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Generation of excited K bands in heavy nuclei
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It is known that coupling an intrinsic excitation of integer spin and positive parity I+ to a rotor having a
degenerate set of states Lπ = 0+, 2+, 4+, . . . , generates a series of K bands. A given value of I+ gives rise to
several bands labeled by K+ = 0+, 1+, 2+, . . . , I+, that is, a total of (I + 1) such bands, in the spectrum of the
combined system. We discuss how a binary cluster model of an excited core orbited by a spinless cluster can
approximate these conditions. A crucial point is that the radial wave functions of relative motion are very similar
for low L, and their radial coupling integrals even more so, such that the wave functions play the model role
of a common intrinsic state for the lowest excited states of the system. If the core has a 0+ ground state and
a low-lying 2+ excited state, then lifting the degeneracy leads to a ground state K+ = 0+ band and low-lying
excited K+ = 0+, 1+, and 2+ bands. Although these are all seen in light nuclei, the K+ = 1+ band is conspicuous
by its apparent absence in heavy nuclei, and we urge experimental groups to reexamine their data for signs of it.
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I. INTRODUCTION

Quasirotational ground-state bands of states with angular
momentum sequences J+ = 0+, 2+, 4+, . . . , are observed in
even-even nuclei across the Periodic Table. They are present
in light nuclei, such as 8Be [1,2], 16O [1,3], and 24Mg [1,4]
through regions of strong deformation in the rare-earth region
and beyond into the trans-Pb and Actinide nuclei [1]. Excited
sequences of states having angular momenta J = K, (K +
1), (K + 2), . . . , where K is an integer (and the parity may be
positive or negative) are also commonly observed.

There are complementary geometric and algebraic de-
scriptions of these phenomena. The basis for the traditional
geometric explanation has been provided by the collective-
rotational model of Bohr and Mottelson [5]. In this model
K bands arise when the Hamiltonian is split into intrinsic
and rotational parts and the adiabatic approximation is made
for the rotational part. Then an appropriately chosen intrinsic
state of the even-even core �K (q) and its time-reversed
partner �K̄ (q) couple with axially symmetric rotor functions
having rotational and reflectional symmetries with respect to
a body-fixed OZ′ axis and OX′Y ′ plane to produce wave
functions of the form

�KJM =
√

2J + 1

16π2

[
�K (q)DJ

MK (ω)

+(−1)J+K�K̄ (q)DJ
M−K (ω)

]
. (1)

In an alternative algebraic approach, independent of any
symmetry assumptions, Brink et al. [6] showed that K bands
also emerge when a particle of spin j is coupled to a degenerate
set of Lπ = 0+, 2+, 4+, . . . , states having a common intrinsic
component. This approach is particularly suited to a discussion
of rotational motion within a binary cluster model and we show
below that the coupling of a 2+ state to a rotor produces a
triplet of bands having Kπ = 0+, 1+, and 2+ at rather similar
excitation energies. It is tempting to identify the predicted
0+ and 2+ bands with the beta and gamma bands seen at

about 1 MeV in many actinide nuclei. If this is correct we
expect an accompanying 1+ band as a generic feature of the
spectrum. This structure can be visible through the explicit
observation of a 1+ state or through seeing pairs of states
of given odd J+ close to each other in energy. This is in
marked contrast to the traditional Bohr-Mottelson picture
where, although one can get a 1+ band as a two quasi-particle
state, that would not be a generic feature of the spectrum.
In particular, one never gets 1+ bands in the Bohr-Mottelson
picture by coupling two 2+ phonons [7]. Failure to observe a
1+ band accompanying 0+ and 2+ bands at similar excitation
energies, as a common feature, will indicate that our model
fails to describe an important characteristic of heavy deformed
nuclei.

Theoretical studies of positive parity bands in the actinide
nuclei were also presented within the cranked random phase
approximation (RPA) [8–11], the collective model [12–14],
the interacting boson approximation [15,16], the variable
moment of inertia model [17], and the alpha particle cluster
model [18].

In this article we shall examine the conditions under
which K bands are produced in a binary cluster model and
indicate that a deep potential in which low-L wave functions
undergo many oscillations is particularly propitious for their
generation. In the next section we outline a suitable form
of the cluster-core potential and observe that its radial wave
functions have very little dependence on L, particularly in
the region of the nuclear surface. We go on to calculate
overlap and radial coupling integrals and compare these with
equivalent expressions for wave functions generated by a
three-dimensional harmonic oscillator potential. This leads
on to a discussion of the generation of K bands, the lifting
of degeneracy in the weak and strong coupling limits, and a
strong suggestion that K+ = 1+ bands ought to be widespread
in heavier nuclei. Finally, after a brief discussion of the
electromagnetic properties of these bands, we summarize our
conclusions.
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II. CLUSTER MODEL

The system under study is an actinide nucleus, modeled
as two even-even subnuclei, a core A1 and a cluster A2

separated by a distance R, interacting with each other through
a deep, local potential V (R) composed of a nuclear part VN (R)
and a Coulomb part VC(R). The nuclear component may be
conveniently parametrized in the form [19]

VN (R) = −V0

{
x

{1 + exp [(R − R0)/a)]}

+ 1 − x

{1 + exp [(R − R0)/3a]}3

}
. (2)

In the following we shall use the parameter set T 1 for this
potential employed in a previous systematic study of the
actinide region [20], namely

V0 = 56.6A2 MeV, a = 0.75 fm, and x = 0.36. (3)

The Coulomb component VC(R) is taken as that acting between
a uniformly charged spherical core of radius R0 and a point
cluster [20].

