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An analytically solvable model, X(3/2j + 1), is proposed to describe odd-A nuclei near the X(3) critical point.
The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a
spin-j particle. A detailed analysis of the spectral patterns for cases j = 1/2 and j = 3/2 is provided to illustrate
dynamical features of the model. By comparing theory with experimental data and results of other models, it is
found that the X(3/2j + 1) model can be taken as a simple yet very effective scheme to describe those odd-A
nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.
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I. INTRODUCTION

Recently, critical point symmetries [1–5] have attracted
considerable attention, since they provide benchmark results
for the study of even-even nuclei as they undergo a transition
between two different phases (shapes) [6–22]. In particular, the
critical point of the spherical to γ -unstable shape transition [1],
called E(5), and the critical point from the spherical to axially
deformed shape [2], called X(5), have been confirmed by
experiment [23–26]. In view of their successful application
in helping to understand even-even systems, it seems critical
point symmetries in odd-A systems warrant further investi-
gation. And since the low-lying structures of two adjacent
nuclei with more or less than one neutron or proton should
be driven by similar collective considerations, the critical
point symmetries observed in even-even systems should also
be evident in the adjacent odd-A nuclei. The first case of
a critical point Bose-Fermi symmetry, called E(5/4) [27],
was developed by Iachello to describe, analytically, the γ -soft
critical point E(5) configuration coupled to a j = 3/2 particle.
135Ba was suggested as an empirical example of E(5/4)
symmetry, with a report of a detailed analysis given in [28].
While these results show significant agreement between theory
and experiment, there are also some differences. Another
critical point Bose-Fermi symmetry, called E(5/12) [29], was
developed by Alonso, Arias, and Vitturi, who extended the case
of the E(5/4) symmetry with a spin-j particle into the multi-j
case with j = 1/2, 3/2, and 5/2. Both the E(5/4) and E(5/12)
models were developed to describe odd-A nuclei near even-
even nuclei that display the E(5) critical point symmetry [1],
that is, nuclei in the spherical to γ -unstable transitional region.
As the X(5) symmetry seems well confirmed in experiment [2],
it provides a better test for exploring effects of the X(5) critical
point symmetry in odd-A nuclei near the even-even partners
at the X(5) critical point. Very recently, in the same spirit
as the E(5/4) and E(5/12) examples, an X(5/2j + 1) model
that coupled a spin-j particle to the X(5) symmetry core was
advanced [30].

In this paper, we propose an exactly solvable model, called
X(3/2j + 1), based on the X(3) critical point symmetry [5].
Although the original X(5/2j + 1) model was designed to
describe a similar physical situation, it can only be solved
analytically within an approximation, as shown in [30], where
the coupling strength between the even-even core and single-j
particle is taken as the same value for different odd-A nuclei.
The purpose of the present paper is threefold. The first is
to provide a simple solvable model scheme to describe odd-
A nuclei near the critical point of the spherical to axially
deformed shape phase transition. The second is to investigate
the dynamical features of the model in a variety of parameter
situations. The third is to test the validity of the model by
widely comparing theory with experimental data and results
of other models.

In Sec. II, the X(3/2j + 1) model will be constructed by
coupling the X(3) core [5] with a spin-j particle. In Sec. III,
as specific examples, the cases with j = 1/2 and j = 3/2,
namely X(3/2) and X(3/4), will be provided to illustrate
the spectral patterns of the model. Typical quantities in a
variety of parameter situations will be analyzed. In Sec. IV,
comparisons of the X(3/2j + 1) results to the corresponding
experimental data will be made. A summary is given in
Sec. V.

