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The pp → p�K+ and pp → p�0 K+ reactions with chiral dynamics
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We report on a theoretical study of the pp → p�K+ and pp → p�0K+ reactions near threshold using a
chiral dynamical approach. The production process is described by single-pion and single-kaon exchange. The
final state interactions of nucleon-hyperon, K-hyperon, and K-nucleon systems are also taken into account.
We show that our model leads to a fair description of the experimental data on the total cross section of the
pp → p�K+ and pp → p�0K+ reactions. We find that the experimental observed strong suppression of �0

production compared to � production at the same excess energy can be explained. However, ignorance of phases
between some amplitudes does not allow one to properly account for the nucleon-hyperon final state interaction
for the pp → p�0K+ reaction. We also demonstrate that the invariant mass distribution and the Dalitz plot
provide direct information about the � and �0 production mechanisms and may be tested by experiments at
COSY or HIRFL-CSR.
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I. INTRODUCTION

The pp → p�K+ and pp → p�0K+ reactions close to
threshold have been advocated as a source of information
on the p� interaction due to a clear enhancement of the
p� invariant mass distribution close to threshold [1] with
respect to a pure phase space expectation. The effect of the
p� final state interaction (FSI) has already been studied
in Refs. [2,3], with a model for the pp → p�K+ and
pp → p�0K+ based on π and K exchange and meson
baryon amplitudes evaluated with the Juelich model. Further
investigations have been carried out in Ref. [4] in terms of the
inverse Jost function and the effective range approximation.
More recently the issue of the FSI in these reactions has
been reexamined in Refs. [5,6] using dispersion relations, and
further experimental research has given more support to the
role of the �p FSI in these reactions [7]. A further investigation
into the problem looked for angular distribution as a further
observable that supported the importance of the �p FSI [8].
With suitable parametrizations of the bare amplitude for the
pp → p�K+ and pp → p�0K+ reactions prior to �p FSI, a
good reproduction of the shapes and ratio of the cross sections
of the two reactions was obtained in a wide range of energies,
considering FSI in the pp → p�K+ reaction but not in the
pp → p�0K+ reaction. A different approach, with different
results on the scattering lengths and effective range for the p�

interaction, is offered in Ref. [9].
Within a different approach to the problem, in Ref. [10]

the authors give an explanation of the pp → pK+� reaction
based on the main mechanism of N∗(1535) excitation medi-
ated by π , η, and ρ exchange. Previous work on the issue
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included contributions from the excitation of the N∗(1650),
N∗(1710), and N∗(1720) resonances [11,12]. In Ref. [13] the
authors show that the consideration of the FSI can make effects
similar to the excitation of the N∗(1535) resonance considered
in Ref. [10], and the data of Ref. [14] support the excitation of
the N∗(1650) resonance. In a reply to Ref. [13], the authors of
Refs. [15,16] argue that in the J/� → p̄K+� reaction [17]
the N∗(1535) resonance is the most outstanding signal and
they conclude that the inclusion of the N∗(1535) resonance
in the analysis of the pp → p�K+ reaction may reduce the
N∗(1650) contribution necessary to reproduce the data. In our
approach, which relies upon pion and kaon exchange and chiral
amplitudes, the πN → K� amplitude appears in the scheme,
and the unitarization of this amplitude using the chiral unitary
approach produces naturally the N∗(1535) resonance [18–21],
such that we can make a quantitative statement on its relevance
in the pp → p�K+ reaction. On the other hand the p�

interaction close to threshold is very strong [22,23], and FSI
due to this source is unavoidable in an accurate calculation
and we also take it into account. We use a dynamical model
similar to the one in Ref. [2] but we allow all pairs in the
final state to undergo FSI, as a consequence of which we
obtain a contribution from the N∗(1535) resonance using
chiral unitary amplitudes. Our approach also differs from the
other approaches on how the FSI is implemented, and for
this we follow the steps of Ref. [24]. In this reference the
chiral unitary approach, where only scattering amplitudes are
studied (asymptotic wave functions for �r → ∞), is extended
to obtain wave functions for all values of �r and at the same
time to determine form factors and effects of FSI in different
reactions.