Writing H0(R) for the Hamiltonian of the relative motion
of core and cluster and H1(ξ) for the internal Hamiltonian of
the core, we have

H0(R)�GnL(R) = EGnL�GnL(R)

= EGnL

uGnL(R)

R
YLM (θ, φ), (4)

and

H1(ξ )χI (ξ ) = εIχI (ξ ). (5)

In Eq. (4) the wave functions and energies are labeled by the
global quantum number G = 2n + L, with n the number of
internal nodes in the radial wave function and L the orbital
angular momentum. The value of G must be chosen large
enough to ensure that the major requirements of the Pauli
exclusion principle are satisfied by effectively excluding the
cluster nucleons from states occupied by the core nucleons.
To this end we follow the prescription of T 1 [20] and take
G = 5A2. Thus, we restrict ourselves to the band of states
Lπ = 0+, 2+, 4+, . . . , G+ generated by a particular, fixed,
even value of G, and from now on drop the subscripts G and
n accordingly. In Eq. (5) ξ denotes the internal coordinates of
the core and I labels the core states, with I = 0+ the ground
state and I = Iπ an excited state.

We have previously found [21,22] that the multinodal radial
wave functions uL(R) of high n and low L are all very similar in
the surface region. This is shown in Fig. 1 for the four actinide
nuclei 222Ra [1,23], 228Th [1,24], 232U [1,25], and 236Pu [1,26]
modeled as 208Pb + 14C, 20O, 24Ne, and 28Mg, respectively,
where we plot the radial wave functions uL(R) obtained from
a numerical solution of the Schrödinger equation for the
potential V (R) described above and the L values of 0, 4,
8, 12, 16, and 20. The main differences between the radial
wave functions for a given nucleus occur close to the origin
and are due to the node number differences. For example, the
L = 0 wave functions contain G/2 nodes while the L = 20
wave functions contain ten fewer nodes. This node number
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FIG. 1. Radial wave functions for L values of 0, 4, 8, 12, 16,
and 20 for the actinide nuclei 222Ra, 228Th, 232U, and 236Pu modeled
as 208Pb + 14C, 20O, 24Ne, and 28Mg, respectively, obtained from a
numerical solution of the Schrödinger equation. (See text for details
of the potential.)

mismatch is most clearly visible for the lighter nuclei since they
have smaller cluster masses A2 and correspondingly smaller
values of G/2 = 2.5A2 such that a difference of ten nodes
represents a larger fractional change. In all cases the node
number difference is almost entirely accommodated within a
narrow region restricted to the vicinity of the origin. Beyond
R ∼ 2.0 fm the wave functions oscillate in phase with one
another, having closely similar amplitudes, so that they are
scarcely distinguishable from one another at all.

A. Wave-function overlaps

To emphasize the similarity of the radial wave functions
we next consider their overlap integrals I

(m)
nL = 〈n,L|n′, L′〉

for states in the same band (i.e., with a common value of G =
2n + L), but node numbers n and n′ = (n − m) corresponding
to angular momenta L and L′ = L + 2m, respectively. These
are given by

I
(m)
nL = 〈n,L|(n − m), (L + 2m)〉

=
∫ ∞

0
un,L(R)u(n−m),(L+2m)(R) dR. (6)

We find that the similarity of the I
(m)
nL is a general feature of

deep potentials and large values of G. This can be conveniently
demonstrated by comparing the numerical results from the
potential V (R) described above with equivalent analytic
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results for a three-dimensional harmonic oscillator potential
for which (see the Appendix for more details)

I
(m)
nL = 〈n,L|(n − m), (L + 2m)〉

= (−1)m
√

(n)!

(n − m)!
× 
(n + L + 3/2)


(n + L + m + 3/2)
. (7)

Tables I and II show a numerical comparison of the overlap
integrals for the lightest (222Ra) and heaviest (236Pu) nuclei
under consideration, with L and L′ ranging between 0 and
20 in steps of two. Similar integrals for 228Th and 232U
lie in between the values for the two tabulated nuclei. The
numerically calculated overlaps are systematically larger than
the oscillator equivalents, and the values of the heavier nucleus
are larger than those for the lighter nucleus at the same L and
L′. The extreme cases of L = 0 overlapped with L′ = 20 still
yield 0.6180 for 236 Pu and 0.3419 for 222Ra. Furthermore,
these overlap values understate the degree of similarity of the
wave functions in the region of the nuclear surface, to which
many observable quantities are most sensitive.

