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Proton-proton bremsstrahlung: Consequences of different on-shell-point conditions
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Background: Proton-proton bremsstrahlung (ppγ ) is investigated both theoretically and experimentally. The
ppγ amplitudes can be classified according to the number and location of on-shell points at which they are
evaluated. Quantitative understanding of the effect on the ppγ cross section of using different on-shell-point
conditions is lacking, but it is essential to identifying the photon emission mechanism governing the ppγ

process. Method: Four different ppγ amplitudes, which include four-on-shell-point amplitudes and one-on-
shell-point amplitude, are generated from a realistic one-boson-exchange (ROBE) model for pp scattering.
These ROBE amplitudes are used to investigate the consequence of using different on-shell-point conditions in
calculating the ppγ cross sections. Purpose: We verify the validity of the ROBE ppγ amplitudes. We explore
similarities between the four-on-shell-point ROBE and two-u-two-t special (TuTts) soft-photon ppγ amplitudes
and important differences with the one-on-shell-point ROBE and Low ppγ amplitudes. We demonstrate that
the precision Kernfysisch Versneller Instituut (KVI) data can only be described by the four-on-shell-point
(ROBE or TuTts) amplitude. We use the ROBE four-on-shell-point amplitude and one-on-shell-point amplitude
to investigate systematically the effect of using different on-shell-point conditions to calculate the ppγ cross
section. Furthermore, we identify a general principle that governs the process. This general principle is also
applicable to other bremsstrahlung processes involving the scattering of two identical nucleons. Results: (i) The
four-on-shell-point ROBE (or TuTts) amplitude describes the high-precision KVI data much better than does the
one-on-shell-point ROBE (or Low) amplitude. Although the contribution from the anomalous magnetic moment
of the proton is very significant, it does not completely dominate the KVI ppγ cross sections. (ii) The four-
on-shell-point ROBE (or TuTts) amplitude describes the TRIUMF data better than does the one-on-shell-point
ROBE (or Low) amplitude. (iii) The effect on the ppγ cross section of using different on-shell-point conditions
is significant in the hard-photon region, i.e., for small proton scattering angles θ (=θ3 = θ4, symmetric scattering
angles) far from the elastic limit (θ → 45◦); in contrast, the effect becomes insignificant in the vicinity of the
elastic limit. Near the limit as θ tends to 45◦ (or as the photon energy K approaches zero), the four-on-shell-point
and one-on-shell-point amplitudes approach one another, a general principle applicable to all bremsstrahlung
processes because only kinematics is involved. Conclusion: The four-on-shell-point ROBE amplitude provides a
quantitative description of ppγ cross sections. The anomalous magnetic moment is an important component of the
photon emission mechanism. The four-on-shell-point property of the full ROBE amplitude is essential to properly
describing the complete range of the precision KVI data and the TRIUMF data, although the one-on-shell-point
ROBE amplitude is adequate in the region near the elastic limit.
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I. INTRODUCTION

Any valid nuclear bremsstrahlung amplitude must be
gauge invariant and consistent with the soft-photon theorem
[1,2]. In addition to these two fundamental requirements,
the amplitudes for certain bremsstrahlung processes must
satisfy additional theoretical constraints. For example, the
bremsstrahlung amplitudes that involve two identical fermions
(spin- 1

2 particles) must also satisfy the Pauli principle. Fur-
thermore, because the soft-photon theorem does not specify

the on-shell points at which the bremsstrahlung amplitude
can be evaluated (see the appendix of Ref. [3] for a detailed
discussion), different bremsstrahlung amplitudes (evaluated at
different on-shell points) can be constructed. As discussed in
Sec. II, three different on-shell-point conditions can be defined
for a given bremsstrahlung process. This implies that at least
three different bremsstrahlung amplitudes can be constructed
for the process. This theoretical ambiguity cannot be ignored. It
is essential to investigate the effect on the bremsstrahlung cross
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section of using different on-shell-point conditions, because
the details will enhance our understanding of the photon
emission mechanism governing the bremsstrahlung process.

The proton-proton bremsstrahlung (ppγ ) process,

p
(
p

μ

1

) + p
(
p

μ

2

) → p
(
p

μ

3

) + p
(
p

μ

4

) + γ (Kμ), (1)

has been investigated both theoretically and experimentally.
Precise experimental data are available in a wide energy
range (see Ref. [3] for an extensive list of references).
These data, especially the high-precision ppγ data from
the Kernfysisch Versneller Instituut (KVI) experiment [4–7]
and the TRIUMF ppγ data at 280 MeV [8], were used to
explore the validity of various ppγ amplitudes. We identified
optimum ppγ amplitudes that describe the measured ppγ

data. In a recent investigation [9,10], two relativistic ampli-
tudes, Low’s amplitude MLow

μ [11] and a two-u-two-t special
(TuTts) amplitude MTuTts

μ [12,13], were used to compare
with the KVI data. These amplitudes were also used to
study the effect of nucleon anomalous magnetic moments
in nucleon-nucleon bremsstrahlung (NNγ , including ppγ ,
npγ , and nnγ ). Both amplitudes, MTuTts

μ and MLow
μ , are

gauge invariant and obey the soft-photon theorem. How-
ever, MTuTts

μ and MLow
μ differ significantly: The amplitude

MTuTts
μ ≡ MTuTts

μ (�μ; u41, u32, t31, t42) [tij = (pi − pj )2 (ij =
31, 42) and uik = (pi − pk)2 (ik = 41, 32) are Mandelstam
variables] is evaluated at four different on-shell points, whereas
the amplitude MLow

