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The multipole vortical, toroidal, and compression modes are analyzed. Following the vorticity concept of
Ravenhall and Wambach, the vortical operator is derived and related in a simple way to the toroidal and
compression operators. The strength functions and velocity fields of the modes are analyzed in 208Pb within the
random-phase approximation using the Skyrme force SLy6. Both convection and magnetization nuclear currents
are taken into account. It is shown that the isoscalar (isovector) vortical and toroidal modes are dominated by
the convection (magnetization) nuclear current while the compression mode is fully convective. The relation
between the above concept of the vorticity and the hydrodynamical vorticity is briefly discussed.
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I. INTRODUCTION

An irrotational character of nuclear flow is a basic assump-
tion in collective nuclear dynamics [1–4], which manifests
itself in numerous examples of low-energy excitations and
giant resonances (GR). At the same time, nuclear motion
can also carry a vorticity (i.e., a deviation from irrotational
flow) [5–8]. In hydrodynamics (HD), the vorticity is defined
as a curl of the velocity field [9]. Instead, the nuclear
theory deals with nuclear currents rather than velocities and
so here the vorticity is often defined through the jλλ+1(r)
component of the multipole decomposition of the transverse
nuclear current [7]. The component jλλ+1(r) is treated as
unrestricted by the continuity equation (containing the current
divergence �∇ · �j ) and so is believed to be of a vortical
character. In this case, the vorticity and charge transition
density represent two independent parts of the charge-current
distribution. This consideration reminds the previous result
[10] where the current component jλλ−1(r) is proposed to be
constrained by the continuity equation and thus determined by
the charge distribution while the component jλλ+1(r) is treated
as independent.

Both definitions of the vorticity, from HD and Ref. [7]
are widely used in the literature: the former in the nuclear
fluid-dynamical models (see, e.g., Ref. [11] and references
therein) and the latter in the microscopic studies (see,
e.g., Refs. [7,8]). These two definitions are assumed to be
closely related [7], though they are different observables by
construction. Actually, they represent different aspects of the
nuclear vorticity. In this article, we will concentrate on the
jλλ+1(r)-based vorticity [7]. The comparison with the HD case
will be also done.

The most remarkable manifestation of vorticity is the elec-
tric dipole toroidal mode (TM) [12–14] intensively explored
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during the last decades (see, e.g., the review in Ref. [15] and
references therein). This exotic mode is treated as a vortical
collective motion of the toroidal type. The TM operator is
the second-order correction to the leading E1 operator in the
long-wave approximation. Another kind of the second-order
E1 flow is represented by the anisotropic compression mode
(CM), often called the isoscalar dipole GR [16–19]. The mode
is viewed as a compression wave in a definite direction and so is
related to the nuclear incompressibility [16,19]. The isoscalar
(T = 0) TM and CM were observed in the (α, α′) reaction
as broad low-energy (TM dominated) and high-energy (CM
dominated) electric dipole distributions [14,18,20–25]. The
TM was also investigated in the region of the pygmy resonance
in 208Pb in a nuclear fluorescence experiment [26]. Perhaps,
the TM can be discriminated in the transverse (e, e′) form
factors [27].

The TM and CM were examined in various models,
including the fluid-dynamical and sum-rule approaches [11,
13,19,28], the method of Wigner function moments [29,30],
the random-phase-approximation (RPA) [31] and multiphonon
[26] methods with phenomenological single-particle poten-
tials. More refined RPA studies within the self-consistent
mean-field approaches were also performed, relativistic ones
[32,33] and those based on Skyrme forces [34,35], for a
review see Ref. [15]. A direct relation between the current-
dependent TM and density-dependent CM operators was
established in Refs. [13,31] and both modes were shown to
be mixed. Most of the studies reproduce the observed bimodal
(low-energy TM and high-energy CM) distribution. However,
theoretical models generally overestimate the CM peak energy
by ∼4 MeV and underestimates the TM one by 1–2 MeV.
Besides, they yield a much broader TM distribution [15].

A special effort was devoted to the nuclear vorticity as
such [5–8]. The possibility to measure the vorticity in (e, e′)
experiments was discussed in Refs. [8,27,36].

Despite these thorough studies, some principle points
concerning the vorticity and related modes deserve further
inspection: (i) There is an essential difference in modeling the
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vortical mode (VM) and their TM and CM counterparts. The
TM and CM are usually deduced as second-order terms in a
low-momentum expansion of the electric multipole transition
operators [12,13]. To the best of our knowledge, an analogous
way to the VM operator has yet to be developed. This would
help to establish a formal relation between VM and TM/CM.
(ii) Most of the previous studies (with the exception of
Refs. [7,8,31]) employ only the convection part jc of the
nuclear current and skip its magnetization (spin) part jm,
though the latter can also produce a vorticity. The role of jm

in VM and other modes has yet to be clarified. (iii) Mainly the
T = 0 channel of the modes were discussed, although their
T = 1 counterpart is also interesting and deserves a closer
look. (iv) The relation between two definitions of the vorticity,
from HD [9] and jλλ+1(r) current component [7], has yet to be
clarified.

The aim of the present study is to explore the open problems
listed above. First of all, the vortical operator unconstrained
by the charge conservation is derived following the ideas of
the authors of Ref. [7]. The operator has a simple relation
with its TM/CM counterparts and is also deduced as a second-
order term in a low-momentum (long wavelength) expansion
of the dominant electric operator. Further, the difference in the
vorticity criteria from the HD [9] and Ref. [7] is inspected. In
the numerical calculations, both T = 0 and T = 1 channels
of VM, TM, and CM are analyzed by using the full nuclear
current j = jc + jm. The dominant role of jm and thus the spin
vorticity in forming the isovector VM and TM is worked out.
Both single-particle and collective mechanisms of the vorticity
are discussed.

The numerical analysis is done within the self-consistent
separable random-phase-approximation (SRPA) approach
based on the factorized Skyrme residual interaction [37,38].
The systematic studies of electric [37–42] and magnetic
[43–45] GR in spherical and deformed nuclei have established
this approach as a reliable and effective theoretical tool.

The article is organized as follows. In Sec. II, the nuclear
vorticity is discussed in the context of the previous studies.
In Sec. III, the VM, TM, and CM operators are derived on
the same theoretical grounds, following the prescription in
Ref. [7]. A simple relation between the operators is established.
The mode velocities are analyzed and different criteria of the
vorticity, from Ref. [7] and HD, are compared. Section IV
provides an outline of the calculation scheme within the
Skyrme SRPA. In Sec. V, the numerical results for the T = 0
and T = 1 VM, TM, and CM are discussed. A summary
is given in Sec. VI. Appendix A justifies the procedure
of building the vortical operator. Appendix B describes
the procedure for extraction of the spurious center-of-mass
corrections. Appendix C provides the explicit expressions for
the density and current operators. Appendix D sketches the
basics of SRPA.

II. VORTICITY IN TERMS OF VELOCITIES
AND CURRENTS

The HD nuclear models, including the famous liquid-drop
model, assume an irrotational character of the collective

nuclear flow [1–3]

�∇ × �v(�r) = 0, (1)

where �v(�r) is the local velocity field. The deviation from the
irrotational flow is quantified by the HD vorticity

�� (�r) = �∇ × �v(�r) . (2)

Unlike the HD models, nuclear theory prefers to deal with
currents �jnuc(�r) rather than velocities �v(�r). However, Eqs. (1)
and (2) cannot be replaced by the similar expressions for the
nuclear current since, as shown below, the curls of velocity
and current have a different structure. Moreover, �∇ × �jnuc(�r)
is the key part of the electrical multipole operator M̂(Eλμ, k)
and, so, treating �∇ × �jnuc(�r) as a vortical quantity will
wrongly mean a fully vortical nature of any Eλμ excitations,
which contradicts the predominantly irrotational character of
electric GR.