Furthermore, the experimental total cross section for the
pp → p�0K+ reaction is strongly suppressed compared to
that of the pp → p�K+ reaction at the same excess energy.
This was explained by a destructive interference between π and
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K exchange in the reaction pp → p�0K+ [2]. In Ref. [12],
the �0 strong suppression was reproduced by the inclusion of
the contributions from N∗(1650) resonances in the total cross
sections of both pp → p�K+ and pp → p�0K+ reactions.
We also find a reduction of the pp → p�0K+ cross section
relative to that of pp → p�K+ at tree level and show that the
nucleon-hyperon FSI can further magnify the difference.

In next section, we give the formalism and ingredients for
our calculation. Then numerical results and discussion are
given in Sec. III. Finally, a short summary is given in Sec. IV.

II. FORMALISM AND INGREDIENTS

To study the reactions pp → p�K+ and pp → p�0K+,
first we investigate the possible reactions’ mechanisms in this
section. In the reaction at threshold, we consider the processes
involving the exchange of π and K mesons as the dominant
contributions, as in Ref. [2] and other works of the Juelich
group. We show all the possible diagrams exchanging π and
K mesons in Figs. 1 and 2, respectively. In the first diagram of
Fig. 1, we show the definitions of the kinematics (p1, p2, p3,
p4, p5, and q) that we use in the present calculation.

The first diagrams of Figs. 1 and 2 show, respectively,
the one π and K exchange, without further FSI. The rest of
diagrams in Figs. 1 and 2 implement FSI from meson-baryon
and baryon-baryon interactions of the final states. They are
important when we work near the threshold and should be
taken care of. We note that there are also the corresponding

p p

π0

p Λ(Σ0)K+

(1) p p

π0

p Λ(Σ0)K+

p Λ

(2) p p

π0

p Λ(Σ0)K+

p K+

(3)

p p

π0

p Λ(Σ0)K+

π0 p

(4) p p

π0

p Λ(Σ0)K+

η p

(5) p p

π+

p Λ(Σ0)K+
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FIG. 1. The π -exchange mechanism of the pp → p�(�0)K+

reactions. We have also included the FSIs. In the first diagram, we
show the definitions of the kinematics (p1, p2, p3, p4, p5, and q)
that we use in the present calculation. In addition, we would have the
analogous diagrams permuting the two baryons in the final states.
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FIG. 2. The K-exchange mechanism of the pp → p�(�0)K+

reactions.

“mirror” diagrams where the baryons p and �(�0) in the final
states are permuted with each other. The final states of the two
cases are orthogonal, although they contain the same particles;
hence, there is no interference, but they contribute equally to
the cross sections and this is taken into account.

Assuming an S wave for all the two-particle subsystems of
the final states p�(�0)K+, which holds when we work near
the reaction threshold, we can use the conservation of spin
and parity symmetries and obtain that the initial proton-proton
system, with isospin I = 1, has a total angular momentum L =
1 and a total spin S = 1; therefore, the spin wave functions for
the initial proton-proton system are

|pp〉

=

⎧⎪⎪⎨
⎪⎪⎩

|1/2, 1/2〉|1/2, 1/2〉,
1√
2
(|1/2, 1/2〉|1/2,−1/2〉+|1/2,−1/2〉|1/2, 1/2〉),

|1/2,−1/2〉|1/2,−1/2〉.
(1)

A. Elementary diagrams

To write out the total production amplitudes, first we try
to write out the elementary production processes [the first
diagrams labeled by (1) in Figs. 1 and 2]. There are two
vertices. One of them is the strong vertex of πNN and KYN :

fπNN �σ · �q, and fKYN �σ · �q. (2)
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In this process we need several effective interactions for the
strong πNN and KYN vertices as shown in the following:

fπ0pp = D + F

2fπ

, (3)

fπ+pn = D + F√
2fπ

, (4)

fK+p� =
(

−D + F√
3fK

+ D − F

2
√

3fK

)
, (5)

fK+p�0 = D − F

2fK

, (6)

fK0p�+ = D − F√
2fK

, (7)

In the present work, we use the following parameter values:
fπ = 93 MeV, fK = 1.22fπ [25], D = 0.795, and F = 0.465
[26].

Another ingredient is the two-body meson-baryon scat-
tering amplitudes such as Tπ0p→K+�, etc. We use the chiral
unitary theory to calculate them. The loop functions (G) and
T matrices for a two-body meson-baryon system are well
determined by a fit to the S11 and S31 partial wave of the
πN scattering [20] and also the K̄N scattering [27]. Once
these two-body amplitudes are fixed by the πN and K̄N

scattering data, we can use them in the present calculation
without introducing any new free parameter.

