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Photon scattering with the Lorentz integral transform method
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The application of the Lorentz integral transform (LIT) method to photon scattering off nuclei is presented
in general. As an example, elastic photon scattering off the deuteron in the unretarded dipole approximation is
considered using the LIT method. The inversion of the integral transform is discussed in detail, paying particular
attention to the high-energy contributions in the resonance term. The obtained E1 polarizabilities are compared
to results from the literature. The corresponding theoretical cross section is confronted with experimental results
confirming, as already known from previous studies, that the E1 contribution is the most important one at lower
energies.
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I. INTRODUCTION

The study of electromagnetic reactions in photoabsorption
and photon scattering on nuclei is an excellent tool to
investigate nuclear structure. In addition, it can also lead to
valuable insights into the properties of the nuclear constituents,
the nucleons, such as, for example, electric and magnetic
polarizabilities. In this context, photon-scattering experiments
are a particularly interesting source of information on off-
shell properties. However, genuine microscopic calculations
of photon-scattering cross sections are rather complicated
because the complete nuclear excitation spectrum has to be
taken into account. Thus, it hardly comes as a surprise that
in the past such theoretical efforts were mainly concentrated
on the two-nucleon system. A first realistic calculation of
deuteron photon scattering has been carried out in Ref. [1].
In the last decade quite a few theoretical investigations have
been performed [2–6], among them also calculations based on
chiral effective field theory.

Considering a more complex A-nucleon system, as men-
tioned, one needs to have under control the corresponding
A-body continuum. Today this could, in principle, be realized
for the three-nucleon system, but many-body calculations of
photon scattering cross sections for systems with A > 3 are
presently out of reach. However, there is a particular interest
in 6Li photon scattering recently, and data have already been
taken at the high intensity gamma-ray source (HIGS) [7].
Fortunately, the problem of calculating the correct many-body
continuum wave function can be avoided by application of
the Lorentz integral transform (LIT) method [8,9]. In fact, the
LIT approach reduces a scattering state problem to a simpler
bound-state-like problem, which then can be solved with
techniques that usually are applied for bound states. This leads
to an enormous reduction of the complexity of the calculation,
for example, LIT calculations of the total photoabsorption
cross sections have even been made for the six- and seven-body
nuclei taking into account all possible break-up channels and
with full consideration of the final state interaction [10,11]. In
view of the fact, that until now the LIT method has not been
applied to photon scattering, we want to demonstrate with the

present work the usefulness of this method for this process,
choosing as a test case the deuteron. That has the advantage
that, first of all, the calculation is quite simple and furthermore
allows the comparison with a conventional approach.

In Sec. II, first we briefly review the formal theory of
photon scattering, the low-energy limit of the scattering
amplitude, and the concept of generalized polarizabilities as
basic quantities. Then we develop the general formalism of
how these polarizabilities can be calculated by the LIT method.
The application of this method on the deuteron as a test case is
described in Sec. III. For demonstrating the method it suffices
to limit the explicit calculation to the low-energy regime where
the E1 contribution dominates. The results are presented and
discussed in Sec. IV, where we also give a summary and an
outlook.

II. FORMAL DEVELOPMENTS

We start the formal part with a short summary of the salient
features of photon scattering off a bound many-body system
(for a more detailed review, see, e.g., [12]); that is, we consider
the process

γ (�k) + Ni( �Pi ) −→ γ (�k ′) + Nf ( �Pf ), (1)

for an incoming photon with momentum �k and polarization �eλ

and an outgoing photon with momentum �k ′ and polarization
�e ′
λ′ while the system makes a transition from an initial state

with total momentum �Pi and intrinsic state |i〉 to a final state
with total momentum �Pf with intrinsic state state |f 〉.

A. The photon-scattering amplitude

In view of the weakness of the electromagnetic interaction
one can apply perturbation methods. In the lowest, that is,
second order in the electromagnetic coupling, the scattering
amplitude is given by two terms, the contact or two-photon
amplitude (TPA) Bλ′λ(�k ′, �k) and the resonance amplitude (RA)
Rλ′λ(�k ′, �k). A graphical illustration is shown in Fig. 1.
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FIG. 1. Diagrammatic representation of the resonance [direct
(a) and crossed (b)] and the TPA (c) for photon scattering.

Accordingly, the total scattering amplitude is the sum of
these two contributions

T
f i

λ′λ(�k ′, �k) = B
f i

λ′λ(�k ′, �k) + R
f i

λ′λ(�k ′, �k), (2)

where the TPA as depicted in diagram (c) of Fig. 1 has the
form

B
f i

λ′λ(�k′, �k) = −〈f |
∫

d3xd3yei�k ′ ·�xe−i�k·�y �e ′∗
λ′ · ↔

B (�x, �y) · �eλ|i〉,
(3)

and the RA [diagrams (a) and (b) of Fig. 1] is given by

R
f i

λ′λ(�k ′, �k) = 〈f |[�e ′∗
λ′ · �J (−�k ′, 2 �Pf + �k ′) G(k + iε)

× �eλ · �J (�k, 2 �Pi + �k) + �eλ · �J (�k, 2 �Pf − �k)

×G(−k′ + iε) �e ′∗
λ′ · �J (−�k ′, 2 �Pi − �k ′)]|i〉, (4)

with the intermediate propagator

G(z) = (H − Ei − z)−1. (5)

In these expressions, the c.m. motion has been separated
applying translation invariance. Thus, the initial and final
states refer to the intrinsic motion of the many-particle system
only. In principle, the Hamiltonian H and the energy Ei

contain contributions from the c.m. motion. Furthermore, the
splitting in a resonance and a TPA is gauge dependent. This
gauge dependence is reflected in the gauge conditions sketched
briefly below.