For using the HD definition of vorticity (2), the quantum
theory should express it through the nuclear current. A
common way is to define the velocity field �vν(�r) for the
excitation mode ν through the current transition density δ �jν(�r)
and ground-state density ρ0(�r) [6,46]

δ �jν(�r) = ρ0(�r)�vν(�r), (3)

which casts Eq. (2) into the form

�∇ × �vν(�r) = ρ0(�r) �∇ × δ �jν(�r) − �∇ρ0(�r) × δ �jν(�r)

ρ2
0 (�r)

. (4)

This illuminates the difference between the curls of the
velocity and current and thus shows that �∇ × δ �jν(�r) cannot
be a measure of vorticity. The difference is comprised in the
gradient field �∇ρ0(�r), which is maximal at the nuclear surface
and minimal in the interior.

In Ref. [7], a concept of nuclear vorticity, alternative to the
HD one and fully based on the nuclear current, was proposed.
It aims to find a component of the nuclear current that is not
restricted by the continuity equation

�∇ · δ �jν(�r) = −ikcδρν(�r), (5)

with k being the transfer momentum. By construction, this
current component should not contribute to the irrotational
motion and vanish in the divergence �∇ · δ �jν(�r). So it may be
naturally used for building the vortical quantities.

Since the present study follows similar lines, it is worth
outlining the concept [7] in more detail. In spherical nuclei,
it exploits the multipole expansion of the nucleon and current
transition densities

δρf i(�r) = 〈jf mf | ρ̂(�r) |jimi〉
=

∑
λμ

a
f i

λμ ρλ(r) Yλμ(�̂r), (6)

δ �jf i(�r) = 〈jf mf | �̂j nuc(�r) |jimi〉
= −i

∑
λμ

∑
L=λ±1

a
f i

λμ jλ L(r) �YλLμ(�̂r), (7)
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with

a
f i

λμ = (−1)μ
(jimiλ − μ|jf mf )√

2jf + 1
, (8)

where ji,mi (jf ,mf ) are spins and their projections for the
initial i (final f ) state, Yλμ(�̂r) and �YλLμ(�̂r) are ordinary and
vector spherical harmonics [47]. The ρλ(r) and jλL(r) are
multipole components of the transition density and current.
Using the above expansions and the quantity

δ �Sf i(�r) =
∑
λμ

a
f i

λμ

√
λ + 1

λ
kcρλ(r) �Yλλμ(�̂r), (9)

the unconstrained vortical transition density

δ �wf i(�r) = �∇ × δ �jf i(�r) − δ �Sf i(�r)

=
∑
λμ

a
f i

λμwλλ(r) �Yλλμ(�̂r), (10)

is built [7], where the vortical multipoles

wλλ(r) =
√

2λ + 1

λ

(
d

dr
+ λ + 2

r

)
jλ λ+1(r), (11)

are determined by the radial current component jλ λ+1(r).
Finally, the vorticity strength is given by

νλ =
∫ ∞

0
dr rλ+4 wλ λ(r). (12)

The continuity equation (5) in terms of the rλ moments
relates the current component jλ λ−1(r) to the transition
density but leaves the component jλ λ+1(r) untouched [7].
So, just jλ λ−1(r) provides the charge-conservation constraint
and the quantity (9) is constructed so as to remove jλ λ−1(r)
from �∇ × δ �jf i(�r), see more discussion in Appendix A. The
unconstrained vortical value (11) includes only jλ λ+1(r).
Moreover, following Ref. [7], the motion is treated as vortical
if its current involves jλ λ+1(r).

The formalism [7] treats the vorticity without using an
explicit vortical operator analogous to the TM and CM ones.
However, we need such an operator for reasons of comparison
of vortical modes with TM and CM. In the next section,
we will develop the explicit vortical operator by using the
prescription of Ref. [7] and relate this operator with the toroidal
and compression ones. The subsequent discussion will show
that this operator is not truly vortical in the HD sense and the
presence of jλ λ+1(r) in the current is not enough for the HD
vorticity.

III. VM, TM, AND CM OPERATORS

A. Derivation of VM, TM, and CM operators

The standard electrical multipole operator may be written
in different forms [48]

M̂(Eλμ, k) = −i
(2λ + 1)!!

ckλ+1(λ + 1)

·
∫

d3r �̂j nuc(�r)·[ �∇×(�r× �∇)jλ(kr)Yλμ(�̂r)]

(13)

= (2λ + 1)!!

ckλ+1

√
λ

λ + 1

·
∫

d3r [ jλ(kr) �Yλλμ(�̂r) ] · [ �∇ × �̂j nuc(�r)], (14)

where jλ(kr) is the spherical Bessel function.

The form (14) shows that �∇ × �̂j nuc(�r) cannot be a measure
of the vorticity since otherwise M̂(Eλμ, k) would indicate
only vortical electric excitations. At the same time, the form
(14) suggests that the vortical operator may be built from

M̂(Ekλμ) by replacing �∇ × �̂j nuc(�r) with the truly vortical
quantity [7]

�∇ × �̂j nuc(�r) − i

λ
kc [ �∇ρ̂(�r) × �r]. (15)

The density-dependent term in Eq. (15) subtracts the charge-
conservation constraint. Actually it plays a similar role as the
right-hand side (r.h.s.) second term in the vortical transition
density (10). Both prescriptions, Eqs. (10) and (15), have
the same intention, but being applied to different quantities
(transition densities and operators), lead to formally different
recipes. While Eq. (10) excludes the jλ λ−1(r) terms, the recipe
(15) gives an exact compensation of the lowest-order k terms
in the final vortical operator, see the derivation below. Both
Eqs. (10) and (15) remind the r.h.s. of the HD expression
(4). They are compared and discussed in more detail in
Appendix A.

By using Eq. (15), the vortical operator is defined as

M̂vor(Eλμ, k) = M̂(Eλμ, k) − M̂S(Eλμ, k), (16)

that is, as a difference of the electric operator (14) and the
subsidiary operator

M̂S(Eλμ, k) = i
(2λ + 1)!!

kλ
√

λ(λ + 1)

·
∫

d3r [ jλ(kr) �Yλλμ(�̂r) ] · [ �∇ρ̂(�r) × �r]. (17)

The second equation may be also written in the forms

M̂S(Eλμ, k)

= − (2λ + 1)!!

kλ
√

λ(λ + 1)

∫
d3r ρ̂(�r) jλ(kr) �̂l · �Yλλμ(�̂r) (18)

= − (2λ + 1)!!

kλ

∫
d3rρ̂(�r)jλ(kr)Yλμ(�̂r) (19)

= −i
(2λ + 1)!!

ckλ+1

∫
dr3jλ(kr)Yλμ(�̂r)[ �∇ · �̂j nuc(�r)]. (20)

The form (20) is obtained by using the operator continuity
equation

�∇ · �̂j nuc = − i

h̄
[Ĥ , ρ̂] = −ikcρ̂. (21)

In the long-wavelength approximation (k → 0), we keep
only the first and second terms in the expansion of the spherical
Bessel function

jλ(kr) = (kr)λ

(2λ + 1)!!