B. Radial coupling integrals

Although overlap integrals provide a convenient measure
of the similarity of two wave functions they cover a wider
range of R, L, and L′ than we really require. Our principal
concern is with the comparability of radial integrals involving
the overlap of a pair of radial wave functions and the radial
part of a coupling potential, which is traditionally related to
the central nuclear potential of Eqs. (2) and (3) through the
relation

Vcouple(R) = R × dVN

dR
. (8)

Such a coupling potential generally peaks in the nuclear
surface, and so the more interesting question concerns how
similar are the different wave functions in this region.
Also, if attention is restricted to a quadrupole-quadrupole
interaction between cluster and core, the wave functions
involved in these radial integrals will only differ in their L

values by two units, with modified but similar restrictions
holding for higher multipoles. Figure 2 illustrates the near
constancy of quadrupole-quadrupole radial coupling integrals
for the actinide nuclei 222Ra, 228Th, 232U, and 236Pu. Again,
equivalent results for three-dimensional harmonic oscillator
wave functions and the corresponding coupling potential can
be evaluated analytically such that (see the Appendix for more
details)

〈n,L|RdV

dR
|n − m,L + 2m〉

= I
(m)
nL [(m + 1)(n + L + 3/2) − (m − 1)(n − m)]μω2b2,

(9)

and are represented by the broken line in Fig. 2 for comparison,
to emphasize that we are not dealing with a special property
of our chosen parametrization of the nuclear potential.

C. Similarities in local wave numbers

Figure 1 shows that the low-L members of a large-G
band have similar radial wave functions, particularly in the
important surface region, with the similarity increasing with
increasing cluster mass A2. We next show more directly
how these characteristics arise by comparing the local wave
numbers generated by the cluster model. This is most easily
achieved using a harmonic oscillator cluster-core potential
for which the local wave number of the L and 0 angular
momentum members of a G band are given by

kL(R) =
√

2μ

h̄2

{
E − V (R) − h̄2L(L + 1)

2μR2

}
(10)

=
√

2μ

h̄2

{(
G + 3

2

)
h̄ω − 1

2
μω2R2 − h̄2L(L + 1)

2μR2

}
,

(11)

and

k0(R) =
√

2μ

h̄2

{(
G + 3

2

)
h̄ω − 1

2
μω2R2

}
, (12)

although these wave numbers differ because of the centrifugal
term we note that a change �R in R can be made so as to
result in k0(R + �R) = kL(R), that is,

1

2
μω2(R + �R)2 = 1

2
μω2(R2 + 2R�R)

= 1

2
μω2R2 + h̄2L(L + 1)

2μR2
,

so that �R = h̄2L(L + 1)

2μ2ω2R3
. (13)

For the surface region of 222Ra modeled as a 208Pb core plus a
14C cluster and with L = 20, μ ∼ A2 = 14, h̄ω ∼ 41A

−1/3
1 ∼

6.8 MeV, and R ∼ 1.2A1/3 fm, we find �R ∼ 0.10 fm. Thus
the classical turning points where the character of the wave
functions changes from exponentially decreasing to oscillatory
are grouped close together. Further into the internal region �R

remains small and the wave functions remain approximately
in phase. Of course, as R decreases further this ceases to be
the case.

In summary, Eq. (13) tells us that �R decreases with
decreasing L, with increasing R, and with increasing μ ∼ A2,
just as found in Fig. 1. We note that our chosen example
of 222Ra is something of a “worst case scenario,” with a
large difference in angular momenta and a small value of
A2. The radial wave functions will obviously be identical if
the centrifugal potential can be ignored completely. The more
closely this situation is approached, the greater their similarity.

III. GENERATING THE K BANDS

An eigenstate �JM (R, ξ) of the cluster-core system is a
solution of the Schrödinger equation

H�JM (R, ξ ) = E�JM (R, ξ ), (14)
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TABLE I. Comparison of radial overlap integrals for 222Ra, taking 2n + L = 70, for wave functions generated numerically by solving the
Schrödinger equation with the potential of Eqs. (2) and (3) (upper row of each pair) and for harmonic oscillator wave functions (lower row of
each pair).

L L′ = 0 L′ = 2 L′ = 4 L′ = 6 L′ = 8 L′ = 10 L′ = 12 L′ = 14 L′ = 16 L′ = 18 L′ = 20

0 1 0.9849 0.9510 0.9009 0.8373 0.7632 0.6816 0.5957 0.5085 0.4230 0.3419
1 0.9792 0.9324 0.8633 0.7770 0.6798 0.5780 0.4774 0.3830 0.2984 0.2255

2 1 0.9650 0.9134 0.8484 0.7728 0.6898 0.6026 0.5142 0.4276 0.3455
1 0.9522 0.8816 0.7935 0.6942 0.5902 0.4876 0.3912 0.3047 0.2303