The Cartesian tensor operator
↔
B of rank 2 in Eq. (3) repre-

sents the second-order term of the electromagnetic interaction
with the system under consideration, and the current operator
in Eq. (4),

�J (�k, �P ) = �j (�k) +
�P

2AM
ρ(�k), (6)

acts on the intrinsic variables of the system only. It consists of
the intrinsic current �j (�k) plus a term taking into account the
convection current of the separated c.m. motion. M denotes
the nucleon mass and A the mass number of the nucleus. The
intrinsic charge and current operators consist of a kinetic or
one-body and a meson exchange part,

ρ(�k ) = ρ[1](�k ) + ρ[2](�k ), (7)

�j (�k ) = �j[1](�k ) + �j[2](�k ), (8)

with

ρ[1](�k) =
∑

l

el e
−i�k·�rl , (9)

�j[1](�k ) = 1

2M

∑
l

(el{ �pl, e
−i�k·�rl } + μl �σl × �k e−i�k·�rl ). (10)

Here el and μl denote charge and magnetic moment of the lth
particle and �pl and �σl its internal momentum and spin operator.
The expressions for the corresponding exchange operators
depend on the interaction model. At least in the nonrelativistic
limit, the exchange contribution to the charge density vanishes
(Siegert’s hypothesis). Furthermore, also the TPA consists of
a kinetic one-body contribution and a two-body exchange
amplitude,

↔
B (�k ′, �k ) =↔

B [1](�k ′, �k )+ ↔
B [2](�k ′, �k ), (11)

where the kinetic one-body operator is given by

↔
B [1](�k ′, �k ) = − 1

M

∑
l

e2
l e−i(�k−�k ′)·�rl , (12)

which is the sum of the individual Thomson amplitudes.
Gauge invariance of the electromagnetic interaction leads

to gauge conditions for the various electromagnetic operators
according to

�k · �j (�k ) = [H, ρ(�k )], (13)

�k ′· ↔
B (�k ′, �k ) = [ρ(−�k ′ ), �j (�k )], (14)

where H = T + V denotes the intrinsic Hamiltonian of the
nuclear system with T as kinetic energy and the interaction
potential V . Separating the one-body and exchange contribu-
tions, one finds

�k · �j [1](�k ) = [T , ρ [1](�k )], (15)

�k · �j [2](�k ) = [V, ρ [1](�k )] + [T , ρ [2](�k )], (16)

�k ′· ↔
B [1](�k ′, �k ) = [ρ [1](−�k ′ ), �j [1](�k )], (17)

�k ′· ↔
B [2](�k ′, �k ) = [ρ [1](−�k ′ ), �j [2](�k )] + [ρ [2](−�k ′ ), �j [1](�k )].

(18)

One important consequence consists of the low-energy limits
[13,14],

�j (0) = [H, �D], (19)

Bii
[1],λ′λ(0, 0) = −�e ′∗

λ′ · �eλ

Ze2

M
, (20)

Bii
[2],λ′λ(0, 0) = −〈i|[�e ′∗

λ′ · �D, [V, �eλ · �D]]|i〉, (21)

Rii
λ′λ(0, 0) = �e ′∗

λ′ · �eλ

NZe2

AM
− Bii

[2],λ′λ(0, 0), (22)
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resulting in the low-energy limit for the total scattering
amplitude

T ii
λ′λ(0, 0) = −�e ′∗

λ′ · �eλ

(Ze)2

AM
, (23)

which is the classical Thomson limit. In Eqs. (19) and (21) �D
denotes the dipole operator.

B. Generalized nuclear polarizabilities

The expansion of the scattering amplitude with respect
to the total angular momentum transferred to the nucleus
in the scattering process leads to the concept of generalized
polarizabilities. These polarizabilities make it possible in a
convenient manner to separate geometrical aspects related to
the angular momentum properties and dynamical effects given
by the strength of the various polarizabilities. To this end, one
starts from the multipole expansion of the plane wave (see,
e.g., Ref. [15]),

�eλ ei�k·�r = −
√

2π
∑
LM

L̂DL
Mλ(R)

∑
ν=0,1

λν �AL
M (Mν ; k), (24)

with standard electric and magnetic multipole fields
�AL

M (Mν ; k), where ν indicates the type of multipole field
[M0 = E (electric) and M1 = M (magnetic)]. Then one
expands the current operator in terms of electric (M0,L = EL)
and magnetic (M1,L = ML) multipole operators

�eλ · �j (�k) = −
√

2π
∑
LM

L̂DL
Mλ(R)

∑
ν=0,1

λνM
ν,L
M , (25)

where R denotes a rotation which carries the quantization axis
into the direction of �k, and DL

Mλ denotes the corresponding
rotation matrix [15]. A similar expansion holds for the two-
photon operator.

The electric and magnetic multipole fields of order L

of the incoming photon transfer an angular momentum L

according to the strengths of the corresponding nuclear
transition multipole moments. Similarly, the scattered photon
transfers angular momentum L′. These consecutive angular
momentum transfers can further be classified according to
the total angular momentum transfer J to the nucleus with
|L − L′| � J � L + L′. The corresponding strength is given
by the polarizability

P L′Lλ′λ
f i,J (k′, k) =

∑
ν ′ν=0,1

λ′ ν ′
λνPf i,J (Mν ′

L′,MνL, k′, k), (26)

where ν classifies the type of multipole transition as already
mentioned. A graphical visualization of the generalized polar-
izability is shown in Fig. 2.

