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Description and evaluation of nuclear masses based on residual proton-neutron interactions
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In this paper we study the residual proton-neutron interactions and make use of the systematics of these
interactions to describe experimental data of nuclear masses and to predict some of the unknown masses. The
odd-even effect staggering of the residual proton-neutron interaction between the last proton and the last neutron
is found and argued in terms of pairing interactions. Two local mass relations, which work very accurately for
masses of four neighboring nuclei, are discovered. The accuracy of our predicted masses for medium and heavy
nuclei is competitive with that of the AME2003 extrapolations, with the virtue of simplicity.
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I. INTRODUCTION

Nuclear mass M(Z,N ), and alternatively, binding energy
B(Z,N ), is one of the fundamental quantities for a given
nucleus with proton number Z and neutron number N .
The relation between M(Z,N ) and B(Z,N ) is as follows:
B(Z,N ) = M(Z,N ) − ZMp − NMn, where Mp is the mass
of a free proton, and Mn that of a free neutron. This quantity
is of great interest not only in nuclear physics but also in
astrophysics.

There have been continuous efforts toward constructing
formulas to describe available databases and to predict
unknown masses, since the early years of nuclear physics.
Important progress (e.g., the famous Weizsäcker formula [1],
the finite range droplet model [2]) has been made along this
line. In recent years, the relativistic mean field model plus
the BCS theory has reached an accuracy of root-mean-squared
deviation (RMSD) σ � 2 MeV [3], the Skyrme-Hartree-Fock-
Bogoliubov theory [4,5] σ � 581 keV, the Duflo-Zuker model
[6] σ � 380 keV, and a recent macroscopic-microscopic mass
formula σ � 441 keV [7]. For a comprehensive review, see
Ref. [8].

Besides these microscopic and/or macroscopic models,
local mass relations have also proved to be useful, for
instance the application of Coulomb displacement energies
of mirror nuclei in mass predictions of the neutron-deficient
nuclei relevant for the astrophysical rp process [9]. The most
often used local mass relations are probably the Garvey-
Kelson formulas [10]. Applications of the Garvey-Kelson mass
formulas was investigated many years ago in Refs. [11–13]
and was rehabilitated by Barea et al. [14,15] in recent years.
Very recently, Morales and Frank improved the nuclear mass
predictions via iterative processes of the Garvey-Kelson mass
relations, by rewriting the Garvey-Kelson mass relations in
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terms of one-neutron and one-proton separation energies [16].
We also note that an improved mass formula for heavy
nuclei with Z � 90 and N � 140 reaches an accuracy of
σ � 105 keV [17].

In Refs. [18,19] we suggested several sets of local mass
relations, based on the residual proton-neutron interactions.
This paper is a more sophisticated approach along the same
line, with the focus on prediction of unknown masses. In Sec. II
we present the residual two-body interactions between the last
i protons and j neutrons (denoted by δVip−jn) in terms of the
interaction between the last proton and the last neutron. We
introduce a few phenomenological corrections to refine our
predictions of δVip−jn. In Sec. III we construct our local mass
formulas by using these δVip−jn and discuss the RMSDs of
our predictions. We present our predicted masses by applying
these mass formulas and using the experimental data compiled
in the AME2003 database [20] as well as those obtained in
recent measurements. In Sec. IV we discuss and summarize
the results of this paper.

II. SYSTEMATICS OF THE RESIDUAL
PROTON-NEUTRON INTERACTIONS

The residual proton-neutron interactions have been realized
to play an important role in the evolution of collectivity,
deformation, and phase transitions [21–25], and thus have been
attracting considerable attention [26–38]. The proton-neutron
interaction between the last i protons and j neutrons is given
by

δVip−jn(Z,N) = B(Z,N ) + B(Z − i, N − j )

−B(Z,N − j ) − B(Z − i, N). (1)

It is easy to obtain

δV1p−2n(Z,N ) = δV1p−1n(Z,N ) + δV1p−1n(Z,N − 1),
(2)

δV2p−1n(Z,N ) = δV1p−1n(Z,N ) + δV1p−1n(Z − 1, N);
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namely, δV2p−1n and δV1p−2n can be decomposed in terms of
δV1p−1n, the residual interaction between the last proton and
the last neutron.