II. CONSTRUCTION OF THE X(3/2 j + 1) MODEL

First recall that, similar to the Nilsson model [31], the
E(5/4) model [27] is constructed by considering the case of
coupling a collective core described by E(5) symmetry [1]
with a spin-j = 3/2 particle via a five-dimensional spin-
orbit interaction �̂ ◦ �̂, which is a scalar of the Spin(5) or
SO(5) group [27,32]. The corresponding Hamiltonian can be
written as

HE(5/4) = HE(5) + g(β)[2�̂ ◦ �̂ + 5/2], (1)
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where HE(5) is the E(5) Hamiltonian for the even-even core.
A similar coupling scheme was also adopted to develop
the X(5/2j + 1) model in [30]. We follow the paradigm of
the E(5/4) model to construct the X(3/2j + 1) model by
introducing a spin-orbit interaction f (β)(L̂ · ĵ ), where L̂ is
the orbital angular momentum operator of the X(3) core, ĵ

is the spin operator of the particle, and f (β) is the coupling
strength. It is clear that L̂ · ĵ is only a scalar of the SUJ (2)
group in this case, where J is the total angular momentum
of the system coupled from the orbital angular momentum L

of the core with the spin j of the odd particle, similar to a
Nilsson-type model where the odd particle is coupled to the
even-even core. Then, the Hamiltonian of the X(3/2j + 1)
model is written as

H = HX(3) + f (β)[L̂ · ĵ + bh̄2], (2)

where b is an adjustable parameter, and HX(3) is the Hamilto-
nian of the X(3) even-even core. It will be shown that the case
with the parameter b �= 0 in Eq. (2) seems better in describing
the corresponding experimental data. As shown in Eq. (1),
a similar situation appears in the E(5/4) model [27], where
the parameter b is set to 5/2. The explicit Bohr Hamiltonian
of (2) is

H = − h̄2

2B

[
1

β2

∂

∂β
β2 ∂

∂β
+ 1

3β2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ

+ 1

sin2 θ

∂2

∂φ2

)]
+ V (β) + f (β)[L̂ · ĵ + bh̄2], (3)

in which B is the inertia parameter, and the potential V (β) is
taken to be an infinite square well with

V (β) =
{

0, β � βW ,

∞, β > βW .
(4)

It should be noted that the potential in the X(3) model [5]
is only a function of the β variable since the γ variable is
frozen at γ = 0. Thus solving the X(3/2j + 1) model becomes
a three-dimensional problem, while the E(5/4) model and
X(5/2j + 1) model are five dimensional. The β-dependent
coupling strength f (β) is taken to be f (β) = f

Bβ2 , where f

is a real parameter, which is the same as that adopted in the
E(5/4) model [27]. As shown in the following, the model is
exactly solvable with such a choice of f (β).

By solving the eigenequation H	(β, θ, φ, χ ) =
E	(β, θ, φ, χ ), it is shown that the eigenfunction may
be constructed by coupling the collective-core part with the
single-particle state χj,mj

in the spherical form as

	LjJMJ
(β, θ, φ, χ ) = F (β)

∑
MLmj

〈L,ML; j,mj |J,MJ 〉YLML

× (θ, φ)χj,mj
, (5)

where YLML
(θ, φ) is the spherical harmonic function. Thus,

the spin-orbit interaction can be further expressed as

f

Bβ2
L̂ · ĵ = f

2Bβ2
[Ĵ · Ĵ − L̂ · L̂ − ĵ · ĵ ] (6)

with Ĵ = L̂ + ĵ .
After introducing the reduced energies ε = 2BE/h̄2 and

reduced potential u = 2BV/h̄2, one can write the Schrödinger
equation in separable variable form in the standard way as

−
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)
L(L + 1) + f J (J + 1) − fj (j + 1) + 2f b

]
+ u(β)

}
F (β) = εF (β). (8)

As mentioned above, V (β) = h̄2

2B
u(β) is an infinite-well

potential. Substituting ϕ = β1/2F (β) and z = β
√

ε, one can
transform Eq. (8) inside the well into a Bessel equation

ϕ′′ + ϕ′
z

+
[

1 − v2

z2

]
ϕ = 0 (9)

with

v =
[ (

1

3
− f

)
L(L + 1) + f J (J + 1)

−fj (j + 1) + 2f b + 1

4

]1/2

. (10)

It is clear that the contribution of the quantum number L to
the order of the Bessel equation is completely canceled when
f = 1/3, which is a situation similar to that of the E(5/4)
model [27], where the contribution of the quantum number

τ of the SO(5) group to the order of the Bessel function is
canceled when k = 1. Considering the boundary condition
ϕ(βW ) = 0, one gets the eigenvalues

εs,LjJ = (ks,LjJ )2, ks,LjJ = zs,LjJ

βW

, (11)

where zs,LjJ is the sth zero of the Bessel function Jv(z) with
z = kLjJ β. The relevant eigenfunctions are