[
1 − (kr)2

2(2λ + 3)
+ · · ·

]
, (22)
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and thus get for the electric and subsidiary operators

M̂(Eλμ, k) ≈ M̂(Eλμ) + k M̂tor(Eλμ), (23)

M̂S(Eλμ, k) ≈ M̂(Eλμ) − kM̂com(Eλμ), (24)

where

M̂(Eλμ) = i

kc

∫
d3r �̂j nuc(�r) · �∇[rλYλμ(�̂r)]

= − i

kc

∫
d3r [ �∇ · �̂j nuc(�r)]rλYλμ(�̂r)

= −
∫

d3r ρ̂(�r) rλYλμ(�̂r), (25)

is the familiar electrical operator in the long-wavelength limit
(lowest-order term) and

M̂tor(Eλμ) = i

2c(λ + 1)(2λ + 3)

·
∫

d3r �̂j nuc(�r) · [ �∇ × (�r × �∇)rλ+2Yλμ(�̂r) ]

(26)

= i

c(λ + 1)

∫
d3r �̂j nuc(�r) · �rrλYλμ(�̂r)

+ k
λ + 3

2(λ + 1)(2λ + 3)

∫
d3rρ̂(�r)rλ+2Yλμ(�̂r),

(27)

M̂com(Eλμ) = i

2c(2λ + 3)

·
∫

d3r �̂j nuc(�r) · �∇[ rλ+2Yλμ(�̂r) ], (28)

are toroidal and compressional operators, respectively. Note
that both toroidal expressions (26) and (27) involve the
function rλ+2Yλμ(�̂r) thus manifesting the relation between TM
and CM. In Eq. (27), the second term precisely gives the CM
operator [31].

In Eq. (16), the lowest-order k terms from Eqs. (23) and
(24) exactly compensate each other and so we get

M̂vor(Eλμ, k) = k [M̂tor(Eλμ) + M̂com(Eλμ)] . (29)

Using the definition M̂vor(Eλμ, k) = kM̂vor(Eλμ), we finally
come to the relation

M̂vor(Eλμ) = M̂tor(Eλμ) + M̂com(Eλμ), (30)

where

M̂vor(Eλμ) = − i

c(2λ + 3)

√
2λ + 1

λ + 1

·
∫

d3r �̂j nuc(�r)rλ+1 �Yλλ+1μ(�̂r), (31)

M̂tor(Eλμ) = − i

2c

√
λ

2λ + 1

∫
d3r �̂j nuc(�r) · rλ+1

×
[

�Yλλ−1μ(�̂r) +
√

λ

λ + 1

2

2λ + 3
�Yλλ+1μ(�̂r)

]

= − 1

2c

√
λ

λ + 1

1

2λ + 3

∫
d3r rλ+2 �Yλλμ(�̂r)

·
(

�∇ × �̂j nuc(�r)
)

, (32)

M̂com(Eλμ) = i

2c

√
λ

2λ + 1

∫
d3r �̂j nuc(�r) · rλ+1

×
[

�Yλλ−1μ(�̂r) −
√

λ + 1

λ

2

2λ + 3
�Yλλ+1μ(�̂r)

]

= − i

2c

1

2λ + 3

∫
d3r rλ+2Yλμ(�̂r)( �∇ · �̂j nuc(�r)).

(33)

Here, the TM and VM operators are the same as in Eqs. (26)
through (28), but are written in the forms convenient for
the comparison with the VM operator. Besides these forms

demonstrate the �∇ × �̂j nuc(�r) and �∇ · �̂j nuc(�r) origin of the TM
and CM operators, respectively.

The expression for the VM operator (31) and the relation
(30) between VM, TM, and CM operators represent the main
formal results of the present article.

Following Eq. (30), the operators M̂vor(Eλμ), M̂tor(Eλμ),
and M̂com(Eλμ) are of the same second order by k. They
are given in Eqs. (31)–(33) in the current-dependent form.
Using the continuity equation (21), the current-dependent CM
operator (33) is straightforwardly transformed to the familiar
density-dependent CM operator [13]

M̂ ′
com(Eλμ) = 1

2(2λ + 3)

∫
d3rρ̂(�r)rλ+2Yλμ(�̂r), (34)

as

M̂com(Eλμ) = −kM̂ ′
com(Eλμ). (35)

Note that the relation (30) requires the compensation of
the terms ∼ �Yλλ−1μ(�̂r) in the TM and CM operators. Thus a
simultaneous use of these two operators is obligatory. The VM
operator includes only �Yλλ+1μ(�̂r) and so its matrix elements
are determined by the current transition density jλ λ+1(r), as
requested in Ref, [7]. It is easy to check that M̂vor(Eλμ)
gives the transition vorticity (11) and so reproduces the results
of Ref. [7].

The above formalism was derived for the case when the
system is excited by the external electric field (i.e., for the exci-
tation energy ω = h̄ck > 0). The case of deexcitation is easily
obtained by replacement k → −k in the continuity equations
(5) and (21), k-dependent terms in Eqs. (15), (27), (35), and
the equations of Appendix C. The sign of M̂S(Eλμ, k) and
density-dependent M̂(Eλμ) is changed as well.

B. Dipole VM, TM, and CM operators

The VM, TM, and CM are usually studied for the electric
Iπ = 1− states [15]. Then the operators (31)–(34) are reduced
to

M̂vor(E1μ) = − i

5c

√
3

2

∫
d3r �̂j nuc(�r)r2 �Y12μ(�̂r), (36)

M̂tor(E1μ) = − i

2
√

3c

∫
d3r �̂j nuc(�r)

·
[√

2

5
r2 �Y12μ(�̂r)+(r2 − δT,0〈r2〉0) �Y10μ(�̂r)

]
,

(37)

034303-4



GENERAL TREATMENT OF VORTICAL, TOROIDAL, AND . . . PHYSICAL REVIEW C 84, 034303 (2011)

M̂com(E1μ) = − i

2
√

3c

∫
d3r �̂j nuc(�r)

·
[

2
√

2

5
r2 �Y12μ(�̂r)−(r2 − δT,0〈r2〉0) �Y10μ(�̂r)

]
,

(38)

M̂ ′
com(E1μ) = 1

10

∫
d3rρ̂(�r)

·
[
r3 − δT,0

5

3
〈r2〉0r

]
Y1μ(�̂r), (39)

where 〈r2〉0 = ∫
d3rρ0(�r)r2/A is the ground-state squared

radius.
In Eqs. (37)–(39), the terms ∼ �Y10μ(�̂r), Y1μ(�̂r) include the

center-of-mass corrections (c.m.c.) for T = 0 excitations [13].
In the TM and current-dependent CM operators, the c.m.c.
have the same magnitude. For the VM, the c.m.c. is zero, see
the discussion in Appendix B.

The expression in the square brackets of the TM operator
(37) can be written as [13]

�∇ × (�r × �∇)

(
r3 − 5

3
〈r2〉0 r

)
Y1μ(�̂r), (40)

which justifies a close relation between TM and CM.