4 1 0.9452 0.8767 0.7976 0.7113 0.6209 0.5295 0.4402 0.3557
1 0.9258 0.8333 0.7290 0.6199 0.5120 0.4108 0.3200 0.2419

6 1 0.9254 0.8405 0.7485 0.6526 0.5562 0.4622 0.3735
1 0.9001 0.7875 0.6695 0.5531 0.4437 0.3456 0.2613

8 1 0.9057 0.8048 0.7008 0.5967 0.4957 0.4006
1 0.8749 0.7439 0.6145 0.4930 0.3840 0.2903

10 1 0.8858 0.7696 0.6544 0.5434 0.4394
1 0.8502 0.7023 0.5635 0.4389 0.3318

12 1 0.8658 0.7347 0.6095 0.4928
1 0.8260 0.6627 0.5162 0.3902

14 1 0.8455 0.7002 0.5659
1 0.8023 0.6239 0.4724

16 1 0.8251 0.6660
1 0.7789 0.5888

18 1 0.8044
1 0.7559

20 1
1

TABLE II. Comparison of radial overlap integrals for 236Pu, taking 2n + L = 140, for wave functions generated numerically by solving
the Schrödinger equation with the potential of Eqs. (2) and (3) (upper row of each pair) and for harmonic oscillator wave functions (lower row
of each pair).

L L′ = 0 L′ = 2 L′ = 4 L′ = 6 L′ = 8 L′ = 10 L′ = 12 L′ = 14 L′ = 16 L′ = 18 L′ = 20

0 1 0.9927 0.9760 0.9510 0.9183 0.8791 0.8343 0.7849 0.7317 0.6758 0.6180
1 0.9895 0.9653 0.9285 0.8805 0.8232 0.7588 0.6896 0.6178 0.5455 0.4749

2 1 0.9830 0.9574 0.9243 0.8846 0.8392 0.7893 0.7356 0.6792 0.6210
1 0.9756 0.9384 0.8899 0.8320 0.7669 0.6969 0.6243 0.5514 0.4800

4 1 0.9734 0.9391 0.8982 0.8517 0.8006 0.7459 0.6884 0.6292
1 0.9619 0.9122 0.8528 0.7861 0.7144 0.6400 0.5652 0.4920

6 1 0.9638 0.9210 0.8726 0.8196 0.7631 0.7039 0.6431
1 0.9483 0.8867 0.8173 0.7427 0.6654 0.5876 0.5115

8 1 0.9543 0.9030 0.8474 0.7883 0.7267 0.6635
1 0.9350 0.8618 0.7832 0.7016 0.6196 0.5394

10 1 0.9447 0.8852 0.8225 0.7576 0.6912
1 0.9218 0.8377 0.7504 0.6627 0.5769

12 1 0.9351 0.8675 0.7980 0.7275
1 0.9087 0.8141 0.7189 0.6258

14 1 0.9256 0.8499 0.7738
1 0.8959 0.7913 0.6887

16 1 0.9159 0.8324
1 0.8831 0.7687

18 1 0.9063
1 0.8705

20 1
1
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FIG. 2. Radial coupling integrals for radial wave functions whose
L values differ by 2, (i.e., 〈n,L|R × dV

dR
|n − 1, L + 2〉) for the

actinide nuclei 222Ra, 228Th, 232U, and 236Pu modeled as 208Pb +
14C, 20O, 24Ne, and 28Mg, respectively. The solid lines represent
results using wave functions obtained from a numerical solution of
the Schrödinger equation with the potential of Eqs. (2) and (3) and the
broken lines are equivalent harmonic oscillator results using Eq. (9).
For ease of comparison, the values are given as ratios to the value
obtained for L = 0, L′ = 0.

where the Hamiltonian H is given by

H (R, ξ ) = H0(R) + H1(ξ ) + V (|R − ξ |). (15)

Here R represents the cluster-core separation vector, and ξ
represents the core’s internal coordinates, which in the simplest
cases might be no more than a linear superposition of the
position vectors of its constituent nucleons. In Eq. (15) H0(R)
is the Hamiltonian of the relative motion of A1 and A2 and
H1(ξ) is the Hamiltonian of the core. The Schrödinger equation
for H0(R) is given by Eq. (4) and that for H1(ξ) by Eq. (5),
while a standard multipole expansion yields

V (|R − ξ |) =
∑
Q

VQ(R, ξ )CQ(R̂) · CQ(ξ̂ ), (16)

where CQq ≡ √
4π/(2Q + 1)YQq . We first consider a single

multipole Q in the expansion of Eq. (16), and a single core
state χI in Eq. (5), and discuss later how these conditions may
be relaxed.