Fs,LjJ (β) = cs,LjJ β−1/2Jv(ks,LjJ β), (12)

where cs,LjJ is the normalization constant to be determined
from the condition∫ βW

0
F 2

s,LjJ (β)β2dβ = 1. (13)

B(E2) transition rates can be calculated by taking the
quadrupole operator T (E2) = T c + T f , where T c only operates
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TABLE I. The “critical” orders of typical critical point symmetry models, where τ , τF
1 , and (τ1, τ2) are the quantum numbers of OB (5),

OF (5), and OBF (5), respectively [27,29,32].

Critical point symmetry “Critical” order

E(5)
√

τ (τ + 3) + 9
4

E(5/4)
√

(1 − k)τ (τ + 3) + k[τ1(τ1 + 3) − 7
4 + b] + 9

4

E(5/12)
√

(1 − k)τ (τ + 3) + k[τ1(τ1 + 3) + τ2(τ2 + 1)] + (k′ − k)τF
1 (τF

1 + 3) + 9
4

X(5)
√

L(L+1)
3 + 9

4

X(5/2j + 1)

√(
1
3 − f

)
L(L + 1) + f J (J + 1) − fj (j + 1) + 9

4

X(3)
√

L(L+1)
3 + 1

4

X(3/2j + 1)

√(
1
3 − f

)
L(L + 1) + f J (J + 1) − fj (j + 1) + 1

4 + 2f b

on the core part and T f operates on the single-particle part.
For simplicity, we take T (E2) = T c in the model, which is the
same as that used in [30]. The specific form of the quadrupole
operator is given by

T c
u = tβ

{
D2

u,0(θ1, θ2, θ3) cos γ + 1√
2

[
D2

u,2(θ1, θ2, θ3)

+D2
u,−2(θ1, θ2, θ3)

]
sin γ

}
, (14)

where θ1, θ2, and θ3 denote the Euler angles and t is a scale
factor. For γ = 0, only the D2

u,0(θ1, θ2, θ3) term survives.

III. SPECTRAL PATTERNS OF THE X(3/2 j + 1) MODEL

Similar to other critical point Bose-Fermi symmetry models
[27,29,30], this model is called the X(3/2j + 1) model since
it is built from the X(3) core coupled to a spin-j particle
with mj = −j, . . . , j . The spectrum generated from different
critical point symmetry models may be characterized by
the “critical” orders of the corresponding Bessel functions
associated with their solutions. In Table I, we list the critical
orders of various critical point Bose-Fermi symmetry models
for odd-A systems as well as the related critical point symmetry
models for even-even systems studied up till now. It can be seen
from Table I that the critical orders become model parameter
dependent for odd-A systems, from which the spectra of
odd-A systems will thus become more complex than those
of even-even cases. The coupling strength parameters in these
models for odd-A systems are not arbitrarily adjustable, which
has not been emphasized in our previous study [30]. As shown
in Table I, the coupling strength f in the X(n/2j + 1) model
with n = 3 or 5 should satisfy

f [L(L + 1) + j (j + 1) − J (J + 1)] < 1
3L(L + 1) (15)

to ensure the ground-state spin is J = j , which requires the
critical order of the Bessel function associated with the ground
state to be less than those associated with excited states. In
addition, f � 0 is assumed to ensure that the energy levels with

the same L do not decrease with increasing values of J , which
is consistent with most situations observed in experiments.
Since the lowest excited state is the one with the quantum
number J = |L − j | and L = 2 for a given j , the above
conditions require{

0 � f < 1
3j

for j < 2,

0 � f < 1
2j+2 for j > 2,

(16)

which provides the restricted condition for the parameter f in
the model. Specifically, the restricted condition (16) requires
f < 2/3 for j = 1/2, f < 2/9 for j = 3/2, f < 1/7 for
j = 5/2, f < 1/9 for j = 7/2, f < 1/11 for j = 9/2, and
f < 1/13 for j = 11/2. As a result, the larger the j value
the weaker the coupling strength between the even-even core
and the particle. In all cases, only a very narrow range for
the parameter f can be chosen to fit for the odd-A nuclei,
which thus limits the arbitrariness of the X(n/2j + 1) model
predictions. A similar restriction to the coupling strength
parameter also occurs in the E(5/4) model. The coupling
strength parameter k in the E(5/4) model should satisfy
k > −4 to ensure the quantum numbers (τ, J ) = (0, 3/2)
correspond to those of the ground state because the core is
coupled with only a j = 3/2 particle [27]. Actually, k = 1
was taken in [27] and k = −1/2 in [28], which both satisfy
the restriction k > −4.

