values. As suggested by some theoretical calculations

discussed in the following section, this may be the case in the
midshell region around 24Ne and 26Ne.

C. Theoretical models

There are several theoretical studies providing absolute
charge radii of neon isotopes. To compare these calculations
with our data it is most instructive to deal not only with
differences, but with total rms charge radii derived using as a
reference the value measured for 20Ne, Rc = 3.006(5) fm [30].

The most recent calculations using the fermionic molecular
dynamics (FMD) model concentrate on specially 17−22Ne
[9,65]. This approach shows a remarkable agreement with
experimental charge radii because it includes both shell and
clustering effects. It also reproduces very well the experimental
one- and two-neutron separation energies and B(E2) values.
The increase of the charge radius from 18Ne to 17Ne at
the proton drip line is related to the development of a halo
component in the wave function with a proton s2 occupation
probability changing from 15% to 40%. Relative to 18Ne,
the radii of 19−22Ne are again larger but decrease with
increasing neutron number. This is from cluster configurations
of the nucleons outside the doubly magic 16O core, which
in the simplest case of 20Ne form just an α cluster. These
configurations are related to the known deformation decreasing
toward 24Ne. Calculations beyond 22Ne are not envisaged at the
moment because of a very long computational time increasing
with the number of nucleons and possible cluster components
outside the 16O core.

The binding energies, deformations, and charge radii of
neon isotopes have also been calculated using the more
classical mean-field approach. Below, we divide the discussion
into models devoted to only even-even isotopes and those
devoted also to odd-mass isotopes.

The properties of even-A neon isotopes have been ad-
dressed using several mean-field models. To these belong
approaches optimized for light isotopic chains, such as the
deformed relativistic mean-field approach (RMF) with BCS
theory for pairing correlations [66], deformed Hartree-Fock
(HF) plus BCS calculations using Skyrme interaction [43],
or very recent calculations within a relativistic Hartree-Fock-
Bogoliubov (RHFB) model [67]. The radii and deformations
obtained with these models are plotted with experimental
data in Fig. 8. The former calculations give an unrealistically
large charge radius of 18Ne at the N = 8 shell closure, but
reproduce well the radii minimum at 24,26Ne. The HF plus
BCS calculations result in generally larger radii and smoother
changes, with only a shallow minimum at 24,26Ne and a 18Ne
value again without indication of a shell closure effect. The
most recent RHFB model, with the PKO3 interaction including
explicitly the pion field, agrees with most of the experimental
radii: It predicts minima for N = 8 and N = 14, large radii for
20,22Ne, and a linear increase from N = 14 toward N = 20 and
beyond. Deformations on the mean-field level are predicted
to be appreciable only in the lower part of the sd shell, in
particular for the stable 20Ne and 22Ne. Note that for soft
nuclei, where configuration mixing plays an important role, the
agreement with experimental β2 derived from B(E2) values is
expected to be less good.
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FIG. 8. (Color online) (a) Rms nuclear charge radii Rc and
(b) deformation parameters β2 of even-even Ne isotopes (exp),
compared to theoretical predictions of Siiskonen et al. [43], Lalazissis
et al. [66], and Ebran et al. [67]. For the radii, the error bars represent
statistical uncertainties, while systematic error limits are given by the
dashed and dotted lines.

Among the models addressing also odd-mass isotopes,
deformed relativistic mean-field theory plus delta-function
interaction for pairing [68] was used to calculate the neon
charge radii along with other ground-state properties of light
nuclei in the 10 � Z � 18 region. The results reproduce
qualitatively the progression of radii including the local
minima for 18Ne and 24,26Ne with an increase toward 17Ne and
28Ne, however all absolute radii are somewhat too small. On
the other hand, deformed Hartree-Fock plus BCS calculations,
performed for all nuclei in the nuclear chart [69], reproduce
on average better the absolute radii, but miss characteristic
features such as the large radii of 19,20Ne and a pronounced
minimum at 24Ne, while also showing an increase from 25Ne to
28Ne. The radii calculated with the above models are compared
to our data in Fig. 9(a). The deformations from both models,
and from additional calculations using a deformed Skyrme
Hartree-Fock model [70] and a relativistic Hartree-Bogoliubov
model with Gogny interaction [71], fit to those obtained for
just the even-even isotopes. Strong deformation is predicted
to exist in the range of 19Ne or 20Ne to 23Ne. Details of this
comparison are shown in Fig. 9(b).

It is evident that the absolute radii as well as the charac-
teristic trend with a minimum close to the middle of the sd

shell are reproduced reasonably well by the models. However,
all structural details including the maximum just above N = 8
and the midshell minimum are less pronounced than in the

FIG. 9. (Color online) (a) Rms nuclear charge radii Rc and
(b) deformation parameters β2 of all investigated Ne isotopes (exp),
compared to theoretical predictions of Goriely et al. [69] and Geng
et al. [68]. Additional calculated β2 values of Lalazissis et al. [71] and
Sagawa et al. [70] are shown in (b). The radii of the lighter isotopes
17−22Ne are best described by the recent FMD approach [9]. Error
bars of experimental radii represent statistical uncertainties, whereas
systematic error limits are given by the dashed and dotted lines.

experimental data. Already without the inclusion of a reduced
sd-pf shell gap driving deformation, the models predict an
increase of the radii toward 28Ne. This calls for theoretical cal-
culations of radii including explicitly the shell structure around
N = 20 in a sdpf shell-model basis, as they have been per-
formed for the nuclear level structure and the moments [34,46].