μ ≡ MLow
μ (�μ; ū, t̄) [t̄ = (t31 + t42)/2 and

ū = (u41 + u32)/2] is evaluated at a single, unique on-shell
point. The results obtained from Refs. [9,10] demonstrate
that the KVI cross-section data can only be described by
the four-on-shell-point amplitude MTuTts

μ . This illustrates that
the effect of evaluating the ppγ cross section at different
on-shell points is significant. The results from Ref. [10] also
reveal that in contrast the effect in the npγ cross section
is insignificant, because the leading-term cancellation in the
identical-particle ppγ process, which makes the anomalous
magnetic moment contribution significant, does not occur in
the nonidentical-particle npγ process.

We investigate here the effect of using different on-
shell-point conditions in evaluating the ppγ cross section.
To demonstrate that this should be independent of the
bremsstrahlung approach used, we employ an alternative
realistic one-boson-exchange (ROBE) amplitude in this work.
Our investigation using the ROBE approach confirms that the
four-on-shell-point amplitude is required to describe those
KVI data discussed in Refs. [9,10]. Furthermore, on the
basis of our numerical calculations as well as an analytic
proof, we establish a general principle regarding the effect of
different on-shell-point conditions on the ppγ cross section
that in the elastic limit the four-on-shell-point amplitude and
one-on-shell-point amplitude become the same. This is an
important characteristic of the fundamental photon emission
mechanism governing the ppγ process. Even though the
ppγ process was used to investigate the effect of different
on-shell-point conditions, the results of this investigation can
also be applied to other bremsstrahlung processes that involve
the scattering of two identical nucleons, such as the nnγ , ppνν̄,
and nnνν̄ processes.

This paper is organized as follows. In Sec. II we define
three different sets of on-shell points. In Sec. III we define
four different ROBE ppγ amplitudes used to calculate the ppγ

cross sections. In Sec. IV we compare the calculated ppγ cross
sections using the ROBE amplitudes with (i) the KVI data and
the TRIUMF data and (ii) the ppγ cross sections calculated
using the amplitudes MTuTts

μ and MLow
μ . In Sec. V we define the

ratio R
Ei

ψγ
for a given incident proton energy Ei , the value of

the cross section at ψγ calculated using the four-on-shell-point
amplitude divided by the value of the cross section at ψγ

calculated from the one-on-shell-point amplitude. This ratio
can be written as a function of the proton scattering angle θ =
θ3 = θ4 or as a function of the photon energy K , i.e., REi

ψγ
(θ ) or

R
Ei

ψγ
(K). We utilize both R

Ei

ψγ
(θ ) and R

Ei

ψγ
(K) to investigate the

result of using different on-shell-point conditions on the ppγ

cross section. Our conclusions are summarized in Sec. VI.
In the Appendix, we prove that limK→0 R

Ei

ψγ
(K) = 1. Thus,

we demonstrate that limθ→45◦ R
Ei

ψγ
(θ ) = limK→0 R

Ei

ψγ
(K) = 1,

independent of Ei and ψγ .

II. THREE SETS OF ON-SHELL POINTS

A. Mandelstam variables

The following Mandelstam variables can be used to define
three sets of on-shell points for the ppγ process, Eq. (1):

t31 = (p3 − p1)2 = t13,

t42 = (p4 − p2)2 = t24,

u41 = (p4 − p1)2 = u14,

u32 = (p3 − p2)2 = u23,

si = (p1 + p2)2,

sf = (p3 + p4)2,

t̄ = 1
2 (t31 + t42) = 1

2 (t13 + t24), (2)

ū = 1
2 (u41 + u32) = 1

2 (u14 + u23),

s̄ = 1
2 (si + sf ),

t̃ = lim
K→0

t̄ = lim
K→0

t31 = lim
K→0

t42,

ũ = lim
K→0

ū = lim
K→0

u41 = lim
K→0

u32,

s̃ = lim
K→0

s̄ = lim
K→0

sf .

B. The first set: The four on-shell points

The ppγ process involves four proton legs. Because a
photon can be emitted from any one of these four legs, the
following four independent ppγ amplitudes can be defined.

(i) If the photon is emitted from the p1 leg, the
bremsstrahlung amplitude MP1

μ (�μ; u32, t42) evaluated
at the on-shell point (u32, t42) can be defined. This
on-shell point satisfies the on-shell point condition

s22 + u32 + t42 = 4m2, (3a)

where m is the proton mass and

s22 = sf + 2p1 · K. (4a)
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(ii) If the photon is emitted from the p2 leg, the
bremsstrahlung amplitude MP2

μ (�μ; u41, t31) evaluated
at the on-shell point (u41, t31) can be defined. This
on-shell point satisfies the on-shell point condition

s11 + u41 + t31 = 4m2, (3b)

where m is the proton mass and

s11 = sf + 2p2 · K. (4b)

(iii) If the photon is emitted from the p3 leg, the
bremsstrahlung amplitude MP3

μ (�μ; u41, t42) evaluated
at the on-shell point (u41, t42) can be defined. This
on-shell point satisfies the on-shell point condition

s12 + u41 + t42 = 4m2, (3c)

where m is the proton mass and

s12 = si − 2p3 · K. (4c)