To study spectral patterns of the X(3/2j+1) model, we take
the cases j = 1/2 and j = 3/2 as examples. Some low-lying
energy levels and related B(E2) transition rates are calculated,
and the results are shown in Fig. 1. It should be noted that
both energy levels and transition rates of the model can be
calculated analytically up to an overall scale after fixing the
parameters f and b.

To test the roles of the coupling strength parameter f and
the spin j in the spectrum of the X(3/2j + 1) model, we
have set b = 0 in Fig. 1. As shown in this figure, an obvious
feature of the X(3/2) model is that predicted B(E2) values
for transitions with �J = 2 are much larger than those with
�J = 1 for both the strong-coupling case with f = 1/3 and
the weak-coupling case with f = 1/30, except those of the
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FIG. 1. The spectrum of the X(3/2) model with f = 1/3 and f = 1/30 corresponding to the case of the X(3) even-even core coupled to
an s1/2 and the X(3/4) model with f = 1/5 corresponding to the case of the core coupled to a d3/2 particle. For p1/2 or p3/2, all parities should
be reversed. In our calculation, the parameter b in Eq. (3) has been taken as zero, and all energy levels are normalized to the energy of the first
(j + 2)+1 excited state and the B(E2) transition values are normalized to that of B[E2; (j + 2)+1 → j+

1 ].

lowest three transitions with comparable strengths in every
panel. Further numerical calculations show that this feature is
independent of the parameter b. In addition, the energy levels
with the same L are approximately degenerate in the weak-
coupling case (f = 1/30), while the degeneracy is broken
in the strong-coupling case (f = 1/3). In all cases, for fixed
nonzero L, energy levels become much denser with an increase
of the spin j . For instance, there are only two states in the
X(3/2) model if L �= 0, while there are four states in the X(3/4)
model. Therefore, the spectrum in the X(3/4) model becomes
more complex than that in the X(3/2) model. The main feature
of B(E2) transition rates in the X(3/4) model is similar to that
in the X(3/2) model. In Fig. 1, we only list a case with f = 1/5
for the X(3/4) model because f should be less than 2/9 for
j = 3/2, as discussed previously. In a weaker-coupling case
with 0 < f 
 1/5 in the X(3/4) model, the spectral character
is also similar to that in the X(3/2) model with weak coupling.

Another issue is the influence of the parameter b, which is
also involved in the E(5/4) symmetry as shown in Table I, but
it has been set to 5/2 in [27] and 0 in [32]. In the X(3/2j + 1)
model, b will be treated as an adjustable parameter to fit
experimental results. As mentioned above, the X(3/2j + 1)
model is used to describe the spherical to axially deformed
shape phase transition in an odd-A system. The similar

situation in an even-even system has been widely studied in
the interacting boson model (IBM) [33]. To make the influence
of the parameter b clear, we take the X(3/2) model as an
example to compare typical energy ratios and B(E2) ratios
calculated from the related models in Fig. 2, where b � 0 is
assumed because the spectrum of the X(3/2j + 1) model with
negative b becomes too soft when compared with experimental
results. It is clearly shown in Fig. 2 that the results for
both the strong-coupling case represented by X(3/2)I and the
weak-coupling one characterized with X(3/2)II monotonically
move toward those of the SU(3) limit with increasing values
of b, which indicate that the larger the b value the more
rigid the system becomes. In addition, the quantities in the
strong-coupling case vary with b faster than those in the
weak-coupling case when b is small, but they almost remain
constant when b > 5. All those with the variation of b stay
in between the results of the U(5) limit (spherical phase) and
those of the SU(3) limit (axially deformed phase).