Expanding �JM (R, ξ) in the coupled basis states in which
the orbital angular momentum L combines with a core
excitation of spin I to yield a total angular momentum J ,

we have

�JM (R, ξ ) =
∑
L′

aJ
L′ [�L′(R) ⊗ χI (ξ )]JM. (17)

Substituting from Eq. (17) for �JM (R, ξ) into Eq. (14),
premultiplying by [�L(R) ⊗ χI (ξ)]JM , and integrating over
R and ξ yields the eigenvalue equation

[EL + εI ]aJ
L +

∑
L′

V J
L,L′a

J
L′ = EaJ

L, (18)

where we write

V J
L,L′ = 〈[�L(R) ⊗ χI (ξ)]JM |VQ(R, ξ )CQ(R̂) · CQ(ξ̂)|

× [�L′(R) ⊗ χI (ξ)]JM〉. (19)

The integration over R yields explicitly

V J
L,L′ = 〈

[YL(θ, φ) ⊗ χI (ξ)]JM
∣∣WL,L′

Q (ξ )CQ(R̂) · CQ(ξ̂)
∣∣

× [YL′(θ, φ) ⊗ χI (ξ)]JM
〉
, (20)

and on introducing the reduced matrix elements [30]

V J
L,L′ = 〈[YL(θ, φ) ⊗ χI (ξ)]J ||WL,L′

Q (ξ )CQ(R̂) · CQ(ξ̂)||
× [YL′(θ, φ) ⊗ χI (ξ)]J 〉, (21)

where we use Eq. (4) and define

W
L,L′
Q (ξ ) =

∫
uL(R)VQ(R, ξ )uL′(R)dR. (22)

The crucial point here is that for similar radial wave
functions uL(R) the radial integrals are almost independent
of L so that∫

uL(R)VQ(R, ξ )uL′(R)dR = W
L,L′
Q (ξ ) = WQ(ξ ). (23)

The reduced matrix element in Eq. (21) may therefore be
replaced [30] via Eqs. (22) and (23) so that

V J
L,L′ = (−1)J−L−I L̂ÎW (LL′II ; QJ )〈YL||CQ(R̂)||YL′ 〉

× 〈χI (ξ)||WQ(ξ )CQ(ξ̂)||χI (ξ)〉
= (−1)J−L−I L̂′ÎW (LL′II ; QJ )〈L′0Q0|L0)〉

× 〈χI (ξ)||WQ(ξ )CQ(ξ̂)||χI (ξ)〉, (24)

where we put k̂ = √
(2k + 1) and so on.

We first consider the degenerate case where the energies
EL of the relative motion of the cluster and core are all
equal. Choosing the zero of energy such that EL + εI = 0 we
diagonalize V J

L,L′ of Eq. (24) to obtain the coefficients aJ
L and

eigenenergies E of Eq. (18). This can be done analytically [6]
to yield

aJ
L ≡ aJ

LK = L̂

Ĵ
〈L0IK|JK〉, (25)

and

E ≡ EK = 〈IKQ0|IK〉〈χI (ξ)||WQ(ξ )CQ(ξ̂)||χI (ξ)〉. (26)

We note that in Eq. (17) we have summed over all L′.
The restriction to the physical states Lπ = 0+, 2+, 4+, . . . ,
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of the ground-state band requires the insertion of the factor
1
2 [1 + (−1)L

′
] in Eq. (17) with the result that

�JM
|K| (R, ξ) =

∑
L

[1 + (−1)L]

2

L̂

Ĵ
〈L0IK|JK〉

× [�L(R) ⊗ χI (ξ)]JM = 1

2

∑
L

L̂

Ĵ
[〈L0IK|JK〉

+ (−1)J−K〈L0I − K|J − K〉]
× [�L(R) ⊗ χI (ξ )]JM. (27)

For given |K|, Eqs. (24), (25), and (26) tell us that all states
with J � |K| have the same energy EK . The different |K| � I

thus each correspond to a K band generated by coupling the
excitation I of the even-even core to the cluster-core relative
rotational motion.

A. Several multipoles Q

The aJ
L of Eq. (25) are independent of Q. Thus the same

transformation that diagonalizes a particular multipole Q of
the interaction diagonalizes all Q [6] and Eq. (26) can be
replaced by

E ≡ EK =
∑
Q

〈IKQ0|IK〉〈χI (ξ )||WQ(ξ )CQ(ξ̂ )||χI (ξ )〉.

(28)

B. Several core states I

Here we are particularly interested in the case of a core that
has a 0+ ground state and an Iπ = 2+ excited state. Equations
(17), (18), and (19) then generalize to

�JM (R, ξ ) =
∑
L′,I ′

aJ
L′I ′[�L′(R) ⊗ χI ′(ξ )]JM, (29)

[EL + εI ]aJ
LI +

∑
L′,I ′

V J
LI,L′I ′a

J
L′I ′ = EaJ

LI , (30)

V J
LI,L′I ′ = 〈[�L(R) ⊗ χI (ξ )]JM |VQ(R, ξ )CQ(R̂) · CQ(ξ̂ )|

× [�L′(R) ⊗ χI ′(ξ )]JM〉, (31)

where [27]

V J
LL′II ′ = iL

′−L+I ′−I (−1)L+L′+J βL̂L̂′Î Î ′

× 〈L0L′0|20〉〈I0I ′0|20〉W (L′I ′LI ; J2), (32)

and L̂ = √
(2L + 1) and so on. [We note that in Eq. (32) we

followed the phase convention of earlier works [27–32] with
YL replaced by iLYL]. The inclusion of more than one core state
thus necessitates the diagonalization of a larger Hamiltonian
matrix than was the case for a single core state I discussed in
Sec. III.