C. Discussion of VM, TM, and CM operators
and vorticity criteria

As shown above, the CM operator may be presented in
the current-dependent (33) and density-dependent (34) forms.
To the best of our knowledge, the former has not yet been
used in the literature. Since the spin current jm is a curl of the
magnetization, it does not contribute to the continuity equation
and CM operator. Though the current-dependent form (33)
of CM formally involves jm, its contribution is annihilated

by �∇ · �̂j nuc(�r) or the corresponding combinations of vector
spherical harmonics. So actually both forms, Eqs. (33) and
(34), of the CM operator do not depend on jm.

Both CM operators, Eqs. (33) and (34), are obtained through
�∇ · �̂j nuc(�r), which suggests their vorticity-free character. This
is confirmed by the form of the CM velocity, which, following
the prescription [46], reads

�vcom(�r) ∝ �∇ rλ+2Yλμ(�̂r), (41)

and so gives �∇ × �vcom(�r)=0.
The current-dependent CM operator (33) includes the

�Yλλ+1μ(�̂r) contribution which might be considered as an
indicator of a vortical part. Indeed �Yλλ+1μ(�̂r) leads to the
current component jλ λ+1(r), which, following Ref. [7], is
responsible for the vorticity. However, for the CM this is
misleading. The velocity (41) can be straightforwardly cast
into the form

�vcom(�r) ∝
√

λ

2λ + 1
rλ+1

·
[

�Yλλ−1μ(�̂r) −
√

λ + 1

λ

2

2λ + 3
�Yλλ+1μ(�̂r)

]
, (42)

whose curl is zero despite the �Yλλ+1μ(�̂r) term. So, following
the HD criterion (2), the appearance of a term �Yλλ+1μ(�̂r) in the
mode operator and current is not yet a definitive signature of
the vorticity.

Altogether, we see the apparent differences between two
possible criteria for the vorticity: (i) the HD condition (2) in
terms of velocities, �∇ × �v(�r) = 0, and (ii) the condition in
Ref. [7] in terms of transition current density components,
jλ λ+1(r) = 0. As shown above for the CM example, a mode
that is fully vorticity free in the HD definition can have a
substantial vorticity of the Ref. [7] sort. The difference between
these criteria might be understood if we take into account
that the vorticity density wλλ(r) ∝ jλ λ+1(r) was derived in
Ref. [7], first of all, as a quantity completely unconstrained by
the charge conservation rather than a purely vortical value in
the HD sense.

In fluid-dynamical and HD models [11,28], the velocity
fields are chosen in form of the relevant external fields exciting
the proper modes. Following this practice, the TM velocity
reads

�vtor(�r) ∝ �∇ × (�r × �∇)rλ+2Yλμ(�̂r) (43)

= i

√
λ

2λ + 1
(λ + 1)(2λ + 3)rλ+1

·
[

�Yλλ−1μ(�̂r) +
√

λ

λ + 1

2

2λ + 3
�Yλλ+1μ(�̂r)

]
. (44)

It is easy to check that �∇ × �vtor ∝ rλ �Yλλμ(�̂r) and so TM carries
the HD vorticity.

The VM velocity constructed in the same manner is

�vvor(�r) ∝ rλ+1 �Yλλ+1μ(�̂r). (45)

It has the similar nonzero curl �∇ × �vvor ∝ rλ �Yλλμ(�̂r). So the
VM has the vorticity of both HD and Ref. [7] sorts.

IV. CALCULATION SCHEME

The calculations of the excitation modes were performed
within the separable random-phase approximation (SRPA)
model using the Skyrme energy functional [37,38]. SRPA
was earlier successfully applied to description of electric
[37–41] and magnetic [43–45] GR in spherical and deformed
nuclei. The approach was also used for the exploration of
E1 strength near particle emission thresholds [42]. SRPA is
fully self-consistent in the sense that both the static mean-
field and factorized residual interaction are derived from
the same Skyrme energy functional [49–51]. The functional,
ESk(ρ, τ, �J , �j, �s, �T ), includes time-even (nucleon ρ, kinetic-
energy τ , spin-orbit �J ) and time-odd (current �j , spin �s, vector
kinetic-energy �T ) densities. It also involves pairing (surface
and volume), Coulomb (direct and exchange), and c.m.c.
terms [37,38,43]. The Galilean invariance of the functional
is maintained in SRPA. The tensor spin-orbit contribution
is involved through the squared spin-orbit densities �J 2. All
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the functional terms are kept in the mean field and residual
interaction.

The SRPA expands the RPA residual interaction self-
consistently into a sum of separable terms, which dramatically
reduces the computational effort while keeping the accuracy
of the full (nonseparable) RPA [37,38]. This makes SRPA
extremely useful for systematic calculations and tasks with
very large configuration space (e.g., for description of GR in
heavy deformed nuclei).

For GR studies, the computational expense can be even
more reduced by a direct evaluation of the strength function,
thus avoiding the solution of RPA equations for a large
multitude of individual states. The SRPA strength function
works with the Lorentz weight and has very simple form
[37,38]. In the present study, the strength function for electric
dipole modes reads

Sα(E1; ω)= (2π )2
∑

μ=0,±1

∑
ν

|〈�ν |M̂α(E1μ)|�0〉|2ζ (ω − ων),

(46)

where

ζ (ω − ων) = 1

2π



(ω − ων)2 + 2

4

, (47)

is the Lorentz weight with the smoothing width  and
M̂α(E1μ) is the electric dipole transition operator whose
type is determined by the index α = {vor, tor, com, com′}.
Further, �0 is the ground state, ν runs over the RPA spectrum
with eigenfrequencies ων and eigen-states |�ν〉. The Lorentz
smoothing uses a width  = 1 MeV to simulate broadening
effects beyond RPA (escape widths and coupling to complex
configurations). The explicit form of the strength function (46),
which does not directly involve the RPA solutions, is given
elsewhere [37,38].

In general, the VM, TM, and CM appear at many different
multipolarities λμ. Here we explore them in the Iπ = 1−
excitations of the doubly magic spherical nucleus 208Pb. In this
nucleus the pairing is absent. The calculations use the Skyrme
parametrization SLy6 [52], which provides a satisfactory
description of the E1(T = 1) GR in heavy nuclei [41]. For this
parametrization, the tensor spin-orbit contribution is omitted.

The calculations employ a cylindrical coordinate-space grid
with the mesh size 0.7 fm. A large single-particle basis is
used. The particle-hole 1− pairs extend up to ∼ 65 MeV and,
for E1(T = 1) excitations, the energy-weighted sum rule with
the isovector effective mass is exhausted by ∼ 95% [41].

The calculations involve both convection jc and magneti-
zation (spin) jm parts of the nuclear current, see Appendix C
for more details. For jm, the isoscalar g

n,p
s (T = 0) = (gp

s +
gn

s )/2 = 0.88ς and isovector g
n,p
s (T = 1) = (gn

s − g
p
s )/2 =

−4.70ς gyromagnetic factors are used, where g
p
s = 5.58ς

and gn
s = −3.82ς are bare proton and neutron g factors and

ς = 0.7 is a quenching parameter taking approximately into
account the meson degrees of freedom [53]. It is easy to see
that |gn,p

s (T = 1)| � |gn,p
s (T = 0)| and so the main effect of

the spin nuclear current is expected for T = 1 modes.
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FIG. 1. Isoscalar (T = 0) and isovector (T = 1) vortical,
toroidal, and compression dipole modes in 208Pb, calculated with the
SLy6 parameterization. The total nuclear current jnuc is used. The CM
is computed with the operator M̂com from Eq. (38). The lines with
the arrows indicate widths and energy centroids of the low-energy
and high-energy branches of isoscalar E1 excitations observed in the
(α, α′) reaction [24,25].