We calculate δV1p−1n, δV1p−2n, and δV2p−1n, by using
Eq. (1) and the experimental data compiled in Ref. [20]. Our
calculated δVip−jn are presented in Fig. 1, denoted by open
circles. For nuclei with the same mass number A, we calculate
the average value of δVip−jn(A), denoted by δVip−jn(A) (see

(a)

(b)

(c)

FIG. 1. (Color online) Residual proton-neutron interactions for
nuclei with mass number A � 16. A minus sign is added to δVip−jn

in this figure so that most of the data are above zero, guiding our
eyes more comfortably. In panel (a) we present −δV1p−1n separately
for nuclei with even A (black circles) and odd A (blue circles), and
the curve in red (green) is plotted by using the average values of
−δV1p−1n for nuclei with mass number A even (odd). The straight
line in orange is plotted according to Eq. (3): −δV1p−1n(N,Z) =
74 keV for odd-A nuclei with A > 100 and the curve in violet-blue
is plotted according to −δV1p−1n(N,Z) = 74 + 69 861/A keV for
even-A nuclei with A � 100. In panels (b) and (c), circles in black
correspond to −δV1p−2n and −δV2p−1n, respectively, and curves in red
are plotted by using their average values with given A. The −δV1p−1n

for nuclei with Z = N , −δV1p−2n for nuclei with Z = N or Z =
N − 1, or −δV2p−1n for nuclei with Z = N or Z = N + 1 are not
included. See the text for details.

the solid curves in red and green in Fig. 1). In Fig. 1 we did not
include the results in which nuclei with Z = N are involved,
because δV1p−1n for nuclei with Z = N is exceptionally
large.

In Fig. 1(a), one sees that the values of δV1p−1n for nuclei
with odd A are very different from those with even A. In order
to understand the possible origin of this odd-even difference,
the modified Bethe-Weizsäcker formula [7] is assumed and
combined with Eq. (1) for i = j = 1. The pairing interaction
[denoted by Vpairing(Z,N )] in Refs. [7] is as follows:

Vpairing(Z,N) = apairingA
−1/3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 − I for even Z and even N,

I for odd Z and odd N,

1 − I for odd Z and even N with Z < N,

1 for odd Z and even N with Z > N,

1 − I for even Z and odd N with Z > N,

1 for even Z and odd N with Z < N,

where apairing = 5442.3 keV, and I = |N − Z|/A. One obtains
that the dominant contribution to δV1p−1n from the pairing
interaction1 is

Vpairing(Z,N) + Vpairing(Z − 1, N − 1) − Vpairing(Z,N − 1)

−Vpairing(Z,N − 1) � ±apairingIA−1/3.

Its magnitude is ∼164 keV for medium and heavy nu-
clei, and the signs + and − correspond to A = odd and
even, respectively. Here we assume N > Z because we
focus on medium and heavy nuclei. This leads to larger
values of −δV1p−1n for nuclei with even A (open circles
in black) than those with odd A (open circles in blue),
with the odd-even difference about 330 keV. The odd-even
difference of δV1p−1n(A) in Fig. 1(a) is about 440 keV, on
average. Therefore we suggest that the odd-even difference
of δV1p−1n(A) is dominantly originated from the pairing
interaction.

According to Fig. 1(a), the δV1p−1n(A) (see the solid curve
in green) for odd-A nuclei with A � 100 is almost constant
[close to zero; see the solid line in orange in Fig. 1(a)]. Based
on this behavior, we obtain

B(Z,N) + B(Z − 1, N − 1) − B(Z,N − 1) − B(Z − 1, N )

� δV1p−1n(A) � −74 keV, (3)

where N + Z = A is odd and A � 100. Numerical exper-
iments show that the RMSD of the above relation is only
132 keV for A � 100. This relation is more precise than the
Garvey-Kelson mass relations, the RMSD of which is 170 keV
for nuclei with A � 100.