IV. LIFTING THE DEGENERACY: STRONG AND
WEAK COUPLING

In applications to real nuclei both the core excitations,
with their different values of I , and the cluster-core rotational

states, with their different values of L, will have unequal
energies associated with them. In the limit of weak coupling,
the wave functions of the resulting J states are obtained by
coupling a single value of I with a single value of L. Then
the resulting spectrum contains one set of states formed from
I = 0 ⊗ L = 0, 2, 4, . . . , (so that J = L and the associated
excitation energies are very close to the values of EL) and
another set of states formed from I = 2 ⊗ L = 0, 2, 4, . . . ,

(so that J = L ± 2, L ± 1, and L which are nearly degenerate
with each other and displaced from the first set of states by
roughly εI ). That is to say, the weak coupling potential(s) VQ

have minimal effect on the states and their excitation energies.
The situation is just like LS coupling in atomic physics.

At the other extreme, where the coupling potential matrix
elements are very large compared to the excitation energies
EL and εI , we obtain the wave functions of the previous
section consisting of combinations of I with several values
of L and coefficients aJ

LIK . With unequal values of EL and
εI , the states are no longer degenerate, but rather spread out
into distinctly recognizable bands, labeled by K . So there is
a Kπ = 0+ band associated with the coupling of the Iπ = 0+
excitation to all the different L values and a further three bands
labeled by Kπ = 0+, 1+, and 2+ associated with the coupling
of the Iπ = 2+ excitation to the L values. For an attractive
quadrupole-quadrupole coupling potential the ordering by
excitation energy of the K bands in the strong coupling limit
is Kπ = 0+, 0+, 1+, and 2+, and for a repulsive potential it is
Kπ = 0+, 2+, 1+, and 0+. Of course, this may be modified by
higher-order multipole interactions.

In real nuclei the situation is likely to lie between these
two extremes and involve some kind of intermediate strength
coupling. A full diagonalization of the Hamiltonian matrix
for each J value is necessary, with the final result hopefully
coming out close enough to the strong coupling limit for the
labeling in terms of K to still be useful. This is clearly seen in
the cases of 16O [27], 24Mg [28], and 40Ca [29] when coupled-
channels calculations are carried out including 0+ ground and
2+ excited states of the core. It is interesting to note that in
these cases the energies of the Kπ = 1+ band are staggered so
that they fall on either side of the collective-rotational model
dependence on L(L + 1) − K2, whereas the other K-band
energies follow the rotational model values much more closely.

We expect a similar situation to hold in heavier even-even
nuclei as well. Although many Kπ = 0+ and Kπ = 2+ excited
beta and gamma bands are seen in actinide nuclei there are no
convincing identifications of any low-lying Kπ = 1+ bands.
We predict that if the mechanism for band production is the
coupling of a 2+ state to a rotor with dominant quadrupole-
quadrupole coupling then a Kπ = 1+ band ought to lie very
close to the beta and gamma bands (whatever the sign of the
coupling potential). Possible reasons for missing them so far
include the following.

(i) It is intrinsically difficult to see nonnatural parity states
in experiments, so the 1+ bandhead is easily missed,
leading to a Kπ = 1+ band being mistaken for a Kπ =
2+ band.

(ii) Coulomb excitation from the predominantly |[Iπ =
0+ ⊗ L = 0] 0+〉 ground state can take place in a
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single step to the excited 2+ bandhead through Y2

operators acting on either the core or relative motion
coordinates. This is mainly because of admixtures of
|[Iπ = 2+ ⊗ L = 0] 2+〉 (the principal component of
the 2+ bandhead) and |[Iπ = 0+ ⊗ L = 2] 2+〉 in the
excited 2+ state. However, Coulomb excitation of the
excited 0+ and 1+ bandheads cannot proceed so readily.
The 0+ ground state

|Jπ = 0+〉g.s. = α|[Iπ = 0+ ⊗ L = 0] 0+〉
+

√
1 − α2|[Iπ = 2+ ⊗ L = 2] 0+〉,

(33)

where the amplitude α ∼ 1, is orthogonal to the excited
0+ bandhead wave function

|Jπ = 0+〉ex. =
√

1 − α2|[Iπ = 0+ ⊗ L = 0] 0+〉
−α|[Iπ = 2+ ⊗ L = 2] 0+〉, (34)

and so cannot connect to it via a monopole interaction.
This means that the transition can only proceed from
the minority component of the ground state, or via a
two-step process, involving Y2 operators. Similarly, the
1+ bandhead consists of a single component

|Jπ = 1+〉ex. = |[Iπ = 2+ ⊗ L = 2] 1+〉, (35)

and so here again excitation from the minority compo-
nent of the ground state or two-step processes involving
Y2 operators are needed to excite this bandhead from
the ground state. Therefore, in both cases, we expect
small Coulomb excitation transition probabilities.