The proton and neutron (q = n, p) RPA velocity fields are
determined in cylindrical coordinates (z, ρ) as

�vq
ν (z, ρ) = δ �jνq(z, ρ)

ρ
q

0 (z, ρ)
, (48)

where

δ �jνq(z, ρ) =
∑
ij∈q

〈ij | �̂j
q

nuc|0〉(cνq−
ij − c

νq+
ij

)
, (49)

is the current transition density for the RPA ν state with the
normalized forward and backward particle-hole (1ph) ampli-
tudes c

νq−
ij and c

νq+
ij . Further, ρ

q

0 (z, ρ) is the proton/neutron
ground-state density.

The spurious c.m. admixtures are avoided by using the
prescriptions from the Appendix B. The SRPA equations
and some important points (e.g., a choice of the generat-
ing operators for the separable expansion) are sketched in
Appendix D.

V. RESULTS AND DISCUSSION

The results of the calculations for the nucleus 208Pb are
presented in Figs. 1–9.

In Fig. 1, the VM, TM, and CM strengths in T = 0
and 1 channels are compared. The strengths are computed
for the transition operators (36)–(38). For the CM, the
current-dependent operator M̂com is used. Unlike its familiar
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density-dependent counterpart M̂ ′
com, it has the same dimen-

sion as the VM and TM operators and so is more suitable for
the comparison of the modes. All the modes are calculated
with total nuclear current jnuc. Figure 1 shows that all the
modes have basically two broad branches, a low-energy branch
(LEB) at 5–20 MeV and a high-energy branch (HEB) at 25–40
MeV. The VM is well presented in both branches while TM
and CM are mainly localized in LEB and HEB, respectively.
Such a double-branch structure was found for the TM and
CM in most of the previous theoretical studies [15]. It is most
probably related to E1 transitions with N = 1 and 3 where
N is the principle shell number.

The double-branch structure of the E1(T = 0) strength was
confirmed by various experiments [14,18,20–25], mainly in
(α, α′) scattering at small angles. The recent results of this
reaction [24,25] are depicted in Fig. 1(a). The reaction is
considered as a common tool for measurements of the dipole
CM(T = 0) [53].

As seen in Fig. 1(a), our results do not reproduce the ex-
perimental energies and widths of the LEB and HEB. Neither
of the mode centroids coincides with the experimental peak
energies. Note that this is a common shortcoming of almost
all theoretical studies performed within various theoretical
approaches [15]. Namely, the theory (i) underestimates by
1–2 MeV the TM-dominated LEB and overestimates by about
4 MeV the CM-dominated HEB, (ii) yields a much broader
TM distribution and a too narrow CM one. The reason for the
discrepancies is still unclear. Perhaps this is partly caused by
neglecting the coupling with complex configurations.

Figure 1 shows that the VM and TM strengths are of the
same order of magnitude in the LEB left flank for T = 0 and in
the whole LEB for T = 1 (the difference between T = 0 and
1 cases is explained below in the discussion of Figs. 2 and 3).
Perhaps, in these regions the TM is mainly vortical. We also
see that VM dominates at the right LEB flank and is significant
in HEB where the TM contribution is weak. The CM strictly
dominates in HEB and has a noticeable tail in LEB at T = 0.
The later case is because of the coupling between TM and
CM [13,31]. Obviously, the difference between VM, on the one
hand, and TM and CM, on the other hand, is mainly explained
by the terms ∼ �Y10μ(�̂r) that are absent in M̂vor, but active in
M̂tor and M̂com. Because of these terms, Fig. 1 cannot be used
for a direct check of the relation (30). For the same reason,
the similarity of VM and CM strengths in the HEB cannot
be considered as a signature of the CM vorticity because VM
and CM represent essentially different kinds of the motion,
vortical versus irrotational. Instead, this means that both kinds
of motion are presented by E1N = 3 transitions.

The obtained results suggest that the VM(T = 0) may be
hopefully disentangled from other modes in (α, α′) at the
excitation energy ∼ 16 MeV, where the VM(T = 0) strictly
dominates. For (e, e′), the pygmy region 7–10 MeV seems to
be most promising to observe VM and TM. In this region a
dominant contribution j12(r) of the nuclear current is expected.

In Fig. 2, the isoscalar VM and TM strengths, calculated
with the complete jnuc = jc + jm, convection jc, and magneti-
zation jm nuclear currents, are compared. It is seen that the jm

contribution is weak and so the T = 0 VM and TM are mainly
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FIG. 2. Calculated isoscalar (T = 0) vortical, toroidal, and com-
pression dipole modes in 208Pb. For the VM and TM, the strengths
with the total jnuc, convection jc, and magnetization jm current
contributions to the transition operators are shown.

of the convection nature. This is especially the case for the
HEB where the jm contribution, being mainly of low-energy
spin-flip character, vanishes at all. The weakness of the jm

weight in T = 0 channel is naturally explained by the low
values of the gyromagnetic factors g

q
s (T = 0), as mentioned

in Sec. IV. Figure 2 also exhibits the CM. Unlike Fig. 1,
here the familiar density-dependent operator M̂ ′

com is used.
Following Eq. (35), M̂ ′

com is less energy weighted than M̂com

and so gives a more comparable CM strength in LEB and HEB.
As discussed above, the CM is determined by ∇ · �jnuc and so
is purely irrotational. It has no any contribution from jm and
thus is fully convective.

In Fig. 3, the VM, TM, and CM are shown in the
T = 1 channel. As compared to the previous T = 0 case,
we see dramatic changes in the magnitude and composition
of VM and TM. In the LEB, these modes become stronger
and dominated by the jm contribution. The reason for the
changes is obvious. The isovector spin factors, gn,p

s (T = 1) =
−4.70ς , are much larger than the isoscalar ones, g

n,p
s (T =

0) = 0.88ς . So, the T = 1 spin contribution grows about
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FIG. 3. The same as in Fig. 2 but for the T = 1 modes.

[gn,p
s (T = 1)/gn,p

s (T = 0)]2 ∼ 29 times. It becomes dominant
and significantly increases the total VM and TM strengths.
Note that this effect does not concern the HEB that re-
mains purely convective. Besides, the jm effect is zero for
the CM.

The next point to be considered is collectivity of the modes.
To this end, Figs. 4 and 5 compare RPA and unperturbed
particle-hole (1ph) strengths. It is seen that the RPA residual
interaction noticeably down-shifts the strength for T = 0 and
up-shifts it for T = 1. The maximal collective shifts (defined
as the difference between RPA and 1ph peaks) take place in
the CM, where they reach 1–2 MeV in LEB and 2–4 MeV in
HEB. The HEB shift is comparable to that of the E1(T = 1)
giant dipole resonance (GDR) exhibited in Fig. 6 and so is
indeed very large. This indicates that HEB modes, VM and
CM, are collective. The LEB modes, for exception of a few
high peaks, are less collective. The LEB almost coincides with
the region of the unperturbed 1ph dipole strength depicted in
Fig. 6 and so for the LEB the single-particle aspect is also
important. These observations are confirmed by an inspection
of the detailed structure of the RPA states and agree with
the previous studies [15] for the high-energy CM and low-
energy TM.
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FIG. 4. Comparison of SRPA and 1ph strengths for the T = 0
modes. For VM and TM, the strengths are computed with the total
nuclear current jnuc.