The δV1p−1n for even-A nuclei with A � 100 is higher (with
very few exceptions) than those for their neighboring odd-A

1The odd-even behavior of δV1p−1n cannot be explained if one
assumes the conventional form of the pairing interaction, e.g.,
Vpairing(Z, N ) = apairA

−1/2C, C = 1, 0,−1 for even-even, odd-A, and
odd-odd nuclei, respectively.
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nuclei. We empirically have

δV1p−1n|odd A − δV1p−1n|even A � 69 861

A
keV,

as shown by using the solid curve in violet-blue in Fig. 1(a).
From this relation, one obtains

B(Z,N ) + B(Z − 1, N − 1) − B(Z,N − 1) − B(Z − 1, N)

� δV1p−1n(A) � −74 − 69 861

A
keV, (4)

where N + Z = A is even and A � 100. The RMSD of this
relation is 168 keV, very close to that of the Garvey-Kelson
mass relations (170 keV).

The main advantage of relations given in Eqs. (3)–(4) is that
they involve masses of only four neighboring nuclei, while the
number of neighboring nuclei involved in the Garvey-Kelson
mass relations is six. This is important for reliable predictions
in the process of iterative extrapolations. The smaller the
number of nuclei in the mass relations is, the smaller the
intrinsic error associated with the extrapolations [16] is.

For δV1p−2n and δV2p−1n, there is no odd-even effect as for
δV1p−1n in Fig. 1(a). The reason is readily seen in Eq. (2): The
number of δV1p−1n with even A is always the same as that with
odd A for any δVip−jn(Z,N ) if ij = even.

Because our strategy to describe the known masses and
predict the unknown masses is to apply Eq. (1), it is most
important to obtain reliable predictions of δVip−jn. Toward
this goal, we first take our calculated δV1p−1n(A) as our
initial values, and then introduce a few corrections which are
explained as follows.

One of the corrections is called the shell correction, denoted
by �sh here. The shell effect on residual proton-neutron
interactions was discussed in Refs. [32,33,36], where it was
shown that proton-neutron interactions are stronger if the
proton fractional fillings and neutron fractional fillings are
close to each other [38]. Based on this observation, we
empirically obtain the �sh as follows:

�sh(Z,N ) = ash + 2bsh|δp�N (Np − �Z)

− δn�Z(Nn − �N )|, (5)

where Np (Nn) is the valence proton (neutron) number with
respect to the nearest closed shell, δp (δn) equals +1 if
the valence protons (neutrons) are particle-like and −1 if
hole-like, �Z = ∑

jZ
(jZ + 1

2 ) with jZ representing angular
momenta of single-particle levels for valence protons, and
�N = ∑

jN
(jN + 1

2 ) with jN representing angular momenta
of single-particle levels for valence neutrons. ash and bsh are
parameters to be determined via the χ2 fitting. This correction
is the key improvement which reduces the RMSD of δV1p−1n

by ∼3 keV.
Other corrections that we introduce are enlightened by

Refs. [7]. We substitute the modified Bethe-Weizsäcker for-
mula of Refs. [7] into Eq. (1) and expand Eq. (1) in terms
of 1/A for δV1p−1n. We find that, for nuclei with A � 100,
among various contributions to δV1p−1n, the contribution from
the surface energies is very small (∼ −5 keV), and the
contribution from the Coulomb energies is ∼ −26 keV. The
most important part originates from the symmetry energies,

which present ∼ −269 keV for A � 100 in δV1p−1n, and the
pairing interactions, which present on average 164 keV for
odd-A nuclei and −164 keV for even-A nuclei. We therefore
focus only on the Coulomb terms and symmetry energies. We
study their expansions in terms of 1/A and obtain our empirical
corrections. The first is called the Coulomb correction, denoted
by �C:

�C(Z,N) ≈ aC

(
− 4

9
Z4/3A−7/3 − 2

3
ZA−4/3

+ 4

9
Z2A−7/3 + 4

9
Z1/3A−4/3

)
; (6)

the second is called the symmetry energy correction, denoted
by �sym:

�sym(Z,N) = asym
1

A(2 + |IA|)3
+ bsymA−1,

(7)

where I = (N − Z)/A. The aC, asym, and bsym are parameters
to be determined. The improvement of these two corrections
on our predicted δV1p−1n is only ∼1 keV. Although these two
corrections are small in the present work, we believe that one
will achieve important improvements along this line in future,
if substantial progress is made in understanding the symmetry
energy in atomic nuclei.