(iii) An alternative method of examining spectra in heavy
nuclei is through populating the nucleus at high angular
momentum in a heavy-ion collision. Electromagnetic
decays (stretched E2 transitions) down bands are
readily seen in this way, but there is a tendency
for the cascade of gamma rays to jump across to a
different band before the bandhead of the initially
populated sequence is reached. This counts against
“easy” population of any Kπ = 1+ bandhead in heavy-
ion reactions.

(iv) The staggering of the energies in the 1+ band (as seen in
16O [27], 24Mg [28], 40Ca [29], and similarly in the 1−

band in 238U [31,32]) makes it difficult to identify the
band when its behavior is unanticipated, in contrast
to the 0+ and 2+ band energies, which follow the
expectations of the collective-rotational model much
more closely.

To illustrate better the staggering of the energies in the
1+ band Fig. 3 shows a generic spectrum calculated with
parameter values compatible with the actinide region. These
values are chosen to place excited 0+ and 2+ states in the region
of the systematically observed beta and gamma bandhead
energies. The cluster-core rotational motion is described by
αL(L + 1) with α = 0.01 MeV, the core 0+ and 2+ states are
taken to be separated by ε = 0.8 MeV, and an intermediate
strength quadrupole-quadrupole interaction [27] specified by
Eq. (32) with β = −0.178 MeV acts between cluster and core.
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FIG. 3. Generic positive parity spectrum obtained by coupling a
0+ ground state and an excited 2+ state to a rotor. There are strong
stretched E2 transitions within bands, weaker (typically by a factor
of ∼10) unstretched E2 transitions between the excited Kπ = 0+ and
the Kπ = 1+ bands, and weak but nonzero M1 transitions within the
Kπ = 1+ and Kπ = 2+ bands, and between the Kπ = 0+ and the
Kπ = 1+ bandheads (see text for details).

The resulting Kπ = 0+, 2+, and 0+ bands show excitation
energies increasing with J albeit a little irregularly spaced.
However, the Kπ = 1+ bands shows a sequence of inverted,
nearly degenerate, doublets with 2+ below 1+, with 4+ below
3+, with 6+ below 5+, and so on. This model spectrum
illustrates the potential difficulties that may arise in trying
to identify from excitation energies alone a Kπ = 1+ band
arising in the vicinity of Kπ = 0+ and 2+ bands when the
coupling strength is intermediate between the weak and strong
limits. The precise details of the spectrum depend delicately
on the strength of the noncentral interaction(s). The production
of three excited K bands should be manifested by any model
involving the coupling of a 2+ excitation to a rotor, and is
not dependent on an underlying cluster-core structure. Thus, if
there are no symmetry considerations to be taken into account
(such as identical boson restrictions, for example) a 1+ state is
a necessary consequence of coupling two 2+ states together.

To summarize, the lack of observed Kπ = 1+ in heavy
nuclei therefore presents a difficulty for our model, which
needs to be addressed if the model is to provide a viable
alternative to the Bohr-Mottelson picture of K bands. We
note, however, that the model successfully describes the Kπ =
0−, 1−, 2−, and 3− bands generated by an Iπ = 3− excitation
of the core [31,32] and we strongly urge our experimental
colleagues to reexamine their data in heavier nuclei to see
whether low-lying 1+ bands in the vicinity of the 0+ and 2+
bands may have been missed. We note that in addition to direct
observation of a 1+ state, the finding of pairs of odd J+ states
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(i.e., 3+, 5+, 7+, etc.) close together in the spectrum will also
be supportive of our model. For example, 238U has a (3+) state
at 1059.6617 keV and a 3+ at 1105.71 keV.

V. ELECTROMAGNETIC TRANSITIONS

As a guide to reexamination of the spectra of heavy nuclei
and an aid to experimentalists in this quest we discuss briefly
the electromagnetic transitions expected from our model,
indicated by the heavy and light arrows in Fig. 3. The
differences from the collective-rotational model are not very
great, but nevertheless significant.

Within each K band we predict stretched E2 transition
strengths that are nearly related to that for the 2+ → 0+
transition in the ground-state band by Clebsch-Gordan co-
efficients. The in-band transitions between J and J ± 1 are
weaker than these by a factor typically between 5 and 10 (again,
mainly because of angular momentum coupling coefficients).
Most of the cross-band transitions are negligibly small. The
exception to this statement is for the E2 transitions between
the excited Kπ = 0+ band the the Kπ = 1+ band. The lower
J members of these two bands are sufficiently mixed that the
transitions between states with J and J ± 1 are comparable
to the unstretched in-band E2 transitions. These fairly strong
E2 transitions do not persist beyond J > 6 in the example
presented in Fig. 3.