’
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FIG. 2. Graphical representation of the contribution of the
direct term of the RA to the generalized polarizability
Pf i,J (Mν′

L′, MνL, k′, k) with consecutive angular momentum trans-
fers L and L′ by multipoles of types ν and ν ′, respectively, coupled
to total angular momentum transfer J .

Then the expansion of the total scattering amplitude in terms
of these polarizabilities reads

T
f i

λ′λ(�k ′, �k) = (−)1+λ′+If −Mi

∑
L′,M ′,L,M,J

(−)L+L′
(2J + 1)

×
(

If J Ii

−Mf m Mi

) (
L L′ J

M M ′ −m

)
×P L′Lλ′λ

f i,J (k′, k)DL
M,λ(R)DL′

M ′,−λ′ (R′), (27)

where (Ii,Mi) and (If ,Mf ) refer to the angular momenta and
their projections on the quantization axis of the initial and
final states, respectively. Furthermore, R and R′ describe the
rotations which carry the quantization axis into the directions
of the photon momenta �k and �k ′, respectively, and DL

M,λ(R)
and DL′

M ′,−λ′ (R′) the corresponding rotation matrices in the
convention of Rose [15].

As for the scattering amplitude, the polarizabilities can be
separated in a TPA and a resonance contribution

Pf i,J (Mν ′
L′,MνL, k′, k)

= P T PA
f i,J (Mν ′

L′,MνL, k′, k) + P res
f i,J (Mν ′

L′,MνL, k′, k),

(28)

where for the RA one has

P res
f i,J (Mν ′

L′,MνL, k′, k)

= 2π (−)L+J L̂L̂′

Ĵ
〈If Ef ||{[Mν ′,L′

(k′)G(k+iε)Mν,L(k)]J

+ [Mν,L(k)G(−k′ + iε)Mν ′,L′
(k′)]J }||IiEi〉, (29)

where k = |�k| and k ′ = |�k ′| denote the energy of the incoming
and outgoing photon, respectively, and the symbol “[· · ·]J ”
means that the two multipole operators are coupled to a
spherical tensor of rank J . Furthermore, we have neglected
the small c.m. current contribution of Eq. (6). The two-photon
contribution to the polarizability is given by

P T PA
f i,J (Mν ′,L′

,Mν,L, k′, k)

= 2π (−)L+J+1 L̂L̂′

Ĵ
〈If Ef ||

∫
d3x d3y

× [ �AL′
(Mν ′

; k, �x)· ↔
B (�x, �y) · �AL(Mν ; k, �y)]J ||IiEi〉.

(30)
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The evaluation of the TPA contribution to the polarizabil-

ities is straightforward once the TPA operator
↔
B (�x, �y) is

given.

For the resonance contribution, one finds by evaluating
the reduced matrix element in standard fashion (see, e.g.,
Ref. [16])

P res
f i,J (Mν ′

L′,MνL, k′, k) = 2π (−)L+If +Ii L̂L̂′ ∑∫
En,In

[{
L L′ J

If Ii In

} 〈If Ef ||Mν ′,L′
(k′)||InEn〉〈InEn||Mν,L(k)||IiEi〉
En − Ei − k − iε

+ (−)L+L′+J

{
L′ L J

If Ii In

} 〈If Ef ||Mν,L(k)||In〉〈InEn||Mν ′,L′
(k′)||IiEi〉

En − Ei + k′ − iε

]
. (31)

Obviously, the calculation of the resonance part is more in-
volved because of the summation over all possible intermediate
states |In〉 and energies En.

The low-energy expansion of the polarizabilities has been
discussed in Ref. [14]. For k = 0 only the scalar E1 polariz-
ability is nonvanishing, that is,

PJ (E1, E1)|k=0 = −δJ0 Î
√

3
e2Z2

MA

, (32)

with I as ground-state spin, which corresponds to the Thomson
amplitude.

C. The scattering cross section

Before turning to the LIT method, we briefly review the
scattering cross section in terms of the polarizabilities. For

unpolarized photon and target it is given by

dσ

d�
= k′

k

c(�k, �Pi, k
′)

2(2Ii + 1)

∑
λ,λ′,Mi ,Mf

∣∣T f i

λ′λ,Mf ,Mi
(�k ′, �k)

∣∣2
, (33)

with a kinematic factor resulting from the final-state phase
space and the incoming flux factor

c(�k, �Pi, k
′) = k + Ei − k′

(k + Ei)
∣∣ �k
k

− �Pi

Ei

∣∣ . (34)

In terms of the polarizabilities one finds for the cross section
[17,18]

dσ

d�
= k′

k

c(�k, �Pi, k
′)

2Ii + 1

∑
L′,L,K ′,K,J

∑
ν ′,ν,ν̄ ′,ν̄

Pf i,J (Mν ′
L′,MνL)

×P ∗
f i,J (Mν̄ ′

K ′,Mν̄K)gν ′L′νLν̄ ′K ′ ν̄K
J (θ ), (35)

where the angular functions are given by

gν ′L′νLν̄ ′K ′ ν̄K
J (θ ) = (−)J

2
(2J + 1)(−)L+K+ν ′+ν̄ ′ ∑

j

(2j + 1)[1 + (−)L+K+j+ν+ν̄][1 + (−)L
′+K ′+j+ν ′+ν̄ ′

]