IV. COMPARISON WITH EXPERIMENTAL RESULTS

Generally, spectra of odd-A nuclei are more complex than
those of even-even nuclei, especially for those undergoing
shape phase transitions. In the following, we take the odd-A
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FIG. 2. (Color online) Typical energy ratios and B(E2) ratios as
functions of the parameter b in different models. For odd-A systems,
X(3/2)I and X(3/2)II curves represent the results obtained from the
X(3/2) model for the strong-coupling case (f = 1/3) and the weak-
coupling case (f = 1/30), respectively. For even-even systems, X(3)
curves denote the results obtained from the X(3) model [5], while
U(5), SU(3), and interacting boson model (IBM) curves represent the
results calculated from the U(5) limit, SU(3) limit, and the critical
point of the U(5)-SU(3) phase transition in the interacting boson
model with N = 10, respectively, where the results characterized
by U(5), SU(3), and IBM are calculated with the Hamiltonian H =
c[(1 − ξ )nd − ξ

4N
(Qχ · Qχ )] used in [15]. In addition, K = 0 for

even-even systems and K = 1/2 for odd-A systems.

nuclei with the nearest even-even nuclei around the X(3)
critical point as experimental candidates of the X(3/2j + 1)
symmetry. Specifically, because 186Pt lies near the X(3) critical
point [5], it is reasonable to take 187Au [34] as an experimental
candidate since the valence proton outside the even-even core
in this case may occupy the 3s1/2 orbit, and the ground state
of 187Au is just 1/2+

1 . In addition, since 154Gd, 104Mo, 152Sm,
and 150Nd are also well described by the X(3) or X(5) model
[25,35–37], their nearest odd-proton partners, namely, 155Tb
[38], 105Tc [39], 153Eu [40], and 151Pm [41], may be taken as
the X(3/2j + 1) symmetry candidates. According to the shell
model, the single valence proton in these odd-A nuclei may
occupy the 2d3/2, 2p3/2, 2d5/2, and 2d5/2 orbits, respectively.
The Jπ values of the ground state in the corresponding odd-A
nucleus are just 3/2+, 3/2−, 5/2+, and 5/2+, which agree with
the corresponding experimental observations. In Figs. 3–7,
only the level schemes of 187Au, 155Tb, 105Tc, 153Eu, and
151Pm, consisting of the lowest positive (negative-)parity states
with L = 0, 2, 4, 6, are chosen to be compared with results
calculated from the X(3/2j + 1) model.

Figure 3 shows that theory agrees well with experimental
results of 187Au [34] except for the 3/2+

1 state. The experimen-
tal 3/2+

1 state is nearly degenerate with the 1/2+
1 ground state,

which may come from a single-particle excitation because the
3s1/2 orbit is near the adjacent 2d3/2 orbit. A similar situation
also occurs in 189Au [30] and 135Ba [28]. In this paper, the

FIG. 3. The ground-state band of 187Au [34] and spectrum of the
X(3/2) model with f = 1/5 and b = 3. States in parentheses means
the corresponding quantum numbers have not been confirmed in the
experiment.

3/2+
2 state of 187Au is assigned to be the 3/2+

1 state in the
X(3/2) model. As shown in Fig. 4, the X(3/4) model also
agrees well with the experimental results of 155Tb [38], which
was also chosen as the X(5/2j + 1) model candidate in [30].
The present X(3/2j + 1) results seem little better in quantity
than those of the X(5/2j + 1) model shown in [30]. There are
also two obvious exceptions between experiment and theory.
First, the collective 3/2+

2 and 1/2+
1 levels based on the ground

state in theory are not observed in experiment. Two levels with
(1/2+, 3/2+, 5/2+) at 508.395 keV and (3/2+, 5/2+, 7/2+)
at 517.542 keV observed in experiment [38] are noticeably
too high to be the two states predicted based on the ground
state in theory. Second, the 9/2+

1 and 13/2+
1 levels from the

X(3/4) model are also noticeably higher than those observed

FIG. 4. Some low-lying levels of 155Tb [38] with those calculated
from the X(3/2j + 1) model with j = 3/2, f = 1/7, and b = 11,
where the lowest positive parity with L = 0, 2, 4, 6 are shown.
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FIG. 5. The low-lying levels of 105Tc [39] and those calculated
from the X(3/2j + 1) model with j = 3/2, f = 1/5, and b = 19,
where the lowest negative parity with L = 0, 2, 4, 6 are shown. States
in parentheses means the corresponding quantum numbers have not
been confirmed in the experiment.