When we work in the center of mass coordinate of the
initial states, we choose the momenta of the initial protons
as (0, 0, qz) and (0, 0,−qz), and we can write the elementary
diagrams for π and K exchange as [diagrams (1) of Figs. 1
and 2]

A1
π = −FπNN (q2)fπ0ppσz(1)qz

i

q2 − m2
π

Tπ0p→K+�, (8)

A1
K = FKYN (q2)fK+�pσz(2)qz

i

q2 − m2
K

TK+p→K+p, (9)

where mπ and mK are the masses of π and K mesons, σz(1)
and σz(2) are the spin Pauli matrices acting on baryon 1 and
baryon 2, and FπNN (q2) and FKYN (q2) are the form factors
for the off-shell π and K mesons:

FπNN (q2) = �2
π − m2

π

�2
π − q2

, (10)

FKYN (q2) = �2
K − m2

K

�2
K − q2

. (11)

Here �π and �K are cutoff parameters where we take them
equivalent in order to minimize the number of free parameters.
This value is usually taken around 1 GeV in our calculations.
We do a fine tuning of this value and obtain this value after
comparing our theoretical results with the experimental data.

Similarly, we can obtain the “elementary production am-
plitudes” for the other diagrams. By this we mean the remnant

of the diagram omitting the meson-baryon or baryon-baryon
FSI. They are

A2
π = A3

π = A1
π ,

A4
π = FπNN (q2)fπ0ppσz(2)qz

i

q2 − m2
π

Tπ0p→π0p,

A5
π = FπNN (q2)fπ0ppσz(2)qz

i

q2 − m2
π

Tπ0p→ηp,

A6
π = FπNN (q2)fπ+pnσz(2)qz

i

q2 − m2
π

Tπ+p→π+p, (12)

A2
K = A3

K = A1
K,

A4
K = FKYN (q2)fK+�0pσz(2)qz

i

q2 − m2
K

TK+p→K+p,

A5
K = FKYN (q2)fK0�+pσz(2)qz

i

q2 − m2
K

TK0p→K0p.

B. Total amplitude and final state interactions

The total production amplitude M can be written in two
parts:

M = Mπ + MK, (13)

where Mπ and MK are the amplitudes for those diagrams
involving π and K exchange, respectively. We have the
following formulas:

Mπ = A1
π +

6∑
i=2

Ai
πGi

πT i
π , (14)

MK = A1
K +

5∑
i=2

Ai
KGi

KT i
K, (15)

where Ai
π/K are the elementary production processes which

we have obtained in Eqs. (8), (9), and (12). Together with
the free two-body meson-baryon propagators (such as G3

π =
GK+p, etc.), baryon-baryon propagators (such as G2

π = G�p,
etc.), and the FSIs for meson-baryon cases (such as T 3

π =
TK+p→K+p, etc.) and for baryon-baryon cases (T 2

π = T�p→�p,
etc.), we can easily write the full total production amplitude
M.

As we have discussed above, the meson-baryon G functions
and T matrices have been calculated in previous references
[20,27], and here we only need to deal with the baryon-baryon
ones. Somewhat this is not an easy task from the theoretical
point of view. However, we can obtain them using the
experimental data. For this purpose we follow the strategy
described below.

Following the factorized form of the T matrix [27,28], for
the two-body �p interaction we use the following type of
�p → �p scattering amplitude:

T�p→�p(
√

sp�) = 1

V −1 − G�p(
√

sp�)
, (16)
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FIG. 3. Total cross sections vs the invariant mass
√

sp� for the
�p → �p reaction. The experimental data are taken from Ref. [29].

where V is the �p potential and G�p is the loop function for
the �p system,

G�p(
√

sp�) = i

∫
d4q

(2π )4

M�

E�(q)

1√
sp� − q0 − E�(q) + iε

× Mp

Ep(q)

1

q0 − Ep(q) + iε

=
∫

d3q

(2π )3

M�

E�(q)

Mp

Ep(q)

× 1√
sp� − E�(q) − Ep(q) + iε

, (17)

which depends on the invariant mass
√

sp� of the p� system
and a cutoff parameter �.