×
(

L′ K ′ j

1 −1 0

)(
L K j

1 −1 0

) {
L K j

K ′ L′ J

}
Pj (cos θ ), (36)

with Pj (cos θ ) as Legendre polynomials. For pure E1 transi-
tions one obtains

dσ (E1)

d�
= k′

k

c(�k, �Pi, k
′)

(2Ii + 1)

∑
J

|Pf i,J (E1, E1)|2 gE1
J (θ ), (37)

where in an abbreviated notation

gE1
0 (θ ) = 1

6 (1 + cos2 θ ), (38)

gE1
1 (θ ) = 1

4 (2 + sin2 θ ), (39)

gE1
2 (θ ) = 1

12 (13 + cos2 θ ). (40)

D. Application of the Lorentz integral transform method

A convenient method for the evaluation of the polarizabili-
ties is provided by the LIT [9] as applied to exclusive reactions.

For this purpose we separate in Eq. (29) the intermediate
propagator from the reduced matrix element by writing

G(k + iε) =
∫ ∞

E0

dE
δ(H − E)

E − Ei − k − iε
, (41)

where E0 denotes the ground-state energy, and introduce for
the separated reduced matrix element as a convenient abbre-
viation a quantity which henceforth is called the polarizability
strength function,

F
If Ii

(ν ′L′,νL)J (k′, k, E) = (−)J+If +Ii

Ĵ
〈If Ef ||[Mν ′,L′

(k′)

× δ(H − E) Mν,L(k)]J ||IiEi〉. (42)
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One should note that, in general, the strength function is off energy shell, that is, E �= Ei + k. Evaluating the reduced matrix
element, one obtains

F
If Ii

(ν ′L′,νL)J (k′, k, E) =
∑
In

ρ(In, E)

{
L L′ J

If Ii In

}
〈If Ef ||Mν ′,L′

(k′)||In, E〉〈In, E||Mν,L(k)||IiEi〉, (43)

with ρ(I, E) as density of states for a given energy E and angular momentum I . In terms of the strength functions, the
polarizability becomes

P res
f i,J (Mν ′

L′,MνL, k′, k) = 2π (−)L+If +Ii L̂L̂′
∫ ∞

E0

dE

[
F

If Ii

(ν ′L′,νL)J (k′, k, E)

E − Ei − k − iε
+ (−)L+L′+J

F
If Ii

(νL,ν ′L′)J (k, k′, E)

E − Ei + k′ − iε

]
. (44)

One can separate the real and imaginary parts of the propagator according to

[
P res

f i,J (Mν ′
L′,MνL, k′, k)

]
Re = 2π (−)L+If +Ii L̂L̂′P

∫ ∞

E0

dE

[
F

If Ii

(ν ′L′,νL)J (k′, k, E)

E − Ei − k
+ (−)L+L′+J

F
If Ii

(νL,ν ′L′)J (k, k′, E)

E − Ei + k′

]
, (45)

where P stands for the principal value of the integral, and[
P res

f i,J (Mν ′
L′,MνL, k′, k)

]
Im = 2π2(−)L+If +Ii L̂L̂′[F If Ii

(ν ′L′,νL)J (k′, k, Ei + k) + (−)L+L′+J F
If Ii

(νL,ν ′L′)J (k, k′, Ei − k′)
]
, (46)

where the second term contributes only if Ei > E0, that is,
if the initial state is an excited state. The subscripts “Re”
and “Im” indicate the contributions of the real and imaginary
parts of the propagator, respectively. For elastic scattering the
strength function is real and then Eqs. (45) and (46) represent
the real and imaginary parts, respectively, of the polarizability.

The strength functions are the principal quantities which
are determined by the LIT method. Thus, the main task is the
evaluation of the strength function F

If Ii

(ν ′L′,νL)J (k′, k, E). To this
end we first consider the following partial strength function
for a fixed intermediate total angular momentum state |InMn〉
as defined by

F
If Ii ;In

ν ′L′,νL(k′, k, E) = ρ(In, E)〈If Ef ||Mν ′,L′
(k′)||In, E〉

× 〈In, E||Mν,L(k)||IiEi〉. (47)

In terms of these partial strength functions the polarizability
strength is given by

F
If Ii

(ν ′L′,νL)J (k′, k, E) =
∑
In

{
L L′ J

If Ii In

}
F

If Ii ;In

ν ′L′,νL(k′, k, E).

(48)

The partial strength can be expressed in terms of states of good
total angular momentum In which are generated by the action
of a multipole operator MνL on a state ψI with good angular
momentum I according to

|[Mν,L(k) × ψI ]InMn〉 = [Mν,L(k) × |I 〉]In

Mn
. (49)

Namely, using

〈IM|[Mν,L(k) × ψIi ]InMn〉

=
∑
MMi

(−)Ii−L−Mn În

(
L Ii In

M Mi −Mn

)
〈IM|MνL

M |IiMi〉

= δIIn
δMMn

(−)Ii−In−L

În

〈In||MνL||Ii〉, (50)

one finds

F
If ,Ii ;In

ν ′L′,νL (k′, k, E)

= (−)In−Ii+L−L′+ν ′ ∑
Mn

〈[Mν ′,L′
(k) × ψIf ]InMn|δ(H − E)|

× [Mν,L(k) × ψIi ]InMn〉. (51)

Then we perform a LIT with a complex argument σ = σR +
iσI ,

L
If ,Ii ;In

ν ′L′,νL(k′, k, σ ) =
∫ ∞

E0

dE
F

If ,Ii ;In

ν ′L′,νL (k′, k, E)