The next figures take a closer look at the detailed structures
of a few most collective LEB modes. In Figs. 7 through 9,
the VM, TM, and CM neutron and proton velocity fields
(48) for particular T = 0 and T = 1 RPA (μ = 0) states are
shown. The states in the region 6–10 MeV with the maximal
VM, TM, and CM responses are considered: 8.3 MeV (VM),
8.7 MeV (TM), 7.1 MeV (CM) for T = 0 and 9.1 MeV (VM),
9.8 MeV (TM), 8.8 MeV (CM) for T = 1. These states are
easily recognized in Figs. 2 through 5 as the highest peaks at the
left side of the LEB. The states combine collectivity and single-
particle effects: their structure is a coherent superposition
of many 1ph components with maximal contributions 20–
40%. The velocities are plotted in cylindrical coordinates
(z, ρ) and, for simplicity, only the quadrant (z > 0, ρ > 0) is
presented.

Figures 7 through 9 show that velocity fields are rather
involved, indicating a complex structure of the RPA states.
The clear imprints of the vortex motion are seen as local curls.
Sometimes, the fields well reproduce a typical toroidal picture
[see, e.g., the T = 0 proton velocities for VM and CM in
Figs. 7(b) and 9(b)]. The curls for the CM may be explained
by its strong coupling to TM in LEB. In Fig. 9(a), the strong
dipole component is also seen. However, in most of the panels,
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FIG. 5. The same as in Fig. 4 but for the T = 1 modes.

the large impact of the single-particle motion (e.g., of the nodal
structure of the leading 1ph components) distorts the familiar
collective TM and CM flows and considerably complicates the
picture.

FIG. 6. SRPA and 1ph strengths for the E1(T = 1) GDR. Like
for other modes, the strength functions are plotted without the energy
weight. The experimental width and energy [54] are shown by the
horizontal line and arrow, respectively.
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FIG. 7. (a–b) Neutron and proton vortical velocity fields �vq
ν (z, ρ)

for the state ων = 8.3 MeV with a maximal T = 0 vortical response.
(c–d) The same for the state ων = 9.1 MeV with a maximal T = 1
vortical response. For a better view, the velocities are amplified by
the factors 50 (a–b) and 20 (c–d).

VI. CONCLUSION

The nuclear vorticity and relevant vortical, toroidal, and
compression modes (VM, TM, and CM) were explored on
general formal grounds. The operators of all three modes were
derived as second-order terms in the long-wavelength expan-
sion of the electrical multipole operator and its subsidiary
counterpart built following the concept in Ref. [7]. For the
first time, the vortical operator was constructed and related
to its toroidal and compression counterparts. The detailed
comparison of the modes and their operators was done. It was
explicitly shown that, while VM (CM) is vortical (irrotational)
by construction, the TM is of a mixed character. The vorticity
criteria from HD and arguments based on the decoupling to
the charge conservation [7] were inspected. It was shown
that the latter deviates from the HD definition and may lead
occasionally to misleading conclusions like, e.g., a vorticity of
the CM.

The electric dipole VM, TM, and CM were computed and
investigated in 208Pb within the self-consistent Skyrme RPA
approach. Unlike most of the previous studies, both convection
and magnetization (spin) parts of the nuclear current were
taken into account and both isoscalar (T = 0) and isovector
(T = 1) channels of the modes were analyzed. It was shown
that VM and CM have low-energy and high-energy branches
while TM mainly appears in the low-energy branch. The
CM strictly dominates in a high-energy branch. In the T = 0
channel, the VM and TM are almost completely determined
by the nuclear convection current while in the T = 1 channel,
their low-energy branches are strictly dominated by the spin
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current. This strong isospin effect is straightforwardly ex-
plained by low (high) values of T = 0 (T = 1) spin g factors,
which drastically change the ratio between the convective and
spin contributions of the current. The effect cannot appear
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FIG. 9. The same as in Fig. 7 but for the states ων = 7.1 MeV
(T = 0) and ων = 8.8 MeV (T = 1) with a maximal compression
strength in the low-energy branch.

in the CM since this irrotational mode has vanishing spin
contribution.

The collectivity was found strong for the high-energy VM
and CM and rather weak for the low-energy VM, TM, and
CM. In the latter case, the velocity fields of the modes are
rather involved. This is partly a consequence of the complex
structure of the RPA states mixing the collective with detailed
1ph contributions. This holds, in particular, for the vorticity,
which seems to be of both single-particle and collective
origin.

The VM, TM, and CM were shown to be closely related
and, at the same time, display considerable differences in their
detailed strength distribution. These modes seem to represent
one family with complementing aspects. It will be interesting
to analyze the results of our study more deeply and use them
to disentangle the modes in the (e, e′) and hadron reactions.
This is in our next plans.
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APPENDIX A: REMOVAL OF THE
CHARGE-CONSERVATION CONSTRAINT

In Sec. III A, the vortical operator M̂vor(Eλμ, k), com-
pletely unconstrained by the continuity equation, is built from
the M̂(Eλμ, k) operator by replacing the curl of the nuclear

current �∇ × �̂j nuc(�r) by the vortical quantity

�̂ωλ = [ �∇ × �̂j nuc(�r)]λ − i

λ
kc [ �∇ρ̂(�r) × �r]λ, (A1)

where the terms [. . .]λ assume λ components of the multipole
expansion of the values inside the brackets. Below we present
arguments that motivate Eq. (A1) and compare it with the
prescription in Ref. [7]. For simplicity, we consider only the
convection current and neglect isospin.

1. Simple arguments

Using the HD definition of the velocity field (3), we may
write the truly vortical quantity

ρ0(�r) �∇ × �vν(�r) = �∇ × δ �jν(�r) − �∇ρ0(�r) × �̂vν(�r). (A2)

Except for the second velocity-dependent term, the r.h.s. of
Eq. (A2) reminds the operator construction (A1) and thus may
be used for the justification of �̂ωλ as a vortical quantity.
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To make Eq. (A2) closer to Eq. (A1), it is worth expressing
�r in terms of the (global) velocity operator

�̂v = ˙̂�r = i

h̄
[Ĥ , �̂r] = ikc�̂r. (A3)

This suggests the replacement

�̂v → ikc�̂r, (A4)

in Eq. (A2) and thus casts Eq. (A2) to a form similar to
Eq. (A1) (up to the multiplier 1/λ). Note, however, that
the velocities in Eqs. (A2) and (A3) are not the same. The
replacement of the velocity field �vν(�r) by a global velocity
becomes strictly valid only in the sum-rule limit when all the
strength is concentrated in one collective state. It probably
remains acceptable for distributed spectra that often gather
around a strongly collective mode.

2. Correspondence of the recipes

It is also worth relating the recipe (10) for the transition
densities [7] with our recipe (15) and its analog (A1) for the
operators. As was mentioned in Sec. III A, both recipes serve to
build the vortical quantities, though by different ways. While
Eq. (10) excludes from the current the jλ λ−1(r) terms, the
recipe (15) leads to exact compensation of the lowest-order k

terms in the vortical operator.
One may show that the recipes (10) and (15) actually

correspond to each other. This may be done by treating (15) in
terms of the transition densities (6) and currents (7). Using the
relation between the density and current expansion multipoles

kcρλ(r) = −
√

λ

2λ + 1

〈
d

dr
− λ − 1

r

〉
jλλ−1(r)

+
√

λ + 1

2λ + 1

〈
d

dr
+ λ + 2

r

〉
jλλ+1(r), (A5)

one may show that (15) indeed leads to the unconstrained
vortical transition density (10). In this case, the second r.h.s.
term of Eq. (A1) has the form

ikc [ �∇δρf i(�r) × �r] =
∑
λμ

a
f i

λμSλλ(r) �Yλλμ(�̂r), (A6)

with the multipoles

Sλλ(r) =
√

λ(λ + 1)kcρλ(r). (A7)

Being scaled by 1/λ, these multipoles coincide with the
expansion coefficients of δ �Sf i(�r) in Eq. (9).