In Table I we present the parameters in Eqs. (5)–(7),
separately for even A and odd A. We use the χ2-fitting
procedure to achieve the best agreement with the values
δV1p−1n extracted from experimental data of binding energies.
It is interesting to note that the shell correction on δV1p−1n for
even-A nuclei is stronger than for odd-A nuclei (approximately
by a factor of three).

Our predicted δVip−jn(Z,N) are summarized as follows:

− δV cal
1p−1n(Z,N) = − δV1p−1n(A) + �sh(Z,N )

+�C(Z,N) + �sym(Z,N),

−δV cal
1p−2n(Z,N) = − δV1p−2n(A) + �sh(Z,N )

+�sh(Z,N − 1) + �C(Z,N)

+�C(Z,N − 1) + �sym(Z,N)

+�sym(Z,N − 1),

−δV cal
2p−1n(Z,N) = − δV2p−1n(A) + �sh(Z,N )

+�sh(Z − 1, N ) + �C(Z,N)

+�C(Z − 1, N ) + �sym(Z,N)

+�sym(Z − 1, N ). (8)

TABLE I. The parameters used in Eqs. (5)–(7), in units of keV.

Parameter For Even A For Odd A

ash 58.95 15.40
bsh −0.1444 −0.03157
aC −34.80 12.00
asym 12007 22211
bsym −179.7 −70.42
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FIG. 2. (Color online) Deviations (in units of keV) of our
calculated δV1p−1n by using Eqs. (5)–(8) with respect to those
extracted from experimental binding energies [see Eq. (1)], for the
nuclei with A � 16.

In Fig. 2 we show deviations (in units of keV) between
our calculated δV1p−1n by applying Eqs. (5)–(8) and those
calculated by applying Eq. (1) and experimental data of
binding energies compiled in Ref. [20]. In Table II we present
the RMSDs of our δVip−jn obtained by using Eqs. (5)–(8), with
respect to those extracted from experimental data of binding
energies [20]. One sees that the RMSDs of these δVip−jn

decrease with A. The RMSD values are the smallest for δV1p−1n

and the largest for δV2p−1n.

III. PREDICTION OF NUCLEAR MASSES

In this section we make use of δV cal
ip−jn obtained above and

predict some of the unknown masses. We replace δVip−jn by
using δV cal

ip−jn in Eq. (1), and obtain

Bpred(Z,N ) = B(Z,N − 1) + B(Z − 1, N)

−B(Z − 1, N − 1) + δV cal
1p−1n(Z,N ),

Bpred(Z,N ) = B(Z,N − 1) + B(Z + 1, N)

−B(Z + 1, N − 1) − δV cal
1p−1n(Z + 1, N),

Bpred(Z,N ) = B(Z,N + 1) + B(Z + 1, N)

−B(Z + 1, N + 1) + δV cal
1p−1n(Z+1, N+1),

Bpred(Z,N ) = B(Z,N + 1) + B(Z − 1, N)

−B(Z − 1, N + 1) − δV cal
1p−1n(Z,N + 1),

(9)

TABLE II. The RMSDs (in units of keV) of our calculated proton-
neutron interactions by applying Eqs. (5)–(8) with respect to those
extracted from experimental data of binding energies.

Region δV1p−1n δV1p−2n δV2p−1n

A � 16 213 235 241
A � 60 159 168 175
A � 120 124 134 142

and

Bpred(Z,N) = B(Z,N − 2) + B(Z − 1, N )

−B(Z − 1, N − 2) + δV cal
1p−2n(Z,N),

Bpred(Z,N) = B(Z,N − 2) + B(Z + 1, N )

−B(Z + 1, N − 2) − δV cal
1p−2n(Z + 1, N),

Bpred(Z,N) = B(Z,N + 2) + B(Z + 1, N )

−B(Z + 1, N + 2) + δV cal
1p−2n(Z+1, N+2),

Bpred(Z,N) = B(Z,N + 2) + B(Z − 1, N )

−B(Z − 1, N + 2) − δV cal
1p−2n(Z,N + 2),

Bpred(Z,N) = B(Z,N − 1) + B(Z − 2, N )

−B(Z − 2, N − 1) + δV cal
2p−1n(Z,N),

Bpred(Z,N) = B(Z,N − 1) + B(Z + 2, N )

−B(Z + 2, N − 1) − δV cal
2p−1n(Z + 2, N),

Bpred(Z,N) = B(Z,N + 1) + B(Z + 2, N )

−B(Z + 2, N + 1) + δV cal
2p−1n(Z+2, N+1),

Bpred(Z,N) = B(Z,N + 1) + B(Z − 2, N )

−B(Z − 2, N + 1) − δV cal
2p−1n(Z,N + 1).