in experiment. For 105Tc, as shown in Fig. 5, the agreement
between the experimental data [39] and those calculated in the
X(3/4) model is generally good, especially in the lower part
of the spectrum, except that some relatively high collective
states including 9/2−

2 , 11/2−
2 , and 13/2−

1 are not observed in
experiment. It should be noted that negative-parity states of
105Tc known in experiment [39] have all been shown in Fig. 5.
There are still several spin and parity undetermined levels
between 11/2−

1 and 15/2−
1 reported in [39] that are not shown

in Fig. 5, which may be the 9/2−
2 , 11/2−

2 , and 13/2−
1 levels

predicted in the model, but these need to be confirmed. Similar
to the case shown in Fig. 4, the collective 1/2−

1 level is also not
observed in experiment. In addition, the candidates of 3/2−

2 in
experiment, which is marked with (3/2−, 5/2−), as shown in
Fig. 5, is higher than that calculated from the X(3/4) model.
As for the j = 5/2 case, the results of the X(3/6) model also
generally agree with experimental results of 153Eu [40] and
151Pm [41], shown in Figs. 6 and 7. In addition, the collective
9/2+

3 level for 151Pm is not observed in experiment, as shown
in Fig. 7. The collective 9/2+

3 level, according to theory, should
not be higher than that of 17/2+

1 for the case j = 5/2 according
to the similar situation shown in Fig. 6. Thus, it will be
interesting to verify whether the level marked with (?), which
is the only level with unknown spin and parity below the 17/2+

1
level in experiment [41], is just the 9/2+

3 level. Overall, it can
be seen from Figs. 3–7 that the energy ratios E(j+4)1/E(j+2)1

and E(j+6)1/E(j+2)1 in experiment are not only excellently
consistent with the results of the X(3/2j + 1) model but also
in between the corresponding results of the U(5) limit and
those of the SU(3) limit shown in Fig. 2.

Since only a spin-orbit-type interaction f (β)[L̂ · ĵ + bh̄2]
is introduced to describe the interaction between the core
and a single valence nucleon in the X(3/2j + 1) model, the
energy levels for fixed L will increase with J according

FIG. 6. The low-lying levels of 153Eu [40] and those calculated
from the X(3/2j + 1) model with j = 5/2, f = 1/8, and b = 10,
where the lowest positive parity with L = 0, 2, 4, 6 are shown. States
in parentheses means the corresponding quantum numbers have not
been confirmed in the experiment.

to Eq. (6). But the energy levels in experiments do not
change as regularly as in theory. Therefore, differences in
quantity between experiment and theory always exist, as seen
from Figs. 6 and 7. Another discrepancy between theory
and experiment is that some low-collective levels predicted
in the X(3/2j + 1) model are not observed in experiment,
such as the j = 5/2 case, shown in Figs. 6 and 7. As
shown in Figs. 4–7, these experimentally unobserved levels
are often very low in energy and close to the ground state
in theory. If one chooses the coupling parameter f larger
than the restricted condition allowed, for example, taking
f = 1/3 > 1/7, those experimentally unobserved levels, such

FIG. 7. The low-lying levels of 151Pm [41] and those calculated
from the X(3/2j + 1) model with j = 5/2, f = 1/8, and b = 8,
where the lowest positive parity with L = 0, 2, 4, 6 are shown. States
in parentheses means the corresponding quantum numbers have not
been confirmed in the experiment, and the one marked with (?) means
that the spin and parity of this state is still unknown in the experiment.
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TABLE II. Some B(E2) values (in w.u.) with parameter t fitted by B(E2; 7/2+
1 → 5/2+

1 ) obtained from the X(3/6) model compared with
available experimental data of 153Eu [40] and those for the X(3/4) model with t fitted by B(E2; 5/2+

1 → 3/2+
1 ) compared with experimental

data of 155Tb [38]. In our calculation, the 5/2+
3 and 3/2+

2 states in the X(3/6) model are assigned to be the 5/2+
2 and 3/2+

1 states of 153Eu as
shown in Fig. 6, of which the related B(E2) values fitted by theory are given in the first column under the X(3/6) table heading. It should be
noted that the parameters f and b are the same as those used for Figs. 4 and 6.