(E − σ )(E − σ ∗)
. (52)

Inserting the explicit form for the strength function of Eq. (51)
and integrating over the δ function, one finds, consecutively,

L
If ,Ii ;In

ν ′L′,νL(k′, k, σ )

= (−)In−Ii+L−L′+ν ′ ∑
Mn

〈[Mν ′,L′
(k) × ψIf ]

× InMn|(H − σ )−1(H − σ ∗)−1|[Mν,L(k)ψIi ]InMn〉
= (−)In−Ii+L−L′+ν ′

ρ(In, σ )
∑
Mn

〈
ψ̃

ν ′,L′
If ;InMn

(k′, σ )
∣∣ψ̃ν,L

Ii ;InMn
(k, σ )

〉
,

(53)

where ρ(In, σ ) takes into account the possibility that, for
the given In and σ , several Lorentz states may exist. Here
the Lorentz state of good total angular momentum In and
projection Mn obeys the equation

(H − σ ∗)
∣∣ψ̃ν,L

Ii ;InMn
(k, σ )

〉 = |[Mν,L(k) × ψIi ]InMn〉. (54)

After inversion of the Lorentz transform, one obtains the
desired polarizability strength function from Eq. (48), which
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then serves for the evaluation of the appropriate generalized
polarizability.

III. THE DEUTERON CASE

For the calculation of deuteron elastic photon scattering the
γ -deuteron c.m. system is chosen, where one has k = k′. To
demonstrate the LIT method it suffices to consider only E1
transitions which are dominant at low energies and furthermore
to take the E1 operator in the long-wavelength approximation
(Siegert form),

E1
M = i

[
H,D1

M

]
, (55)

where the dipole operator

D1
M =

√
α

3
√

2
r Y1M (�) (56)

is independent of k. Here α denotes the fine structure constant,
and (r,�) represents the relative neutron-proton coordinate.
Furthermore, H denotes the intrinsic two-nucleon Hamiltonian
containing the nucleon-nucleon interaction. The small c.m.
contribution to the Hamiltonian is neglected for simplicity.
Owing to the dipole approximation only the polarizabilities
PJ (E1, k) (J = 0, 1, 2, in an abbreviated notation) contribute.
Instead of the corresponding partial E1-strength function,

F
11;j
E1,E1(E) = (−)j−1

∑
m

〈(
[D1,H ] × ψ1

d

)
jm

∣∣ δ(H − E)
∣∣([D1,H ] × ψ1

d

)
jm

〉
= (−)j−1(E − E0)2

∑
m

〈(
D1 × ψ1

d

)
jm

∣∣ δ(H − E)
∣∣(D1 × ψ1

d

)
jm

〉
, (57)

where E0 denotes the ground-state energy, we consider the reduced partial strength function

F̃
11;j
E1,E1(E) = F

11,j

E1,E1(E)

(E − E0)2

= (−)j−1
∑
m

〈(
D1 × ψ1

d

)
jm

∣∣ δ(H − E)
∣∣(D1 × ψ1

d

)
jm

〉
. (58)

One should note that F̃ 11;j
E1,E1 is independent of k. The associated

Lorentz state obeys as LIT equation [see Eq. (54)]

(H − σ ∗)|ψ̃jm(σ )〉 = ∣∣(D1 × ψ1
d

)
jm

〉
, (59)

which is independent of k. The Lorentz state can be expanded
into partial waves according to the orbital angular momentum
l,

〈r,�|ψ̃jm(σ )〉 =
√

α

r
√

4π

j+1∑
l=|j−1|

�jl(σ, r)〈�|(l1)j m〉, (60)

where |(l1)j m〉 represents the spin-angular state of orbital
angular momentum l coupled with total spin-one to a total
angular momentum j , and the matrix element refers to spin
and angular degrees of freedom only. The state ψ̃jm(σ )
generates the LIT L̃

11;j
E1,E1 of the reduced strength F̃

11;j
E1,E1.

Inserting the expansion of ψ̃jm into Eq. (59) and projecting
onto a state |(l1)j m〉, one finds a set of radial differential
equations

[
− h̄2

M

(
d2

dr2
− l(l + 1)

r2

)
− σ ∗

]
�jl(σ, r)

+
∑

l′
Vjl,j l′�jl′ (σ, r) = 1

3
√

2
rfjl(r), (61)

with
fjl(r) = δl1 u(r)

+ (−)j+1 3
√

5 l̂

(
2 1 l

0 0 0

) {
2 1 1
j 1 l

}
w(r),

(62)

where u(r) and w(r) are the deuteron radial s- and d-wave
functions. Two of them are uncoupled (3P0 : l = 1, j = 0;
3P1 : l = 1, j = 1) and one is coupled (3P2 − 3F2 : l1 =
1, l2 = 3, j = 2). Equation (61) is very similar to a radial
Schrödinger equation, but with a complex energy σ and an
additional source term on the right-hand side.