(10)

These twelve relations, together with the δV cal
1p−1n, δV cal

2p−1n, and
δV cal

1p−2n described in Eqs. (5)–(8), are key relations to predict
unknown masses in this paper.

A. Error estimation

In this subsection we discuss the errors arising from our
predictions. We first investigate the RMSDs of our predicted
binding energies by using Eqs. (9) and (10), for nuclei
whose binding energies are experimentally known. Similar
to procedures in Refs. [14,15,18,19], we take the average
value of predicted results by using all possible formulas
for a given nucleus (the number of possible formulas is
denoted by n, as in Refs. [14,15,18,19]), and calculate the
deviations from experimental data. For nuclei with A � 60,
the RMSD of Eq. (9) is 131 keV for n � 1; and the RMSD of
Eq. (10) is 107 keV for n � 1. The RMSD deviation by using
δV2p−1n(Z,N ) and δV1p−2n(Z,N ) is 123 keV in Ref. [19], and
that by using the Garvey-Kelson relations is 115 keV [14].
These RMSDs show that, for nuclei whose masses are known,
the RMSD by using Eq. (10) is the smallest. We note that for
known masses, the number n of possible formulas to predict
one of masses is usually as large as its maximum [e.g., eight
for Eq. (10)]. If one focuses on the results obtained separately
by each of the formulas, one obtains that the RMSD of Eq. (9)
is 134 keV, that of Eq. (10) is 146 keV, and that of the Garvey-
Kelson formulas is 157 keV for A � 100. This demonstrates
that our formulas in Eqs. (9) and (10) are more accurate
than the Garvey-Kelson relations, if the formulas are applied
separately.

Below we study the deviations of our predicted masses for
nuclei whose masses are unknown. There are two possible
origins for deviations of our predicted masses from their true
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values. One is given by the uncertainties of experimental
datum on the right-hand side of Eqs. (9) and (10). The
second originates from the approximation in predicting the
residual neutron-proton interactions, i.e., δV cal

1p−1n in Eq. (9)
or δV cal

1p−2n and δV cal
2p−1n in Eq. (10). We denote the errors

associated with such approximations by using σth. In other
words, the formulas in Eqs. (9) and (10) are not exact; σth

might be regarded as the RMSD value of our formulas, if all
uncertainties of experimental data for binding energies were
zero.

In order to “decouple” the experimental errors, we make
use of the procedure described by Möller et al. in Ref. [2].
This procedure is based on a so-called maximum-likelihood
method, which we describe it as follows. For a set of
calculated results, it is assumed that the theoretical errors
are Gaussian-type distributed with a standard deviation σth

and centered at a mean value μth. For short here we denote
the binding energies by Bi . i is an abbreviation of (Z,N ),
i = 1, 2, . . . , k. k is the number of different predicted results
for the selected set of nuclei. Bi

th and Bi
exp denote predicted

and experimental results of binding energy of the ith nucleus,
respectively. We first assume an initial value of σth, say, σth =
100 keV. Then we calculate the weight factor (wi) for the ith
nucleus:

w∗
i = 1(

αi
2 + σth

2∗) , i = 1, 2, . . . , k. (11)

Here (αi)2 denotes a sum of (σexp)2 of all the bind-
ing energies involved in the prediction. For exam-
ple, (αi)2(N,Z) = (σexp)2(Z,N − 1) + (σexp)2(Z − 1, N ) +
(σexp)2(Z − 1, N − 1) if one predicts the binding energies by
using the first formula in Eq. (9). In this paper the superscript
“∗” of wi and σth means that the corresponding results are
not fixed and they change their values in iterations. We use
these w∗

i values and calculate the mean deviation between the

predicted and experimental masses for the set of data selected:

μth
∗ =

∑k
i=1w

∗
i

(
Bi

exp − Bi
th

)
∑k

i=1w
∗
i

. (12)

We use these w∗
i and μth

∗ to evaluate σ ∗
th:

(σ ∗
th)2 =

∑k
i=1w

∗
i

2[(Bi
exp − Bi

th − μth
∗)2 − σ i

exp
2]

∑k
i=1w

∗
i

2
. (13)

This new value of σth
2∗ is substituted into Eq. (11) to calculate

another set of w∗
i , and the above process is iterated until all

results are converged (the convergence is found to be extremely
rapid), as mentioned in Ref. [2]. We take the converged value
of σth

∗ as our evaluated σth for the selected set of nuclei.
The results of σth are given for different mass regions and
different n in Fig. 3. We assume σth changes smoothly with A,
and take the same σth in predicting unknown binding energies
in the same mass region (see the smooth curves in Fig. 3).
For A � 100 and n = 1, the σth of the formulas in Eq. (9)
and Eq. (10) is 113 and 127 keV, respectively. Similarly, we
calculate σth of the Garvey-Kelson formulas, and the resulting
σth (for individual formulas) is 138 keV for A � 100 and
n = 1.

Now we exemplify the evaluation of errors (or uncertain-
ties) for unknown masses in our predictions by two examples.
In the first example, we deal with the case of n = 1, and we
predict the unknown binding energy of a nucleus with proton
number Z and neutron number N . Let us suppose we use the
first formula in Eq. (9); the error σpred(Z,N) of our predicted
binding energy is readily given by

[σpred(Z,N)]2

= [σth(A)]2 + [σexp(Z,N − 1)]2

+ [σexp(Z − 1, N )]2 + [σexp(Z − 1, N − 1)]2.

(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color online) The theoretical errors (σth) associated with our formulas versus mass number A. Panel (a), (b), and (c) [(d), (e), and
(f)] correspond to Eq. (9) [Eq. (10)] for even-even, odd-A, and odd-odd nuclei, respectively. The results of σth are obtained for selected sets of
nuclei with n = 1 to 4 for Eq. (9) and n = 1 to 8 for Eq. (10), and the smooth curves are plotted by fitting these calculated σth.
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unpublished

FIG. 4. (Color online) Comparison between masses (in units of keV) obtained in recent measurements, those predicted in the AME2003
extrapolations (solid circles in blue), and our new approach (solid squares and diamonds in red). The references in this figure are as follows:
Rahaman 2007 [40], Baruah 2008 [41], Hakala 2008 [42], Sun 2008 [43], Savory 2009 [44], Delahaye 2006 [45], Kankainen 2006 [46],
Haettner 2011 [47], Weber 2008 [48], Breitenfeldt 2010 [49], Elomaa 2009 [50], Chen unpublished [51], Chen 2010 [52], Neidherr 2009 [53].

In the second example, we deal with the case of n = 2. Let
us suppose that we use the first and the second formulas of
Eq. (9). In this case

Bpred(Z,N ) = B(Z,N − 1) + 1
2B(Z − 1, N )

− 1
2B(Z − 1, N − 1) + 1

2B(Z + 1, N)

− 1
2B(Z+1, N−1) + 1

2

[
δV cal

1p−1n(Z,N )

− δV cal
1p−1n(Z + 1, N )

]
,

and σpred(Z,N ) is given by

[σpred(Z,N )]2

= [σexp(Z,N − 1)]2 + 1
4 [σexp(Z − 1, N)]2

+ 1
4 [σexp(Z − 1, N − 1)]2 + 1

4 [σexp(Z + 1, N )]2

+ 1
4 [σexp(Z + 1, N − 1)]2 + [σth(n = 2, A)]2.