Both V and � are determined using the experimental data
of the �p → �p reaction. Here we assume that the potential
V for near threshold �p → �p reaction is spin and energy
independent since we find that this is good enough to explain
the existent experiments. The �p → �p cross section is then
assumed to be

σ�p→�p = M2
pM2

�

πsp�

(
3

4

∣∣T S=1
�p→�p

∣∣2 + 1

4

∣∣T S=0
�p→�p

∣∣2
)

, (18)

with T S=1 = T S=0 in our assumption.
Then, by comparing the theoretical total cross sections of

�p → �p reaction with experimental data, we can extract the
value of the potential V and the cutoff � (as shown in Fig. 3):

V = −6.0 × 10−5 MeV−2, and � = 130 MeV. (19)

On the other side, the scattering amplitude T�p→�p(
√

sp�)
can be also expressed by using the effective range approxima-
tion in the field theory as

T�p→�p(
√

sp�) = 2π
√

sp�

MpM�

1
1
ā

− 1
2 r̄k2 + ik

, (20)

where k is the momentum of the � or the p in the �p center
of mass frame, which is given by

k =
√

[sp� − (M� + Mp)][sp� − (M� − Mp)2]

2
√

sp�

. (21)

By comparing Eq. (20) with Eq. (16), we can easily get

M�Mp

2π
√

sp�

(
1

ā
− 1

2
r̄k2

)
= V −1 − Re[G�p(

√
s�p)], (22)

M�Mp

2π
√

sp�

k = −Im[G�p(
√

s�p)], (23)

with Re[G�p(
√

s�p)] and Im[G�p(
√

s�p)] being the real and
imaginary parts of G�p(

√
s�p), respectively. From Eq. (22),

we can get the scattering length ā = (−1.75 ± 0.02) fm and
effective range r̄ = (3.43 ± 0.07) fm by using the values
of V = −6.0 × 10−5 MeV−2 and � = 130 MeV. Equation
(23) follows exactly because it expresses unitarity, and the
amplitude of Eq. (16) together with Eq. (17) satisfies unitarity.
The value of � is relatively small, but this is typical for
baryon-baryon interactions reflecting the long range of one-
or two-pion exchange. One should not use this cutoff methods
if � is smaller than the baryons’ momentum in the scattering,
but this is not the case in the range of Fig. 3 or the range
needed in the FSI in Figs. 1(2) and 2(2) for the experiments of
Refs. [30,31].

C. The transition between pp → p�K+ and pp → p�0 K+

Without considering the transition between p� and p�0,
we can obtain the amplitudes of pp → p�K+ and pp →
p�0K+. The results are shown in the following section where
we find that the first one is much larger than the second
one. Therefore, for pp → p�K+ we do not need to consider
pp → p�0K+ → p�K+, but for pp → p�0K+ we have
to consider pp → p�K+ → p�0K+ (We shall be more
quantitative below).

After considering the p� → p�0 transition diagrams
[Fig. 1(2) and Fig. 2(2)], the scattering amplitude of the
pp → p�0K+ reaction can be rewritten as two parts with
a relative phase φ,

M = M1 + eiφM2, (24)

where M1 is the basic amplitude without including the
transition process, and M2 is the transition amplitude:

M2 = Mpp→p�K+G�pT�p→�0p. (25)

Here we note that the reaction threshold of �0 production
is much higher than the � production, and hence we cannot
calculate Mpp→p�K+ using our previous result. Again we
use the experimental data of the high-energy pp → p�K+
reaction [32]. Under a pure phase space expectation we find
that a constant value Mpp→p�K+ = 1.37 × 10−7 MeV−3 is
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FIG. 4. Cross sections of the �p → �0p reaction. The experi-
mental data are taken from Ref. [33].

consistent with the experimental data. Similarly, the transition
amplitude T�p→�0p is also taken as a constant. Compared with
the experimental data of the �p → �0p scattering

σ�p→�0p = M2
pM2

�0

πsp�

pc.m.
�0

pc.m.
�

|T�p→�0p|2, (26)

we can get this constant T�p→�0p = 1.53 × 10−5 MeV−2.
We show our theoretical results for the �p → �0p cross
section in Fig. 4 by the solid line. Although the agreement
is not perfect, it is sufficient for the qualitative study that
we do in the present study of the FSI in the pp → p�0K+
reaction.