(iv) If the photon is emitted from the p4 leg, the
bremsstrahlung amplitude MP4

μ (�μ; u32, t31) evaluated
at the on-shell point (u32, t31) can be defined. This
on-shell point satisfies the on-shell point condition

s21 + u32 + t31 = 4m2, (3d)

where m is the proton mass and

s21 = si − 2p4 · K. (4d)

The total emission process is the sum of the emission
processes from the four proton legs. Therefore, the total
bremsstrahlung amplitude, which is the TuTts type, can be
written as

MTuTts
μ (�μ; u41, u32, t31, t42)

= MP1
μ (�μ; u32, t42) + MP2

μ (�μ; u41, t31)

+MP3
μ (�μ; u41, t42) + MP4

μ (�μ; u32, t31). (5)

The amplitude MTuTts
μ (�μ; u41, u32, t31, t42) is evaluated at

four different on-shell points [(u32, t42), (u41, t31), (u41, t42),
(u32, t31)] whose respective conditions are given by Eqs. (3a),
(3b), (3c), and (3d). We emphasize that the choice of
the four separate on-shell points at which to evaluate the
amplitude MTuTts

μ (�μ; u41, u32, t31, t42) is not only natural but
also physical. Note that we can also write

MP1
μ (�μ; u32, t42) = MP1

μ (�μ; s22, t42),

MP2
μ (�μ; u41, t31) = MP2

μ (�μ; s11, t31),
(6)

MP3
μ (�μ; u41, t42) = MP3

μ (�μ; s12, t42),

MP4
μ (�μ; u32, t31) = MP4

μ (�μ; s21, t31),

C. The second set: The one on-shell point (ū, t̄)

If we add all four conditions given by Eqs. (3a)–(3d), we
find

s̄ + ū + t̄ = 4m2 + 1
2 (p3 · K + p4 · K − p1 · K − p2 · K).

(7)

Using the energy-momentum conservation condition

p
μ

1 + p
μ

2 = p
μ

3 + p
μ

4 + Kμ, (8)

and the massless photon condition KμKμ = 0, we can show
that

p4 · K + p3 · K − p1 · K − p2 · K = 0. (9)

Thus, we can define a single on-shell point (ū, t̄) [or (s̄, t̄)]
that satisfies the on-shell point condition

s̄ + ū + t̄ = 4m2. (10)

It should be emphasized that the Mandelstam variables s̄,
ū, and t̄ are all functions of the photon energy K �= 0. This
implies that the on-shell point (ū, t̄) is a function of K �= 0.
The bremsstrahlung amplitude Mμ(�μ; ū, t̄) is evaluated at the
on-shell point (ū, t̄).

D. The third set: The one on-shell point at the elastic limit (ũ, t̃)

In the elastic limit, the photon energy approaches
zero (K → 0), and all on-shell points [(u32, t42), (u41, t31),
(u41, t42), (u32, t31), (ū, t̄ )] reduce to the unique on-shell point
(ũ, t̃) [or (s̃, t̃)], which satisfies the on-shell point condition

s̃ + ũ + t̃ = 4m2. (11)

Thus, the bremsstrahlung amplitude Mμ(�μ; ũ, t̃) is eval-
uated at the on-shell point (ũ, t̃). The on-shell point (ũ, t̃) is
exactly the same as the on-shell point used in the elastic (nonra-
diative) amplitude. The most important difference between the
on-shell point (ū, t̄ ) [or (s̄, t̄ )] defined in Sec. II C and the on-
shell point (ũ, t̃) [or (s̃, t̃)] defined here is that the point (ū, t̄ )
is a function of K , whereas the point (ũ, t̃) is independent of
K . Moreover, if both bremsstrahlung amplitudes Mμ(�μ; ū, t̄ )
and Mμ(�μ; ũ, t̃) are expanded in powers of K , we obtain two
different soft-photon expansions:

Mμ(�μ; ū, t̄ ) = A(ū, t̄)

K
+ B(ū, t̄) + C(ū, t̄)K + · · · (12)

and

Mμ(�μ; ũ, t̃) = A(ũ, t̃)

K
+ B(ũ, t̃) + C(ũ, t̃)K + · · · . (13)

All coefficients [A(ū, t̄), B(ū, t̄), C(ū, t̄), . . . ] in the first
soft-photon expansion given by Eq. (12) are functions of
K . However, all coefficients [A(ũ, t̃), B(ũ, t̃), C(ũ, t̃),. . .]
in the second soft-photon expansion given by Eq. (13) are
independent of K . This third set of on-shell points plays an
important role in the Appendix.

III. ROBE ppγ AMPLITUDE

The ROBE approach is based on Horowitz’s one-boson-
exchange (OBE) model for the two-nucleon scattering am-
plitude [14]. The Horowitz model, which is an alternative
representation of the two-nucleon elastic amplitude, involves
a set of OBE parameters determined by fitting directly to the
Arndt amplitudes without iteration of the meson exchanges.
Thus, the main difference between the standard Goldberger-
Grisaru-MacDowell-Wong (GGMW) amplitude [15] and the
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Horowitz OBE amplitude is that the GGMW amplitude is
expressed in terms of a set of real phase shifts, whereas the
Horowitz amplitude is expressed in terms of a set of complex
OBE parameters. The GGMW amplitude has been used as
input for ppγ calculations using the amplitudes MTuTts

μ and
MLow

μ in the soft-photon approach [3,9,10,12,13,16].
We use the following four different ROBE ppγ amplitudes

to calculate ppγ cross sections:

(i) The detailed expression for the original ROBE ppγ

amplitude MPS
μ (�μ) can be found in Ref. [17]. This

amplitude is a pseudoscalar (PS) amplitude with the
pion-nucleon coupling treated as a PS interaction, and
the expression for �μ can be written as

�μ = γμ − iκp

2m
σμνK

ν, (14)

where m, κp, and Kν are the proton mass, the proton
anomalous magnetic moment, and the photon four-
momentum, respectively. (The Bjorken-Drell conven-
tion for the metric and the γ matrices is used in our
work.) This MPS

μ (�μ) is used for our four-on-shell-point
amplitude MROBE

μ (�μ; u41, u32, t31, t42),

MROBE
μ (�μ; u41, u32, t31, t42) ≡ MPS

μ (�μ). (15)

The amplitude MROBE
μ (�μ; u41, u32, t31, t42) is evalu-

ated at the four different on-shell points defined in
Sec. II.

(ii) The one-on-shell-point amplitude is MROBE
μ (�μ; ū, t̄),

which is obtained from the amplitude
MROBE

μ (�μ; u41, u32, t31, t42) [Eq. (15)] by changing
the different t’s (t31 and t42) to t̄ = (t31 + t42)/2 and
the different u’s (u41 and u32) to ū = (u41 + u32)/2,

MROBE
μ (�μ; ū, t̄)

≡ MROBE
μ (�μ; u41 → ū, u32 → ū, t31 → t̄ , t42 → t̄).

(16)

Thus, the amplitude MROBE
μ (�μ; ū, t̄) is evaluated at one

on-shell-point (ū, t̄). Because the derivation of the am-
plitude MROBE

μ (�μ; ū, t̄) differs from the derivation of
the Low amplitude MLow

μ (�μ; ū, t̄), the two amplitudes
are not the same and may predict somewhat different
ppγ cross sections.

(iii) We can define an amplitude M̄ROBE
μ (κp = 0), which

does not involve the κp contribution, by setting �μ =
(�μ)κp=0 = γμ, such that

M̄ROBE
μ (κp = 0) ≡ MROBE

μ (�μ = γμ; u41, u32, t31, t42).

(17)

(iv) We can define an amplitude M̄ROBE
μ (κp alone), which

involves the contribution from κp only, by setting �μ =
− iκp

2m
σμνK

ν , such that

M̄ROBE
μ (κp alone)

≡ M̄ROBE
μ

(
�μ = − iκp

2m
σμνK

μ; u41, u32, t31, t42

)
.

(18)

All of these four amplitudes [MROBE
μ (�μ; u41, u32, t31, t42),

M̄ROBE
μ (�μ; ū, t̄), M̄ROBE

μ (κp = 0), M̄ROBE
μ (κp alone)] are

gauge invariant, and they obey the soft-photon theorem.
Because they are either defined or derived from the original
pseudoscalar amplitude MPS

μ (�μ), they are all pseudoscalar
amplitudes. The reasons for using the amplitude MPS

μ (�μ)
in this investigation are the following: (i) As shown in
Ref. [18], the PS amplitude MPS

μ (�μ) and the pseudovector
(PV) amplitude MPV

μ (�μ) predict quantitatively similar ppγ

cross sections at 190 MeV. Most of these predicted cross
sections are in excellent agreement with the high-precision
KVI data. In other words, the precise KVI cross-section data
cannot be used to differentiate between the PS and PV ppγ

amplitudes. (ii) As shown in Figs. 1–5, the amplitude MPS
μ (�μ)

and the TuTts soft-photon amplitude MTuTts
μ have very similar

predictive power in the kinematic region investigated. This fact
provides the best verification of the validity of the amplitude
MPS

μ (�μ), because the amplitude MTuTts
μ has already been

thoroughly tested and its validity in describing existing data
has been well established. (iii) Because the amplitude MTuTts

μ

is pseudoscalar in nature, it is more meaningful to compare
the amplitude MPS

μ (�μ) with the amplitude MTuTts
μ .

IV. ppγ CROSS SECTION AND COMPARISON BETWEEN
THEORY AND EXPERIMENT

All four ppγ amplitudes [MROBE
μ (�μ; u41, u32, t31, t42),

MROBE
μ (�μ; ū, t̄), M̄ROBE

μ (κp = 0), M̄ROBE
μ (κp alone)] were

used to calculate ppγ cross sections d3σ/.d	3d	4dψγ as
functions of the photon angle ψγ at 190 and 280 MeV. Selected

0 30 60 90 120 150 180
0.0

0.5

1.0

1.5

2.0

ψγ (deg)

d
σ3  / 

dΩ
3 

 d
Ω

   
   

   
   

   
   

   
4 

 d
ψ γ (

μb
/s

r2 ra
d

)

ppγ 190 MeV (8o, 16o)

FIG. 1. Coplanar ppγ cross sections as a function of
the photon angle ψγ at 190 MeV for the proton scattering
angles (θ3, θ4) = (8◦, 16◦). The solid, short-dashed, dotted,
circled, long-dashed, and dot-dashed curves are calculated using
amplitudes MROBE

μ (�μ; u41, u32, t31, t42), MTuTts
μ (�μ; u41, u32, t31, t42),

MLow
μ (�μ; ū, t̄), MROBE

μ (�μ; ū, t̄), M̄ROBE
μ (κp = 0), and

M̄ROBE
μ (κp alone), respectively. The experimental data are from

Refs. [4–7].
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0 30 60 90 120 150 180
0