In respect to β2 values, most theoretical approaches repro-
duce the known deformation properties of the nuclei between
19Ne and 23Ne, predict a near-spherical shape for 24Ne,
and give different values of small deformation for the more
neutron-rich isotopes. Both 18Ne and 30Ne at the traditional
N = 8 and N = 20 shell closures are predicted to be spherical.
In contrast to conventional calculations, the Monte Carlo shell
model with a reduced sd-pf shell gap [46] gives realistic
B(E2) values corresponding to large deformation for the
neutron-rich 26Ne and 28Ne. Generally the theoretical β2 values
are much smaller than the experimental ones calculated from
B(E2). Here one has to keep in mind that experimental
and theoretical values of β2 depend on model assumptions
(see Sec. IV A), and that experimental B(E2) values contain
dynamic in addition to static deformations [64], which both
also contribute to the mean square charge radii.

Neither the B(E2) values nor the mean square charge
radii are sensitive to the sign of β2 values. Most theoretical
approaches predict oblate shapes for the ground states of 24Ne
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and 25Ne in the middle of the sd shell. This is explained
with the fully occupied d5/2 orbital at N = 14 favoring oblate
deformation [44]. Shape coexistence with very flat and nearly
degenerate prolate and oblate energy minima is also found for
the more neutron-rich isotopes [70]. In this context it would be
interesting to measure the spectroscopic quadrupole moment
of 27Ne for which different shapes are predicted.

V. CONCLUSION

We have performed laser spectroscopy measurements on
17−28Ne for the determination of isotope shifts and hyperfine
structures. The present results on isotope shifts, including
previously published data on 17−22Ne [9], give insight into
the development of mean square charge radii from the proton
drip line over the N = 8 shell closure to the neighborhood
of N = 20. Spins and nuclear moments of 17Ne, 23Ne, and
25Ne, obtained from the analysis of hyperfine structure for the
odd-A isotopes, were published separately [8]. Known radii of
the stable isotopes 20−22Ne [30] were used to isolate the small
nuclear volume (field) shifts from the isotope shifts dominated
by mass shifts, which remained a major problem in the analysis
of the early laser spectroscopy data on sodium [6,7]. Moreover,
this procedure eliminates systematic errors of the evaluated
radii arising from the large Doppler shifts [12].

The short-lived isotopes far from stability became acces-
sible from the application of an efficient resonance detection
scheme based on collisional ionization and ion counting via
the β decay [11,12]. This also avoids background from laser
light and from ion beam contamination with stable isobars.
The determination of small field shifts in the low-Z element
neon requires high accuracy of the isotope shift measurements,
typically about 1 MHz, which in collinear laser spectroscopy
implies a very good calibration of the beam energy. This was
achieved by verifying the acceleration voltage for which two
known transition frequencies in 20Ne, measured with collinear
and anticollinear beams and thus Doppler-shifted in opposite
directions, coincide at the same laser frequency.

The comparison between experimentally determined
changes in charge radii and values calculated from the droplet

model [63] using empirical β2 deformation values shows a
clear correlation between both quantities. The well-known
deformation properties around the stable isotopes 20−22Ne and
the N = 8 shell closure at 18Ne are clearly reflected in the radii.
Below, the proton drip line is reached with the proton halo
candidate 17Ne. Its properties have been discussed in detail
in our previous papers [8,9], advocating the development of a
proton halo component, but no well-developed halo.

In the region of neutron-rich isotopes, close to N = 20,
the large neutron excess affects the spin-orbit and the proton-
neutron interaction, thereby changing the order of filling
the nucleon orbits. The disappearance of the N = 20 shell
gap, driving deformation at a classical magic number, was
suggested long ago [5,54]. Recent experimental [34,35,47]
and theoretical [46] studies of low-lying states in 26Ne and
28Ne provide evidence that 28Ne with two neutrons less than
the traditional N = 20 shell closure is located in the island of
inversion. Although this is partly questioned by recent results
on B(E2) values, the increase of nuclear radii toward N = 20,
beyond the minimum at N = 14, suggests a magic number in
the middle of the sd shell and appreciable deformation already
for 28Ne.

The nuclear radii presented in this paper range into exotic
regions of the sd shell. Together with the earlier published
nuclear moments [8] they show a diversity of nuclear structure
phenomena occurring for Ne isotopes between N = 7 and 18.
These can be explained by the appropriate theoretical models,
but a coherent description of different nuclei and observables
is still pending.
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