APPENDIX B: EXTRACTION OF SPURIOUS ADMIXTURES

The isoscalar electric dipole VM, TM, and CM may have
spurious admixtures related to the center-of-mass motion of
the nucleus. There are various methods to derive the center-
of-mass corrections (c.m.c.) (see, e.g., Refs. [4,15,55–57]).
Most of the methods neglect the velocity-dependent, spin-
dependent, and spin-orbit-dependent terms in the nuclear
interaction and assume a closure relation where all excitation is
contained in one single collective state. Hence the methods are

approximate. Nevertheless, being simple and convenient, they
are widely used in the Skyrme-Hartree-Fock calculations [15].
Below we use the method [56] to derive the c.m.c. for isoscalar
TM and CM. For the isoscalar VM, the c.m.c. is shown to
be zero.

Let us consider a system with the Hamiltonian Ĥ = T̂ + V̂

whose interaction V̂ does not depend on spin and velocities.
Then, in the isoscalar (T = 0) case, for any one-body external
field F̂ = ∑A

i f (�ri), where f (�ri) is an arbitrary function of
nucleon coordinates, one may write the sum rules [46]∑

ν

ων〈0|ρ̂(�r)|ν〉〈ν|F̂ |0〉 = − 1

2m
�∇ · [ρ0(�r) �∇f (�r)], (B1)

∑
ν

〈0| �̂j (�r)|ν〉〈ν|F̂ |0〉 = 1

2mi
ρ0(�r) �∇f (�r), (B2)

for the isoscalar transition density 〈0|ρ̂(�r)|ν〉 and current

〈0| �̂j (�r)|ν〉. The sum runs through the full set of the excitation
eigenstates |ν〉 (Ĥ |ν〉 = ων |ν〉) with the eigenvalues ων . Fur-
ther, ρ0(�r) = 〈0|∑A

i δ(�r − �ri)|0〉 is the nuclear ground-state
density and m is the nucleon mass.

If the external field mainly excites a single collective state ν̄,
then only the term (ν = ν̄) survives in Eqs. (B1) and (B2) and
the corresponding transition density and current are uniquely
specified through ρ0(�r) and f (�r) [46]

〈0|ρ̂(�r)|ν̄〉 = − 1

2m

1

ων̄〈ν̄|F̂ |0〉
�∇ · [ρ0(�r) �∇f (�r)], (B3)

〈0| �̂j (�r)|ν̄〉 = 1

2mi

1

〈ν̄|F̂ |0〉ρ0(�r) �∇f (�r). (B4)

Hence we get simple recipes for the transition densities and
currents

δρ(�r) ∝ �∇ · [ρ0(�r) �∇f (�r)], (B5)

δ �j (�r) ∝ ρ0(�r) �∇f (�r) ∝ ρ0(�r)�v(�r), (B6)

to be used in further c.m.c. derivation. Here Eq. (B6) actually
defines an irrotational flow with the velocity �v(�r) ∼ �∇f (�r).

A change of the expectation value 〈Ô〉 of any one-body
operator Ô = ∑A

i o(�ri), caused by an external field F̂ , is

δ〈Ô〉 =
∫

d3r δρ(�r) o(�r) (B7)

∝
∫

d3r o(�r) �∇ · [ρ0(�r) �∇f (�r)] (B8)

= −
∫

d3r ρ0(�r) �∇f (�r) · �∇o(�r) (B9)

∝ −
∫

d3r δ �j (�r) · �∇o(�r), (B10)

where we use the relations (B5) and (B6). Both δρ(�r) and δ �j (�r)
may be applied to determine δ〈Ô〉. These cases are suitable
for the modes determined by the density-dependent and
current-dependent operators, respectively. Note that Eq. (B10)
with δ �j (�r) is general and may be derived and used by itself,
regardless to the formalism in Eqs. (B1)–(B9) and character of
the flow. The quantity δ �j (�r) is then determined by Eq. (3) and,
unlike Eq. (B6), the velocity �v(�r) of the flow can be not only
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irrotational but also vortical or mixed. Altogether, the relations
(B7) through (B10) may be reduced to an expression

δ〈Ô〉 ≈
∫

d3r ρ0(�r) �v(�r) · �∇o(�r), (B11)

with �v(�r) covering both irrotational (B6) and more general
cases.

If 〈Ô〉 is invariant with respect to the field F̂ , then the
requirement δ〈Ô〉 = 0 is kept and Eq. (B11) gives∫

d3r ρ0(�r) �v(�r) · �∇o(�r) = 0. (B12)

For

o(�r) = rY ∗
1μ(�̂r), (B13)

the operator Ô = ∑A
i o(�ri) describes the c.m. coordinate and

Eq. (B12) means that this coordinate is not affected by the field
F̂ . By using

�∇o(�r) = �∇rY ∗
1μ(�̂r) =

√
3 �Y ∗

10μ(�̂r), (B14)

the condition (B12) is cast into∫
d3rρ0(�r) �v(�r) · �Y ∗

10μ(�̂r) = 0. (B15)

The condition (B15) may be applied to the density-
dependent CM operator M̂ ′

com(E1μ) by imposing the irro-
tational velocity

�vcom′(�r) = �∇fcom(�r) = �∇Y1μ(�̂r)(r3 − ηr), (B16)

where the second term is the actual c.m.c. with the coefficient
η to be determined from Eq. (B15). Then, assuming spherical
nuclei (ρ0(�r) = ρ0(r)) and using∫

d3r �Y ∗
λlμ(�̂r) · �Yλ′l′μ′(�̂r) = δll′δλλ′δμμ′, (B17)

we get

η = 5
3 〈r2〉0, (B18)

with

〈r2〉0 =
∫ ∞

0 r4ρ0(r)dr∫ ∞
0 r2ρ0(r)dr

, (B19)

and finally the expression (39) for M̂ ′
com(E1μ).

For the current-dependent VM, TM, and CM operators
(36)–(38), we put to Eq. (B15) the velocities

�vvor(�r) = r2 �Y12μ(�̂r) − η �Y10μ(�̂r), (B20)

�vtor(�r) =
√

2

5
r2 �Y12μ(�̂r) + �Y10μ(�̂r)(r2 − η), (B21)

�vcom(�r) =
√

2

5
r2 �Y12μ(�̂r) − �Y10μ(�̂r)(r2 − η), (B22)

where the second terms with η are the relevant c.m.c..
For the exception of �vcom(�r), these velocities are not reduced
to the gradient form. Actually, they are taken in the form
of the external fields involved in the operators (36)–(38) and
generating the corresponding modes. Such a presentation is
in accordance with the self-consistent treatment of nuclear

excitations [1], which is done here in terms of small variations
δ �j (�r) of the nuclear current.