0.5

1

1.5

2

ψγ (deg)

d
σ3  / 

dΩ
3d

Ω
4d

ψ γ (
μb

/s
r2 ra

d
)

ppγ 190 MeV (8o, 19o)

FIG. 2. The same as Fig. 1, but for the proton scattering angles
(θ3, θ4) = (8◦, 19◦).

results are exhibited in five figures. Figures 1, 2, and 3 show
calculated cross sections at 190 MeV. Figures 4 and 5 display
calculated cross sections at 280 MeV. The scattering angles
(θ3, θ4) are (8◦, 16◦) for Fig. 1, (8◦, 19◦) for Fig. 2, (16◦, 19◦)
for Fig. 3, (12◦, 12.4◦) for Fig. 4, and (28◦, 12.4◦) for Fig. 5.
The calculated cross sections at 190 MeV are compared with
the KVI data [4–7], whereas the calculated cross sections at
280 MeV are compared with the TRIUMF data [8]. To demon-
strate that some important features observed in Refs. [9,10]
(based on calculations using the ppγ TuTts amplitude and
the Low amplitude) can also be found in our ROBE calcu-
lations using the amplitudes MROBE

μ (�μ; u41, u32, t31, t42) and
MROBE

μ (�μ; ū, t̄), we include the two additional calculations
using the amplitude MTuTts

μ (�μ; u41, u32, t31, t42) and the Low
amplitude MLow

μ (�μ; ū, t̄) in all five figures. Thus, there are
six different ppγ curves in each of the five figures.

0 30 60 90 120 150 180
0

0.5

1

1.5

2

ψγ (deg)

d
σ3  / 

dΩ
3d

Ω
4d

ψ γ (
μb

/s
r2 ra

d
)

ppγ 190 MeV (16o
, 19o )

FIG. 3. The same as Fig. 1, but for the proton scattering angles
(θ3, θ4) = (16◦, 19◦).

0 30 60 90 120 150 180
0

0.5

1

1.5

2

2.5

3

ψγ (deg)

d
σ3  / 

dΩ
3d

Ω
4d

ψ γ (
μb

/s
r2 ra

d
)

ppγ 280 MeV (12o, 12.4o )

FIG. 4. The same as Fig. 1, but at 280 MeV for the proton
scattering angles (θ3, θ4) = (12◦, 12.4◦), and with experimental data
from Ref. [8].

In each figure, the solid curve corresponds to the
ROBE amplitude MROBE

μ (�μ; u41, u32, t31, t42). The circled
curve corresponds to the ROBE amplitude MROBE

μ (�μ; ū, t̄).
The long-dashed curve corresponds to the ROBE am-
plitude M̄ROBE

μ (κp = 0). The dot-dashed curve corre-
sponds to the ROBE amplitude M̄ROBE

μ (κp alone). The
short-dashed curve corresponds to the TuTts amplitude
MTuTts

μ (�μ; u41, u32, t31, t42). The dotted curve corresponds to
the Low amplitude MLow

μ . The TuTts (short-dashed) curves
and the Low (dotted) curves are from Ref. [10]. Note that the
complete expression for Low’s ppγ amplitude, which was first
derived by Nyman [11] using Low’s prescription [1], can be
found in Ref. [10].

0 30 60 90 120 150 180
0

0.5

1

1.5

2

2.5

ψγ (deg)

d
σ3  / 

dΩ
3d

Ω
4d

ψ γ (
μb

/s
r2 ra

d
)

ppγ 280 MeV (28o, 12.4o )

FIG. 5. The same as Fig. 1, but at 280 MeV for the proton
scattering angles (θ3, θ4) = (28◦, 12.4◦), and with experimental data
from Ref. [8].
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On the basis of the theoretical calculations and experimental
measurements illustrated in Figs. 1–5, we summarize the
following significant features:

(i) The solid curves are consistently in close agree-
ment with the short-dashed curves. More exam-
ples of such an agreement at 190 MeV can be
found in Ref. [18]. This strongly suggests that
the two amplitudes, MROBE

μ (�μ; u41, u32, t31, t42) and
MTuTts

μ (�μ; u41, u32, t31, t42), have very similar pre-
dictive power in the kinematic region investigated
(190–280 MeV). Furthermore, these two calcula-
tions are in much better agreement with the KVI
and TRIUMF data than are the dotted and cir-
cled curves. Thus, the MROBE

μ (�μ; u41, u32, t31, t42)
and MTuTts

μ (�μ; u41, u32, t31, t42) amplitudes, which are
four-on-shell-point amplitudes, describe the KVI and
TRIUMF data much better than do the MLow

μ (�μ; ū, t̄)
and MROBE

μ (�μ; ū, t̄) amplitudes, which are one-on-
shell-point amplitudes. As discussed in Ref. [9], this is
because the four-on-shell-point models retain almost all
of the important contributions from the κp-dependent
terms. We emphasize that even though the two differ-
ent one-on-shell-point amplitudes, MLow

μ (�μ; ū, t̄) and
MROBE

μ (�μ; ū, t̄), can be defined, neither of them can
be used to describe the experimental data shown in the
five figures.