Perhaps surprisingly the corresponding stretched E2 cross-
band transitions are rather weak, typically a factor of 100 or
more less than the in-band equivalents. The precise values,
of course, depend on the exact parameter values used and the
energetic proximity of the states to one another.

We also predict weak M1 transitions within the Kπ = 1+
and 2+ bands. These will generally be swamped by the
competing E2 transitions. They exist at all because the
quadrupole-quadrupole interaction mixes components having
the same I and the same L into states with J and J ± 1 within
a given band. One example, of potentially greater interest, is
that we predict a weak M1 transition between the heads of the
excited Kπ = 0+ and 1+ bands. Although weak, this is not
in competition with any other electromagnetic transition, so
might be experimentally visible.

VI. CONCLUSION

We demonstrate, both numerically and analytically with
reference to a three-dimensional simple harmonic oscillator
potential, that the radial wave functions corresponding to states
with a large, fixed value of G = 2n + L are very closely
similar, except in the vicinity of the origin. For the nuclei
investigated, simple considerations taking into account the
smallness of the centrifugal potential suggest that this near-
identity is expected in the surface region. We show further that
the integrals of these wave functions with a standard derivative
form of the radial coupling potential are even more nearly equal
to one another. This latter observation is particularly important
for the cases of cluster-core states interacting through a low
multipole (e.g., quadrupole-quadrupole) coupling potential. It

provides a bridge between the geometric interpretation of K

bands in terms of a fixed intrinsic state and the algebraic
approach where these near-identical radial functions can play
the same role.

The common situation where a core has both a 0+ ground
state and a low-lying 2+ excited state leads to the generation of
two Kπ = 0+ bands with additional Kπ = 1+ and Kπ = 2+
bands. If the dominant interaction between cluster and core
is of quadrupole-quadrupole type, then the Kπ = 1+ band is
expected to lie very close to the excited Kπ = 0+ and Kπ =
2+ bands. Although this behavior is observed in light nuclei, a
number of reasons are suggested for it being generally difficult
to see, so that it may have been missed altogether in heavier
nuclei. The reexamination of existing data and, ideally, new
purpose-driven experimental searches for low-lying Kπ = 1+
bands may prove profitable.
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APPENDIX

The radial part of the three-dimensional harmonic oscillator
wave function is given by

φnlm(r/b) =
√

2 × (n)!


(n + l + 3/2)b3

( r

b

)l

×Ll+3/2
n (r2/b2)e−r2/2b2

, (A1)

where b is the oscillator length parameter given by b2 = h̄/μω

and L
l+3/2
n (r2/b2) is an associated Laguerre polynomial.

Radial overlap integrals between states in the same band (i.e.,
having the same value of 2n + l + 3/2) are thus given by

〈n, l|n − m, l + 2m〉

= I
(m)
nl =

√
2 × (n)!


(n + l + 3/2)

2 × (n − m)!


(n + l + m + 3/2)
× 1

b3

×
∫ ∞

0

( r

b

)l ( r

b

)l+2m

Ll+1/2
n

(
r2

b2

)
L

l+2m+1/2
n−m

(
r2

b2

)

× e−r2/b2
r2 dr, (A2)

which may be evaluated with the help of the relation [33]∫ ∞

0
e−xxsLk

n(x)Lk′
n′(x) dx

= (s)!
min(n,n′)∑

r=0

(−1)n+n′+r

(
s − k

n − r

) (
s − k′
n′ − r

) (−s − 1
r

)
,

(A3)

where (
n

k

)
= (n)!

(k)!(n − k)!
for n � k � 0, but(

n

k

)
= 0 for k > n > 0, (A4)
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and (−n

k

)
= (−1)k

(
(n + k − 1)!

(k)!

)
for k > n > 0. (A5)

There is only one nonzero contribution to the summation for
the overlap integrals in Eq. (A2), coming from r = n − 1, and
the integral simplifies to

I
(m)
nl = (−1)m

√
(n)!

(n − m)!
× 
(n + l + 3/2)


(n + l + m + 3/2)
. (A6)

In a similar fashion, radial integrals for a coupling potential

rdV/dr , where V is proportional to r2, between harmonic
oscillator wave functions for states in the same band may be
evaluated analytically as

〈n, l|r dV

dr
|n − m, l + 2m〉

= μω2b2I
(m)
nl [(m + 1)(n + l + 3/2) − (m − 1)(n − m)].

(A7)

In this case the two terms having r = n − m − 1 and r =
n − m give (generally) nonzero contributions to the sum in
Eq. (A3).

[1] Brookhaven National Nuclear Data Center at
[http://www.nndc.bnl.gov/ensdf].

[2] D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E.
Purcell, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 745, 155
(2004).

[3] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A 564,
1 (1993).

[4] P. M. Endt, Nucl. Phys. A 521, 1 (1990).
[5] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

New York, 1969), Vol. 2, p. 10.
[6] D. M. Brink, B. Buck, R. Huby, M. A. Nagarajan, and N. Rowley,

J. Phys. G 13, 629 (1987).
[7] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

New York, 1969), Vol. 2, p. 347
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