For convenience, we introduce the following three reduced
LITs,

Lj (σ ) : = (−)j−1 4π

2j + 1
L̃

11;j
E1,E1(σ )

= 4π

2j + 1

∑
m

〈ψ̃jm(σ )|ψ̃jm(σ )〉

= α
∑

l

∫ ∞

0
|�jl(σ, r)|2dr, (63)

and corresponding reduced strength Fj (E) =
F̃

11;j
E1,E1(E)/(2j + 1). Then the polarizability strength

function becomes

F
11;j
E1,E1(E)

= (E − E0)2

4π

∑
j

(−)j+1(2j + 1)

{
1 1 J

1 1 j

}
Fj (E),

(64)

034005-6



PHOTON SCATTERING WITH THE LORENTZ INTEGRAL . . . PHYSICAL REVIEW C 84, 034005 (2011)

and, according to Eq. (46), the E1 polarizabilities are given by[
P res

J (E1, k)
]
Im

= −6π2 F
11;j
E1,E1(k + E0)

= 3

2
π k2

∑
j

(−)j (2j + 1)

{
1 1 J

1 1 j

}
Fj (k + E0), (65)

[
P res

J (E1, k)
]

Re = 3

2

∑
j

(−)j (2j + 1)

{
1 1 J

1 1 j

}
P

∫
dE(E − E0)2Fj (E)

(
1

E − E0 − k
+ (−)J

E − E0 + k

)

= 1

π
P

∫
dk′ [P res

J (E1, k′)
]

Im

(
1

k′ − k
+ (−)J

k′ + k

)
. (66)

The latter expression for the real part corresponds to the
dispersion theoretic approach of Ref. [1]. It is a consequence of
the fact that, in this special case of taking the E1 operator in the
low-energy limit, the polarizability strength F

11;j
E1,E1 becomes

independent of the photon momentum k. However, in general,
this is not true.

IV. RESULTS AND DISCUSSION

For the numerical solution of the radial equation (61) for
the radial Lorentz states �jl(σ, r) we have chosen the Argonne
potential AV18 [19] as an interaction model.

The resulting three Lj (σ ) are shown in Fig. 3 for a constant
σI = 5 MeV as a function of σR up to 100 MeV. The figure
shows that the three LITs have quite a similar behavior.
All three exhibit a pronounced peak in the low-σR region,
only the peak heights are slightly different. For the principal
value integral in Eq. (45) also high-energy contributions could
play an important role; therefore, we illustrate in Fig. 4 the
transforms in an extended σR range.

One finds that the behavior at high σR is approximately
described by σ−2

R . It shows that at large σR the transforms

25 50 75 100
σ

R 
 [MeV]

0

2×10
-7

4×10
-7

6×10
-7

8×10
-7

1×10
-6

L
j [

fm
 M

eV
-3

]

FIG. 3. (Color online) LITs Lj (σ ) with σI = 5 MeV: j = 0
(dotted line), j = 1 (solid line), j = 2 (dashed line).

200 400 600 800 1000
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R 
 [MeV]

10
-11

10
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10
-8

10
-7

10
-6

L
j [

fm
 M

eV
-3

]

FIG. 4. (Color online) As in Fig. 3, but for an extended range of
σR .

are dominated by low-energy contributions. In fact, for the
extreme case of a δ strength, that is, F (E) = F0 δ(E − E0),
one obtains L(σ ) = F0/[(σR − E0)2 + σ 2

I ].
One also notices in Fig. 4 the onset of oscillations at higher

σR , which are more pronounced for L1 and L2. The origin of
these oscillations lies in the relatively small value of 5 MeV
for σI , which makes a high-precision solution of Eq. (61)
with increasing σR more and more difficult. Such a small σI

value, however, is advantageous in the low-σR region, where
(i) it does not lead to numerical problems and (ii) prominent
structures of a small width could be present, for example, a
low-energy peak. The small σI value will then allow one to
resolve such details and nonetheless will not lead to problems
for the reconstruction of the high-energy strength, because
structures with a small width are not present at higher energies.
One could also completely avoid the oscillations at higher σR

by choosing a transform with different σI values for low- and
high-energy regions, as has been done in Ref. [20].

To obtain the strength function Fj (E) one has to invert the
integral transforms Lj defined in Eq. (63). Details about the
inversion of the LIT are found in Refs. [9,21], and further,
more general inversion aspects are discussed in Ref. [22].
Accordingly, we use expansions of the calculated LITs,
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FIG. 5. (Color online) Strength function Fj (E) for j = 0 (dotted
line), j = 1 (solid line), j = 2 (dashed line).

Lj (σR, σI = 5MeV), in a set of basis functions χ̃ (1)
n (n =

1, 2, . . . , N ), where the expansion coefficients are determined
by a best fit. Here we take, as in Ref. [9], the set (for fixed σI )

χ̃ (1)
n (σR) =

∫ ∞

0
dE

χ (1)
n (E)

(E − σR)2 + σ 2
I

, (67)

with

χ (1)
n (E) = Eα1 exp

(
−α2E

nβ

)
, (68)

where αi and β are nonlinear parameters.
The inversion results, Fj (E), are shown in Fig. 5. One

observes pronounced low-energy peaks with a strong sub-
sequent falloff which becomes weaker at somewhat higher
energies. The falloff becomes stronger again at even higher
energies, namely, beyond about 200 MeV (300 MeV) in case
of F0 (F1/2). As a matter of fact, the inversion results are
already not very good somewhat below those energies, because
there we do not find, as it would be necessary, a stability for
the inversion solutions for a limited range of the number of
basis functions N . The origin of this problematic high-energy
behavior lies in the choice of basis functions. By construction
they all have an exponential high-energy falloff and thus are
not suitable to describe a function with a different high-energy
behavior, because N cannot be increased arbitrarily because
of the numerical accuracy of the transform to be fitted.