σpred(Z,N) is calculated similarly for other cases.
If we make use of the formulas in Eqs. (9) and (10) to predict

unknown masses in the second and/or the third successive
extrapolations, our predicted errors are accumulated. In the
second-step extrapolation one of the binding energies is based
on our predictions, and in the third-step extrapolation one or
two binding energies are based on predictions. The values of
σpred for these nuclei are taken to be the surrogates of their σexp.
Therefore the errors of our predictions increase if successive
extrapolations are employed.
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B. Mass predictions

We denote our predicted masses based on Eq. (9) by
Mpred(1), and those based on Eq. (10) by Mpred(2). We take
the experimental data of masses compiled in the AME2003
database and obtain our predicted results of 463 unknown
Mpred(1) and 791 Mpred(2) by up to three successive extrapola-
tions from known masses. These predicted results are tabulated
in Ref. [39]. Without details we note that our predicted masses
are, roughly speaking, very close to those predicted in the
AME2003 database, in particular for those with A � 100.

Since the AME2003 database was published, new mea-
surements of masses were performed [40–53]. These mea-
surements offer us an opportunity to investigate how well our
approach works in predicting unknown masses. Comparisons
between new experimental data and our predictions as well
as extrapolated values in the AME2003 database are made
in Fig. 4. One sees that the accuracy of our predictions
is competitive with that of the AME2003 extrapolations. It
is interesting to note that when our predicted values are
lower than experimental values, the predicted values in the
AME2003 database are dominantly lower, too, and vice
versa.

Now let us pay attention to a few examples for which the
deviations of our predicted results from experimental data
are large. (a) The nuclei 85Mo, 87∼89Tc, and 123Ag. New
experimental data [43,46–49] of binding energies involved
in evaluations of these nuclei are very different from those
compiled in the AME2003 database. By updating the data
by those given in Refs. [43,46–49], our predicted results
are now reasonably consistent with experimental results, as
shown in Fig. 5. (b) The 140I nucleus. Neither predicted results
in this work nor those in the AME2003 database are very
consistent with experimental data. In this paper we use 139I,
140Xe, and 141Xe in the evaluation of mass for 140I. The
experimental data of masses for 139I, 140Xe, and 141Xe are (in
units of keV) −68 837.893 ± 31.074, −72 990.992 ± 60.558,
and −68 326.902 ± 90.613 in the AME2003 database [20],
respectively. Even if we used the new set of data given in
Ref. [43], the deviation from experimental data would remain
large. Improvements of predictions may be achieved if more
precise measurements are made on these three masses in future.
(c) 222Po, 226−228Rn, 233−234Ra, 235Ac. The predicted values are
not very consistent with experimental data. An explanation

FIG. 5. (Color online) Same as Fig. 4 for 85Mo, 87∼89Tc, and
123Ag, but predicted results here are recalculated based on new
experimental data of masses [43,46–49] for their neighboring nuclei
which are involved in Eqs. (8)–(9). One sees substantial improvement
of consistency between the predicted results and experimental data.
The references in this figure are as follows: Haettner 2011 [47], Weber
2008 [48], Sun 2008 [43], and Breitenfeldt 2010 [49].

is that the relevant nuclei locate along the “diagonal” line
of the (Z � 82, N � 126) shell closure, where the proton
fractional fillings and neutron fractional fillings are close to
each other. The shell correction term is not optimized for nuclei
in this region, and this deviation leads to an overestimation of
δV1p−1n(A) values here.

By applying Eqs. (9) and (10) and by using δV cal
1p−1n,

δV cal
2p−1n, and δV cal

1p−2n described in Eqs. (5)–(8), as well as
experimental data compiled in Ref. [20] and recent measure-
ments in Refs. [40–77], we have predicted in total 471 Mpred(1)

and 785 Mpred(2) of unknown masses by three successive
extrapolations. Our predicted results are tabulated in [78].

In Table III we present a small set of selected data among
our predicted results [78]. These selected masses are either
important in the context of astrophysics and nuclear structure
or to be measured in the near future. 84Mo, 86Tc, 88Ru,
90Rh, 92Pd, and 94Ag are mainly in the N = Z line and thus
critical to the rp-process simulation.129Cd, 135Sn, and 204Pt are
possibly achieved soon in mass measurements. Our results of
84Mo, 129Cd, and 135Sn are close to those evaluations in the
AME2003 database and the mass of 204Pt is not evaluated in the
AME2003 database. Other results considerably deviate from
the predictions in the AME2003 database. Very interestingly,
however, our predicted results are quite consistent with those
in the AME2011-preview evaluations [79].