By using Eqs. (B20)–(B22), the requirement (B15) gives

η = 0, (B23)

for VM and

η = 〈r2〉0, (B24)

for TM and CM. Thus we get the corrected expression (37)
and (38) for M̂tor(E1μ) and M̂com(E1μ). Note that vector
harmonics �Y12μ(�̂r) related to the vorticity do not contribute to
the c.m.c. This reflects the physical fact that vorticity, being
a curl flow, must be fully decoupled from the c.m. translation
motion. Hence the c.m.c. is zero for the VM. However, the TM
is not completely vortical and so its c.m.c. does not vanish.

Note that the above c.m.c. are approximate. Indeed, the
calculations give for the VM, TM, and CM responses two
broad structures, which actually do not meet the sum-rule
condition of excitation of a single collective state. Besides,
the prescription [46] uses the commutator [Ĥ , ρ̂] where Ĥ

is assumed not to include the terms with velocity, spin, and
spin-orbit dependence. However, the effect of spin-dependent
terms in the commutator is obviously zero. The momen-
tum (velocity)-dependent interaction does not matter for the
Galilean-invariant Skyrme functional (the most common case)
but may be important if this invariance is violated. The
spin-orbit interaction may affect the c.m.c.

APPENDIX C: NUCLEAR DENSITY AND
CURRENT OPERATORS

The density operator reads

ρ̂(�r) =
∑

q=n,p

e
q

eff

∑
kεq

[δ(�r − �rk)], (C1)

where e
q

eff are proton and neutron effective charges.
The operator of the full nuclear current consists of the

convective and magnetic (spin) parts [48]

�̂j nuc(�r) = �̂jc(�r) + �̂jm(�r) = eh̄

m

∑
q=n,p

[ �̂j
q

c (�r) + �̂j
q

m(�r)
]
, (C2)

where

�̂j
q

c (�r) = −ie
q

eff

∑
kεq

[δ(�r − �rk) �∇k + �∇kδ(�r − �rk)], (C3)

�̂j
q

m(�r) = g
q
s

2

∑
kεq

�∇ × �̂sqkδ(�r − �rk), (C4)

and �̂sq is the spin operator, μN is the nuclear magneton, g
q
s is

the spin g factor, k numerates the nucleons.
The T = 0 modes use the values

en
eff = e

p

eff = 1, gn,p
s (T = 0) = 1

2

(
gn

s + g
p
s

)
, (C5)

while the T = 1 modes employ

en
eff = −e

p

eff = −1, gn,p
s (T = 1) = 1

2

(
gn

s − g
p
s

)
. (C6)
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APPENDIX D: SRPA EQUATIONS AND
GENERATOR OPERATORS

The SRPA Hamiltonian is self-consistently derived [37,38]
from the functional

E = Ekin + ESk + Epair + ECoul, (D1)

involving kinetic-energy, Skyrme, pairing, and Coulomb
terms. The Skyrme functional ESk(ρ, τ, �J , �j, �s, �T ) depends
on time-even (nucleon ρ, kinetic energy τ , spin-orbit �J ) and
time-odd (current �j , spin �s, vector kinetic energy �T ) densities.
The Hamiltonian reads [37,38]

Ĥ = ĥHFB + V̂res, (D2)

where ĥHFB is the HFB mean field

ĥHFB =
∫

d3r
∑
α+

[
δE

δJα+ (�r)

]
Ĵα+ , (D3)

and V̂res is the separable residual interaction

V̂res = 1

2

K∑
k,k′=1

(κkk′X̂kX̂k′ + ηkk′ ŶkŶk′), (D4)

with one-body operators

X̂k = i

∫
d3rd3r ′ ∑

α+,α′+

δ2E
δJα+δJα′+

〈[P̂k, Ĵα+ ]〉Ĵα′+ ,

Ŷk = i

∫ ∫
d3rd3r ′ ∑

α−,α′−

δ2E
δJα−δJα′−

〈[Q̂k, Ĵα− ]〉Ĵα′− ,

and inverse strength matrices

κ−1
kk′ = −i〈[P̂k, X̂k′ ]〉, η−1

kk′ = −i〈[Q̂k, Ŷk′]〉. (D5)

Here α+and α− enumerate time-even Jα+ and time-odd
Jα−densities, respectively; Ĵα± are the density operators; Q̂k

and P̂k = i[Ĥ , Q̂k] are time-even and time-odd hermitian
generator operators. The operators of the residual interaction
X̂k and Ŷk are time-even and time-odd by construction,
respectively.

The single-particle Hamiltonian ĥHFB is determined by
the first functional derivatives of the initial functional (D1)
while operators X̂k and Ŷk are driven by the second functional
derivatives of the same functional. The residual interaction
includes all the possible terms arising from Eq. (D1). Hence
the model is fully self-consistent. The number K of separable
terms in Eq. (D4) is determined by the number of the generator
(input) operators Q̂k . Usually we have K = 3–5. This results in
a low rank of the RPA matrix and so in an efficient calculation
scheme.

The SRPA formalism itself does not prescribe the form
of the generators Q̂k and P̂k . At the same time, their choice
is important for a fast convergence of the factorized residual
interaction V̂res to the true one with a minimal number of
separable terms. The set of generating operators is introduced
so as to initiate in the nucleus all the relevant kinds of
motion for the considered modes. For time-even modes, the
initial generators Q̂k are chosen first and then their time-odd
counterparts are determined from P̂k = i[Ĥ , Q̂k]. Instead for
time-odd modes, the initial generators P̂k are inserted and then
their time-even counterparts Q̂k = i[Ĥ , P̂k] are determined.
The generators may be arbitrarily and separately scaled, which
does not influence the results. The coupling of the modes (e.g.,
of electric and magnetic ones in deformed nuclei) may request
both time-even and time-odd generators in the set. The optimal
sets of the generators were developed for E1(T = 1) [37,38]
and spin-flip M1 [43–45] GR.

Here we use the minimal sets of the generators suitable for
the description of VM, TM, and CM. The generators cover the
main parts of the corresponding operators and take into account
the coupling between the modes. For the VM, they are

P̂1 =
∫

d3r �̂j c(�r)r2 �Y12μ(�̂r),

P̂2 =
∫

d3r �̂jm(�r)r2 �Y12μ(�̂r), (D6)

Q̂3 =
∫

d3r ρ(�r)
[
r3 − 5

3 〈r2〉0r
]
Y1μ(�̂r),

i.e., cover the time-odd parts of the vortical operator with
the convection and magnetization currents as well as the
time-even compression operator with the c.m.c. (to prevent
generation of the spurious motion).

For the TM, the generators read

P̂1 =
∫

d3r �̂jc(�r)

[
r2

√
2

5
�Y12μ(�̂r) + �Y10μ(�̂r)(r2 − 〈r2〉0)

]
,

P̂2 =
∫

d3r �̂jm(�r)

[
r2

√
2

5
�Y12μ(�̂r) + �Y10μ(�̂r)(r2 − 〈r2〉0)

]
,

Q̂3 =
∫

d3rρ(�r)

[
r3 − 5

3
〈r2〉0r

]
Y1μ(�̂r), (D7)

(i.e., cover the time-odd parts of the toroidal operator with the
convection and magnetization currents as well as the time-even
compression operator). The TM needs the c.m.c. and so now
this correction is included to all the generators.

Finally the set for the CM includes the compression
operator Q̂3 itself and the convective toroidal generator P̂1. The

generators with the magnetic current �̂jm(�r) are not involved
since their effect on the CM is zero.
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