As already mentioned, for the principal value integral in
Eq. (45) also high-energy contributions of the strength function
could matter. Therefore, it is better to search for a basis set
which does not have the shortcomings of the set in Eq. (68),
but which is more appropriate to describe the strength function
over a much larger energy range, even if it could lead to a
somewhat less precise inversion at lower energies. For this
purpose we introduce an alternative set without an exponential
falloff:

χ (2)
n = Eαn(E), (69)

with

αn(E) =
(

n + 1

2

)
+

[
β −

(
n + 1

2

)] (
E

Easy

)γ

, (70)
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 ]

FIG. 6. (Color online) Strength functions Fj from inversions
with first (thin lines) and second basis set (thick lines): j = 0 (dotted
lines), j = 1 (solid lines), j = 2 (dashed lines).

where β < 0, γ , and Easy are nonlinear parameters. In the
present case we have calculated the LIT up to 1000 MeV
and thus we set Easy = 1000 MeV; that is, all basis functions
have an asymptotic falloff with Eβ at E = 1000 MeV. The
inversions with basis set {χ (2)} are shown in Fig. 6. At lower
energies one finds a similar picture as in Fig. 5, the high-energy
behavior, however, is quite different. One further notes that a
constant asymptotic high-energy falloff is already reached at
energies considerably lower than Easy = 1000 MeV, showing
that this set is a very good choice.

Figure 6 also shows that at lower energies the inversion
results do not depend significantly on the choice of the basis
set. However, the precision of the agreement is difficult to
judge on a logarithmic scale. Therefore, we show in Fig. 7 the
various inversions at lower energies in a more detailed form,
that is, as relative differences,

�j (E) = [
F

(1)
j (E) − F

(2)
j (E)

]
/F

(2)
j (E), (71)

where F
(1)
j and F

(2)
j correspond to the inversions with the first

and the second basis set, respectively. At very low energies
one finds the largest differences for F1, namely, about 7%.
This relatively large difference is attributable to the steep
rise of the strength function right above threshold. Here we
would like to mention that, as suggested before, our first basis
set leads to a better fit of the calculated LITs in the low-σR

region. Furthermore, Fig. 7 shows that up to 50 MeV further
differences remain very small, in fact less than about 1%.
For F1 and F2 the picture does not change very much for
higher energies, whereas in case of F0 the difference increases
quite substantially beyond 80 MeV. This can be interpreted
as a precursor effect for the strong falloff beyond 200 MeV
which leads to a somewhat oscillating inversion result already
at considerably lower energies. To have the best description in
the whole energy range we combine the inversion results of
the two basis sets by taking F

(1)
j (E) for E � E1 and F

(2)
j (E)

for E � E1 with E1 equal to 30, 18, and 33 MeV for j = 0,
1, 2, respectively.

The strength functions Fj can also be obtained from a stan-
dard calculation of deuteron photodisintegration. According
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FIG. 7. (Color online) Relative differences �j (E) of the strength
functions shown in Fig. 6. Notation of curves as in Fig. 6.

to Ref. [1] one has

Im PJ (E1, E1)

= 4πk
∑

j

(−)j
{

1 1 J

1 1 j

} ∑
μls

|E1(μ, jls)|2, (72)

where the E1-matrix elements are defined by the multipole
expansion of the total unpolarized photo absorption cross
section [23,24],

σ0 = (4π )2

3

∑
Lμ,jls

1

2L + 1
[|EL(μ, jls)|2 + |ML(μ, jls)|2] .

(73)

Here the quantum numbers (μls) classify the various com-
ponents of a two-body scattering solution with total angular
momentum j [23,24]. Comparison with Eq. (65) yields the
relation

Fj (k + E0) = 8

3k(2j + 1)

∑
μls

|E1(μ, jls)(k)|2. (74)

A comparison of the standard calculation with the LIT
approach is shown in Fig. 8. The agreement is quite satisfactory
in view of the fact, that in the standard calculation the complete
E1 operator is used and not its low energy form as in the present
LIT approach.

Having obtained the reduced strength Fj (E), one can then
determine with the help of Eqs. (65) and (66) the imaginary and
real parts of the polarizabilities P res

J (E1, E1, k). In Fig. 9 we
compare our results for the polarizabilities to those of Ref. [1].
One should note that the real parts are normalized to zero
at k = 0 for J = 0 and 2, which is not necessary for J = 1
because one has P res

J (E1, E1, k = 0) = 0. This normalization
takes into account implicitly the neglected contributions of
the TPA at k = 0, which are needed to comply with the low-
energy theorem of Eq. (32) for J = 2, whereas for the scalar
polarizability we have to add the classical Thomson limit to
the normalized resonance part according to

Re [P0(E1, E1, k)] = Re
[
P res

0 (E1, E1, k)
] − 3e2

md

, (75)

0 25 50 75
E [MeV]

0

5×10
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1×10
-4

F
j (

E
-E

0)2 
 [

fm
]

FIG. 8. (Color online) Strength functions Fj (E) weighted with
(E − E0)2 for the Argonne V18 potential in standard approach with
complete E1 operator (thin lines) and LIT result with low-energy E1
operator (thick lines): j = 0 (dotted lines), j = 1 (solid lines), j = 2
(dashed lines).

where md is the deuteron mass. This procedure is justified
according to the discussion in Ref. [18] (see Fig. 3 of Ref. [18]),
where it is shown that further contributions to the TPA beyond
the low-energy limit are negligibly small for k � 40 MeV and
remain quite small up to about 60 MeV. Thus, for calculations
below 60 MeV, it seems to be quite safe to simply add the
Thomson term to the normalized resonance E1E1 scalar
polarizability.