(ii) When we compare the long-dashed curves and the
dot-dashed curves with the KVI and TRIUMF data,
we see that neither the amplitude M̄ROBE

μ (κp = 0)
nor the amplitude M̄ROBE

μ (κp alone) satisfactorily de-
scribe the data. That is, neither photon emission
from charge scattering nor photon emission from
magnetic moment scattering is dominant in the ppγ

process.
(iii) Generally, the contribution from κp was investigated by

comparing the solid (or short-dashed) curve with the
long-dashed curve. At a given angle ψγ , the difference
in cross section between the solid (or short-dashed)
curve and the long-dashed curve provides an estimate
of the κp contribution. A large difference means the κp

contribution is significant, whereas a small difference
is interpreted to mean an insignificant contribution.
Using the size difference found in Figs. 1–5 as an
example, the κp contribution is quite significant in this
case, but nevertheless it does not completely dominate
the cross section. To examine to what degree it can
be said that the κp contribution dominates the ppγ

cross section, we must also examine the dot-dashed
curve calculated using the amplitude M̄ROBE

μ (κp alone).
If the contribution from κp completely dominates
the cross section at a given ψγ , it must satisfy two
conditions: (i) the long-dashed curve at ψγ must
be nearly zero and (ii) the dot-dashed curve at ψγ

must be very close to the solid curve. On the basis
of these two requirements, we conclude that the
κp contribution completely dominates the ppγ cross
sections (shown in Figs. 1–5) only in the vicinity of
ψγ = 75◦.

V. THE EFFECT OF DIFFERENT ON-SHELL-POINT
CONDITIONS ON THE ppγ CROSS SECTION

In Refs. [9,10] it was established that the four-on-shell-
point TuTts amplitude and the one-on-shell-point Low am-
plitude led to significantly different results corresponding
to the 190-MeV KVI data. Here we use the ROBE am-
plitudes to investigate the effect on the ppγ cross section
of using different on-shell-point conditions. Using a differ-
ent approach allows us to demonstrate that the effect is
independent of the bremsstrahlung approach used for the
investigation. Furthermore, we search for general principles
that govern the effect of different on-shell-point conditions
on the ppγ cross section. Such general principles are
applicable to other bremsstrahlung processes involving the
scattering of two identical nucleons (such as nnγ , ppνν̄,
and nnνν̄). The amplitude MROBE

μ (�μ; u41, u32, t31, t42) given
by Eq. (15) and the amplitude MROBE

μ (�μ; ū, t̄) given by
Eq. (16) are used as the four-on-shell-point amplitude and the
one-on-shell-point amplitude, respectively, in our investiga-
tion. Both MROBE

μ (�μ; u41, u32, t31, t42) and MROBE
μ (�μ; ū, t̄)

are gauge-invariant amplitudes. These two amplitudes were
used to calculate ppγ cross sections as a function of
ψγ at several proton incident energies Ei for various
symmetric proton scattering angles θ = θ3 = θ4. Selected
ppγ cross-section results are shown in Fig. 6(a) (at Ei =
50 MeV for θ = 10◦, 40◦, 42◦, 43◦) and Fig. 7(a) (at Ei =
190 MeV for θ = 10◦, 40◦, 42◦, 43◦). In both figures, the solid
curves are calculated using the four-on-shell-point amplitude
MROBE

μ (�μ; u41, u32, t31, t42) and the dashed curves are calcu-
lated using the one-on-shell-point amplitude MROBE

μ (�μ; ū, t̄).
The effect on the ppγ cross section of using the two different
on-shell-point conditions can be measured by the ratio R

Ei

ψγ
(θ )

as a function of the proton scattering angle θ = θ3 = θ4. For
a given incident proton energy Ei and the angle θ , as shown
in Figs. 6(a) and 7(a), both the solid curve and the dashed
curve can be calculated as a function of ψγ . The ratio R

Ei

ψγ
(θ )

is defined as

R
Ei

ψγ
(θ ) =

(
value of cross section at ψγ calculated
from the four-on-shell-point amplitude

)
(

value of cross section at ψγ calculated
from the one-on-shell-point amplitude

) .

(19)

To demonstrate that the ratio R
Ei

ψγ
(θ ) depends also on the

photon energy K , we calculate K as a function of ψγ , K(ψγ ),
for two cases: (1) Figure 6(b) shows the results for K(ψγ ) at
Ei = 50 MeV for θ = 10◦, 40◦, 42◦, and 43◦. These results,
combined with those from Fig. 6(a), determine the values
of the ratio R

Ei

ψγ
(θ ) and their corresponding values of K at

any ψγ angle. (2) Figure 7(b) shows the results for K(ψγ )
at Ei = 190MeV for θ = 10◦, 40◦, 42◦, and 43◦. Combining
Fig. 7(b) with Fig. 7(a), the values of the ratio R

Ei

ψγ
(θ ) and their

corresponding values of K at any ψγ angle can be determined.
The following are important features:

(i) As discussed regarding Figs 1–5, the two four-
on-shell-point amplitudes MROBE

μ (�μ; u41, u32, t31, t42)
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FIG. 6. (a) Coplanar ppγ cross sections as a function of
ψγ at 50 MeV for the proton scattering angles (θ3, θ4) = (10◦, 10◦),
(40◦, 40◦), (42◦, 42◦), and (43◦, 43◦). All solid curves are calculated
using the four-on-shell-point amplitude MROBE

μ (�μ; u41, u32, t31, t42),
while all dashed curves are calculated using the one-on-shell-point
amplitude MROBE

μ (�μ; ū, t̄). (b) The photon energy K as a function
of ψγ at 50 MeVfor the proton scattering angles (θ3, θ4) = (10◦, 10◦),
(40◦, 40◦), (42◦, 42◦), and (43◦, 43◦).

and MTuTts
μ provide similar predictive power in the

kinematic region investigated, and they can be used
to describe both the KVI and the TRIUMF data.
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FIG. 7. (a) The same as Fig. 6(a), but for the incident energy
190 MeV. (b) The same as Fig. 6(b), but for the incident energy
190 MeV.