J π
i → J π

f
153Eu X(3/6) J π

i → J π
f

153Eu X(3/6) J π
i → J π

f
155Tb X(3/4)

7/2+
1 → 5/2+

1 300(21) 300 5/2+
2,3 → 7/2+

1 4(4) 14,176 5/2+
1 → 3/2+

1 88(13) 88
9/2+

1 → 7/2+
1 170(40) 173 3/2+

1,2 → 7/2+
1 1.1 0.9,193 7/2+

1 → 5/2+
1 �39 44

9/2+
1 → 5/2+

1 97(8) 303 5/2+
2,3 → 5/2+

1 0.5(7) 0,296 7/2+
1 → 3/2+

1 �28 89
5/2+

2,3 → 3/2+
1,2 138(9) 147,29 3/2+

1,2 → 5/2+
1 1.3(9) 0,293 9/2+

1 → 7/2+
1 — 30

as 5/2+
2 , 3/2+

1 , and 1/2+
1 shown in the X(3/6) model, will be

lower than the 5/2+
1 levels and thus become nonphysical. More

realistic interactions, such as the quadrupole-type interaction
and interactions among multi-j single-particle orbits, may be
necessary to improve theory, from which a better description
of low-lying structure of odd-A nuclei may be reached. These
possible extensions for the theory will be studied in our future
work.

To further check the X(3/2j + 1) symmetry, some B(E2)
values, which are sensitive to structures of wave functions, are
taken and compared with available experimental data, which
are shown in Table II. As this table shows, it is impressive that
experimental results are well reproduced by theory, especially
for the noticeable difference between strong transitions and
weak ones for 153Eu. It should be noted that the B(E2) values
of 153Eu involved in 5/2+

2 and 3/2+
1 are far higher or lower

than the corresponding ones with 5/2+
2 and 3/2+

1 in the
X(3/6) model, as shown in Table II. But the same results
in experiments agree well with those calculated with 5/2+

3 and
3/2+

2 in theory. Therefore, the B(E2) values further confirm
that the 5/2+

2 and 3/2+
1 levels in experiment should correspond

to the 5/2+
3 and 3/2+

2 levels, respectively, in the X(3/6) model,
as shown in Fig. 6.

V. SUMMARY AND CONCLUSIONS

In this paper, the X(3/2j + 1) model is proposed for
odd-A nuclei that neighbor even-even systems displaying
characteristics of a spherical to axially deformed shape phase
transition. Specifically, the model provides a simple and
solvable framework to test the relevance of the X(3) critical
point symmetry [5] in odd-A nuclei. The j = 1/2 and j = 3/2
cases were selected as specific examples to illustrate its typical
spectral patterns. Comparison with other related models is
also made. The results indicate that the X(3/2j + 1) model

can be used to describe the spherical to axially deformed
shape phase transition in odd-A nuclei rather well. It is
shown that 187Au, 155Tb, 105Tc, 153Eu, and 151Pm may be
possible X(3/2j + 1) symmetry candidates as seen in terms
of the bandhead configurations and the structure of low-lying
spectra. In general, the model results strongly agree with
the corresponding experimental data. However, further work
(experimental as well as theoretical) is needed to help unveil
the role of critical point symmetries in the structure of nearby
odd-A nuclei. In addition, a complete description of low-lying
states of odd-A nuclei requires further extensions of the model.
One extension may be to consider the X(3) core coupled to
multi-j single-particle states as done in the E(5/12) model
[29]. A strong-coupling scheme of the X(3) core coupled
with a set of deformed single-particle states may also be
needed in contrast to the present treatment, which is similar
to the weak-coupling approximation. This follows because
the interaction between the core and the single particle is
expected to be quite strong in the odd-A nuclei when the
core is well deformed. In addition, a detailed comparison of
the X(3/2j + 1) model with the interacting boson-fermion
model [42–44] and the SD-pair shell model [45,46] for
odd-A nuclei would be interesting. Related work is in
progress.
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