IV. DISCUSSION AND CONCLUSIONS

In this paper we study systematics of the residual proton-
neutron interactions, δVip−jn, and make use of these results in
evaluating nuclear masses and predicting the unknown masses.
In order to improve the accuracy of our predicted δVip−jn, we
take the average value of δVip−jn for all nuclei with given mass
number A, and introduce a number of corrections. The key
correction here is the shell correction.

We find an odd-even difference of δV1p−1n for nuclei
with odd mass number A and even A. We suggest an
argument on the possible origin of this odd-even differ-
ence in terms of pairing interactions. The simple behavior
of δV1p−1n for nuclei with A � 100 leads to two use-
ful formulas: B(Z,N ) + B(Z − 1, N − 1) − B(Z,N − 1) −
B(Z − 1, N ) = −74 keV for odd A, the RMSD of which is
only 132 keV; and B(Z,N) + B(Z − 1, N − 1) − B(Z,N −
1) − B(Z − 1, N ) = −74 − 69861/A keV for even A, the
RMSD of which is 168 keV. The RMSD of the Garvey-Kelson
mass relations is ∼170 keV for the same set of nuclei.

One important feature of the method in this work is
that the theoretical errors associated with the formulas, σth,
are smaller than those of the Garvey-Kelson relations for
n = 1. This feature is very important, because the number of
formulas n is always small for the extrapolations to unknown
masses.

In predicting the unknown masses, the number of nuclei
involved in each formula of the Garvey-Kelson mass relations
is five, and that in each of our formulas is three (thus
smaller). A smaller number of nuclei involved in local mass
relations is desirable for more reliable predictions in iterative
extrapolations: The smaller the number of masses in mass

034311-7



FU, LEI, JIANG, ZHAO, SUN, AND ARIMA PHYSICAL REVIEW C 84, 034311 (2011)

TABLE III. Selected data among our predicted mass excesses (in units of keV) [78]. These unknown masses are either important in the
context of astrophysics and nuclear structure or to be measured in the near future. Mpred(1) and Mpred(2) correspond to predicted results by using
Eq. (9) and Eq. (10), respectively. AME2003 corresponds to predicted results in the AME2003 database, and AME2011-preview corresponds
to results in tables of Ref. [79], which is a preview of the recent evaluation by Audi et al.

Nucleus Mpred(1) Mpred(2) AME2003 AME2011-preview

84Mo −55687 ± 394 −55681 ± 368 −55806 ± 401 −54502 ± 401
86Tc −50969 ± 184 −51359 ± 247 −53207 ± 298 −51297 ± 298
88Ru −54277 ± 276 −54314 ± 184 −55647 ± 401 −54399 ± 298
90Rh −52378 ± 315 −52163 ± 207 −53216 ± 503 −51959 ± 401
92Pd −54962 ± 295 −54722 ± 166 −55498 ± 503 −55070 ± 503
94Ag −52719 ± 465 −52629 ± 285 −53300 ± 503 −52412 ± 641
129Cd −63500 ± 179 −63360 ± 131 −63202 ± 298 −63314 ± 196
135Sn −61017 ± 279 −61022 ± 215 −60799 ± 401 −60612 ± 401
204Pt −17955 ± 221 −17995 ± 111 −18062 ± 401

relations is, the smaller the errors associated with the process
of extrapolations are [16]. This is another advantage of our
approach.

We make use of our predicted values of δV1p−1n, δV1p−2n,
δV2p−1n in predicting unknown masses by using successive
extrapolations of the nuclei whose masses are experimentally
known [20]. Our predicted masses are compared with predic-
tions in the AME2003 database as well as experimental values
in recent measurements. It is shown that the accuracy of our
predicted results is competitive with the AME2003 database,
with the virtue of simplicity.

Finally, we predict unknown masses based on extrapola-
tions of the up-to-date experimental data of binding energies,
and tabulate our predicted masses in Ref. [78]. A small set
of selected results, which are either important in the context
of astrophysics and nuclear structure or to be measured in the
near future, are presented.

We believe that the new mass relations discovered in this
paper, and the simple procedures of extrapolation by using the

residual proton-neutron interactions, as well as our predicted
results of some unknown masses, will be very useful in future
studies. More accurate predictions can be readily made if
the predicted proton-neutron interactions are further refined
locally.
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