(ii) The different on-shell-point conditions affect the ppγ

cross section sensitively as a function of the scattering
angle θ . In the range 0 � θ < 45◦, the size of the effect
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TABLE I. R
Ei

ψγ
as a function of θ or K at the incident proton energies Ei of 50 and 190 MeV for the photon emission angles ψγ of 30◦ and

150◦. Ei , ψγ , θ , d3σ/.d	3d	4dψγ , and K are the incident energies, the photon emission angles, the proton scattering angles, the ppγ cross
sections, and the photon energies, respectively.

d3σ/dω3dω4dψy (μb/sr2 rad)

Ei (MeV) ψy θ (θ3 = θ4) Four-on-shell-point One-on-shell-point R
Ei

ψy
(θ ) or R

Ei

ψy
(K) K (MeV)

50 30◦ 10◦ 0.11 0.06 1.83 25.93
40◦ 1.95 1.65 1.18 8.83
42◦ 5.41 5.05 1.07 5.45
43◦ 13.75 13.36 1.03 3.53

150◦ 10◦ 0.16 0.08 2.00 19.91
40◦ 1.52 1.31 1.16 5.45
42◦ 4.02 3.80 1.06 3.26
43◦ 10.00 9.77 1.02 2.07

190 30◦ 10◦ 0.44 0.13 3.38 92.99
40◦ 9.89 7.99 1.24 34.65
42◦ 43.64 41.35 1.06 17.51
43◦ 310.54 308.02 1.01 7.16

150◦ 10◦ 0.94 0.31 3.03 60.61
40◦ 6.16 5.25 1.17 13.36
42◦ 25.36 24.47 1.04 6.26
43◦ 169.74 168.88 1.01 2.45

increases as θ decreases. In other words, the effect is
more significant for small angle scattering (θ � 10◦),
and it becomes less significant as the angle tends to the
elastic limit (θ → 45◦). This can be seen from Figs. 6(a)
and 7(a). To demonstrate this fact quantitatively, we
show in Table I the numerical values of the cross
sections calculated using both the four-on-shell-
point amplitude MROBE

μ (�μ; u41, u32, t31, t42) given
by Eq. (15) and the one-on-shell-point amplitude
M̄ROBE

μ (�μ; ū, t̄) given by Eq. (16) at Ei = 50
and 190 MeV for ψγ = 30◦ and 150◦ and θ =
10◦, 40◦, 42◦, and 43◦. We also show the calculated
values of the ratio R

Ei

ψγ
(θ ) and their correspond-

ing photon energies K for all cases. There are
four sets of (Ei, ψγ ) [(50 MeV, 30◦), (50 MeV, 150◦),
(190 MeV, 30◦), (190 MeV, 150◦)] and each set in-
volves four different θ angles (θ = 10◦, 40◦, 42◦, 43◦).
From Table I, one sees that the ratio R

Ei

ψγ
(θ ) attains

its largest value at θ = θ3 = θ4 = 10◦ (in the small
angle scattering region), and it attains its smallest value,
approaching 1, at θ = 43◦ (in the region of the elastic
limit). In fact, we can show numerically that

lim
θ→45◦

R
Ei

ψγ
(θ ) = 1 (20)

at any ψγ angle. This overall behavior is universal,
independent of the incident energy Ei , as illustrated in
Figs. 6(a) and 7(a).

(iii) It is clear from Table I (or a comparison of Fig. 6(a)
[Fig. 7(a)] with Fig. 6(b) [Fig. 7(b)]) that the ratio R

Ei

ψγ

also depends sensitively on the photon energy K . The
ratio R

Ei

ψγ
decreases as the photon energy decreases. The

following relationship can be established. The small
angle scattering region (θ < 10◦) is equivalent to the

hard-photon region (K > 25.9 MeV for Ei = 50 MeV
at ψγ = 30◦ and K > 92 MeV for Ei = 190 MeV
at ψγ = 30◦), and the region of the elastic limit
(43◦ � θ < 45◦) is equivalent to the low photon energy
region (K < 4 MeV for Ei = 50 MeV at ψγ = 30◦ and
K < 7.2 MeV for Ei = 190 MeV at ψγ = 30◦). Thus,
the ratio R

Ei

ψγ
can be written either as a function of θ

or as a function of K , i.e., R
Ei

ψγ
(θ ) or R

Ei

ψγ
(K). In the

Appendix, we prove that

lim
K→0

R
Ei

ψγ
(K) = 1. (21)

Thus, we have

lim
θ→45◦

R
Ei

ψγ
(θ ) = lim

K→0
R

Ei

ψγ
(K) = 1. (22)

(iv) An important implication of our investigation is that
the one-on-shell-point ppγ amplitudes are valid only
in the region of the elastic limit.