With respect to the comparison in Fig. 9, we should mention
that the polarizabilities of Ref. [1] are calculated in the Breit
system. The relation between the photon momentum k of the
Breit to that of the c.m. system depends on the scattering angle.
Only in the forward direction do they turn out to be exactly the
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FIG. 9. (Color online) Imaginary [panels (a), (c), (e)] and real
[panels (b), (d), (f)] parts of the polarizabilities P res

J (E1, E1, k) (solid
lines) in comparison to those of Ref. [1] (dashed lines): J = 0 [panels
(a),(b)], J = 1 [panels (c), (d)], J = 2 [panels (e), (f)]. Note that the
real parts are normalized to zero at k = 0 (see text). For the imaginary
parts also the results with the standard calculation are shown (dotted
lines).
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FIG. 10. Comparison of the differential scattering cross section
in the unretarded dipole approximation with experimental data from
Ref. [25] (klab = 55 MeV).

same. In addition, it should be mentioned that in Ref. [1] a more
complete calculation has been made where the full nuclear
one-body current and also pion exchange currents have been
taken into account. Furthermore, in Ref. [1] a different NN

potential has been used. Despite these differences, one finds
a rather good agreement between the two calculations for the
scalar and tensor polarizabilities. Larger differences are found
for the vector polarizability, for which real and imaginary
parts from Ref. [1] are somewhat larger than our results. In
Fig. 9 also the imaginary parts of the PJ evaluated by the
standard method are shown. For J = 0 and 2 they are very
similar to our results; actually; the agreement is even better
than one would expect from the results of Fig. 8. However,
for J = 1 the standard result agrees quite well with that of
Ref. [1]. However, one should keep in mind that the vector
polarizability is about an order of magnitude smaller than the
scalar one owing to large cancellations between the Fj . Thus,
the small differences in the Fj according to Fig. 8 result in
considerably larger differences in P1.

With the calculated polarizabilities we can determine the
cross section for pure E1 transitions given in Eq. (37). In
Fig. 10 we the show the resulting cross section in comparison
to experimental data at klab = 55 MeV. One sees that our
theoretical result overestimates slightly the experimental cross
section, although within the experimental errors. Because data

exist only for a very limited angular range one cannot draw
any conclusion whether the E1E1 cross section reproduces the
correct angular shape. However, from other theoretical calcu-
lations [1,3–6] mentioned above, it is known that additional
polarizabilities P res

J (Mν ′
L′,MνL, k) from neglected other

multipoles, for example, M1 and E2, play a considerably less
important role at lower energies. Furthermore, in Refs. [3–6],
it is pointed out that also the internal nucleon polarizabilities
lead to non-negligible contributions. In fact, one aim of
present-day Compton scattering experiments on light nuclei is
the determination of the nucleon static electric and magnetic
dipole polarizabilities, in particular the ones of the neutron.

We summarize our work as follows. After a brief overview
over the theory of photon scattering, we have described as the
central issue of our work the application of the LIT method
to the calculation of the photon-scattering amplitude. This
method has the great advantage over conventional methods,
because the RA can be evaluated in a very efficient way,
in which wave functions of the continuum spectrum of a
particle system have not to be calculated explicitly. Because
of this reason, and in contrast to conventional state-of-the-art
methods, the LIT approach can be applied also to systems with
more than three particles.

As a first application and test case, we have considered
elastic photon scattering off the deuteron at low energies. For
this case we have taken into account only E1 transitions in the
unretarded dipole approximation. To apply the LIT method one
has to invert the calculated integral transforms of the so-called
strength functions. This inversion is discussed in great detail. In
particular the high-energy behavior of the strength functions
is studied with great care. We have compared the resulting
three E1E1 polarizabilities with results from conventional
calculations. The comparison has shown the reliability of
the obtained results. At last we have confronted the E1E1
cross section with experimental data at a photon energy of
55 MeV. In view of the approximations of the present work
the agreement is quite satisfactory. This is certainly a strong
encouragement to consider in future work photon scattering
off more complex light nuclei.
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[11] S. Bacca, H. Arenhövel, N. Barnea, W. Leidemann, and
G. Orlandini, Phys. Rev. C 76, 014003 (2007).

[12] H. Arenhövel, in New Vistas in Electro-Nuclear Physics, edited
by E. L. Tomusiak, H. S. Caplan, and E. T. Dressler (Plenum
Press, New York 1986), p. 251.

034005-10

http://dx.doi.org/10.1016/0375-9474(83)90239-7
http://dx.doi.org/10.1103/PhysRevC.60.014001
http://dx.doi.org/10.1103/PhysRevC.60.014001
http://dx.doi.org/10.1016/S0375-9474(00)00145-7
http://dx.doi.org/10.1016/S0375-9474(01)00473-0
http://dx.doi.org/10.1016/j.nuclphysa.2004.11.017
http://dx.doi.org/10.1140/epja/i2010-11024-y
http://dx.doi.org/10.1140/epja/i2010-11024-y
http://dx.doi.org/10.1016/0370-2693(94)91355-2
http://dx.doi.org/10.1016/0370-2693(94)91355-2
http://dx.doi.org/10.1088/0954-3899/34/12/R02
http://dx.doi.org/10.1103/PhysRevLett.89.052502
http://dx.doi.org/10.1103/PhysRevC.76.014003


PHOTON SCATTERING WITH THE LORENTZ INTEGRAL . . . PHYSICAL REVIEW C 84, 034005 (2011)

[13] J. L. Friar, Ann. Phys. (NY) 95, 1428 (1975).
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