VI. CONCLUSION

We demonstrated a quantitative understanding of the ppγ

process. The ROBE four-on-shell-point amplitude, which
predicts cross sections in quantitative agreement with the
soft-photon TuTts amplitude, can be used to describe precision
ppγ data such as those from KVI. In the hard-photon
region, the ROBE four-on-shell-point amplitude is essential
for a proper description of the data. Only near the elastic
limit does the one-on-shell-point approximation approach the
four-on-shell-point result. For this reason the one-on-shell-
point ROBE amplitude and the Low soft-photon amplitude
fail to describe the KVI data but do provide an adequate
description at much lower photon energy. Moreover, an
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important photon emission mechanism involves the nucleon
anomalous magnetic moment, although it does not completely
dominate the cross section.
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APPENDIX: PROOF THAT limK→0 REi
ψγ

(K ) = 1

Consider the ppγ process

p
(
p

μ

1

) + p
(
p

μ

2

) → p
(
p

μ

3

) + p
(
p

μ

4

) + γ (Kμ), (A1)

where p
μ

1 (pμ

3 ) and p
μ

2 (pμ

4 ) are the initial (final) four-momenta
of the two interacting protons, and Kμ is the four-momentum
of the emitted photon. These four-momenta satisfy the energy-
momentum conservation relation

p
μ

1 + p
μ

2 = p
μ

3 + p
μ

4 + Kμ. (A2)

In the limit that K approaches zero, the ppγ process
reduces to the corresponding pp elastic scattering process,

p
(
p

μ

1

) + p
(
p

μ

2

) → p
(
p̃

μ

3

) + p
(
p̃

μ

4

)
, (A3)

where

p̃
μ

3 = lim
K→0

p
μ

3 ,

(A4)
p̃

μ

4 = lim
K→0

p
μ

4 .

The energy-momentum conservation relation becomes

p
μ

1 + p
μ

2 = p̃
μ

3 + p̃
μ

4 , (A5)

which can also be written as

p
μ

1 − p̃
μ

3 = −(
p

μ

2 − p̃
μ

4

)
(A6)

and

p
μ

1 − p̃
μ

4 = −(
p

μ

2 − p̃
μ

3

)
. (A7)

Equations (A4) and (A6) give

lim
K→0

t13 = lim
K→0

(p1 − p3)2 = (p1 − p̃3)2 ≡ t̃ , (A8)

lim
K→0

t24 = lim
K→0

(p2 − p4)2 = (p2 − p̃4)2 = (p1 − p̃3)2 = t̃ ,

(A9)

lim
K→0

t̄ = lim
K→0

(t13 + t24) 2 = t̃ . (A10)

Equations (A4) and (A7) give

lim
K→0

u14 = (p1 − p̃4)2 ≡ ũ, (A11)

lim
K→0

u23 = (p1 − p̃4)2 = ũ, (A12)

lim
K→0

ū = lim
K→0

(u14 + u23)/2 = ũ. (A13)

We also have

lim
K→0

sf = (p3 + p4)2 = (p̃3 + p̃4)2 = (p1 + p2)2 = si ≡ s̃,

(A14)

lim
K→0

s̄ = lim
K→0

(sf + si)/2 = s̃, (A15)

lim
K→0

s21 = lim
K→0

s12 = lim
K→0

s22 = lim
K→0

s11 = s̃. (A16)

From Eqs. (A8)–(A16) we can show that all equations given
by Eqs. (3a), (3b), (3c), (3d), and (10) reduce to the same
identical on-shell condition [Eq. (11)]

s̃ + t̃ + ũ = 4m2 (A17)

in the limit that K → 0. Furthermore, we also find

lim
K→0

MROBE
μ (�μ; u41, u32, t31, t42) = MROBE

μ (�μ; ũ, t̃) (A18)

and

lim
K→0

MROBE
μ (�μ; ū, t̄) = MROBE

μ (�μ; ũ, t̃). (A19)

That is, in the limit that K tends to zero, the four-on-
shell-point amplitude is exactly equal to the one-on-shell-point
amplitude. Therefore, the cross sections calculated from these
two equal amplitudes are the same in this limit, and we have

lim
K→0

R
Ei

ψγ
(K) = 1,

independent of Ei and ψγ .
It is important to emphasize that the photon energy K can

approach zero only when θ tends to the elastic limit value
of 45◦, because K is not an independent variable for the
H-type cross sections [19]. As discussed in Ref. [19], the
cross section d3σ/.d	3d	4dψγ is defined as an H-type cross
section because the set of five independent variables for this
type of cross section is (θ3, φ3, θ4, φ4, ψγ ). The photon energy
K , which is not an independent variable, can be determined
by solving the four energy-momentum conservation equations.
In other words, K can be calculated if a set of five variables
(θ3, φ3, θ4, φ4, ψγ ) and the incident proton energy Ei are given.
As shown in Ref. [19], except for the elastic limit case, K can-
not be zero for an H-type cross section. If we were to arbitrarily
set K equal to zero, then the required condition p

μ

1 + p
μ

2 −
p

μ

3 − p
μ

4 − Kμ = 0 is not satisfied, and this would imply that
δ4(p1 + p2 − p3 − p4 − K) = 0. Because the expression for
the cross section involves a factor δ4(p1 + p2 − p3 − p4 − K)
(see, for example, Eq. (45) or Eq. (52) of Ref. [19]),
the cross section d3σ/.d	3d	4dψγ would be zero because
δ4(p1 + p2 − p3 − p4 − K) = 0. Thus, K can approach zero
(K → 0) only when the ppγ process approaches its elastic
limit (θ = θ3 = θ4 = 45◦).
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