It is worth noting that from the total cross section of pp →
p�K+ and �p → �0p reactions we can only get the moduli
of Mpp→p�K+ and T�p→�0p. However, because we need to
put a relative phase φ between M1 and M2 in Eq. (24), the
phase of Mpp→p�K+ and T�p→�0p can be absorbed into the
parameter φ, which is introduced in Eq. (24). So, in Eq. (25),
we only need to use the modules forMpp→p�K+ and T�p→�0p.

The G�p function in Eq. (25) should not be the same as that
for �p scattering of lower energies because the �p energy in
this case is higher. We can already see the first problem that we
face to get a quantitative description of the nucleon-hyperon
FSI in this case. Here we adopt a phenomenological approach
fitting the relative phase φ and the cutoff parameter � of G�p

trying to reproduce the pp → p�0K+ cross section, keeping
in mind that � should be of the same order of magnitude as for
lower energies, but not necessarily equal. As a consequence,
we do not claim a precise prediction of this cross section.

D. Total cross section

From Eqs. (13) and (24) we can easily get the invariant
amplitude square |M|2, then the calculation of the total cross

section σ (pp → p�(�0)K+) is straightforward:

dσ [pp → p�(�0)K+] = 1

3

M2
p

F

∑
spins

|M|2

×Mpd3pp

Ep

M�(�0)d
3p�(�0)

E�(�0)

×d3pK+

2EK+
δ4(p1 + p2 − p3 − p4 − p5), (27)

where the flux factor is

F = (2π )5
√

(p1 · p2)2 − M4
p. (28)

Here we want to discuss a bit about the effect of the spin factor
σz of Eqs. (8), (9), and (12). For S�p = 1, the initial and final
spin structures are both symmetric, and so the σz acting on the
first proton and second proton would lead to the same result.
For S�p = 0, the initial spin structure is symmetric and the
final is antisymmetric, and so the σz acting on the first proton
and second proton would lead to the different result: it gives
an extra minus sign when acting on the second proton.

Now we address the question of the contribution to the
pp → p�K+ reaction from the transition of the pp →
p�0K+ → p�K+ process. By analogy Eq. (25) is given by

M′
2 = Mpp→p�0K+G�0pT�0p→�p. (29)

Then the relative contribution to the main pp → p�K+ term
is

R� = M′
2

M′
1
, (30)

where M′
1 is the main pp → p�K+ amplitude without

considering the p�0 → p� transition.
Similarly, the relative contribution of M2 of Eq. (25) to

M1 of Eq. (24) for the pp → p�0K+ reaction is given by

R� = M2

M1
. (31)

Hence the ratio of the two ratios is

R�

R�

= M′
2

M′
1

M1

M2
= (Mpp→p�0K+)2

(Mpp→p�K+ )2

G�0p

G�p

. (32)

The ratio of the amplitudes squared is of the order of the
ratio of the cross sections of the respective reactions for a same
excess energy and |G�0p| is smaller than |G�p| at the threshold
of �p (by a factor of about 3.5). As a consequence, the
contribution of the transition pp → p�0K+ → p�K+ rel-
ative to the main pp → p�K+ amplitude is about 100 times
smaller than the contribution of the pp → p�K+ → p�0K+
transition relative to the main pp → p�0K+ amplitude and
can be neglected.

III. NUMERICAL RESULTS AND DISCUSSION

With the formalism and ingredients given above, the total
cross section versus the excess energy (ε) for the pp → p�K+
and pp → p�0K+ reactions is calculated by using a Monte
Carlo multiparticle phase space integration program. The
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FIG. 5. Total cross section vs excess energy ε for the pp →
p�K+ reaction compared with experimental data from Refs. [30]
(solid circles) and [31] (open circles). Solid and dashed lines show
the results from our model with and without including the p� FSI,
respectively, while the dotted line represents the results by using the
p� FSI parameters from Ref. [9].

results for ε from 0 to 14 MeV are shown in Figs. 5 and
6 with the cutoff �π = �K = 1300 MeV, together with the
experimental data [30,31] for comparison.

A. The pp → p�K+ cross section

In Fig. 5, we show our results for the case of the pp →
p�K+ reaction. The solid and dashed lines show the results
from our model with and without including the p� FSI
[depicted by Figs. 1(2) and 2(2)], respectively. Alternatively,
we also perform another calculation by using the effective
range approximation for the T�p→�p in the FSI with the

FIG. 6. Total cross section vs excess energy ε for the pp →
p�0K+ reaction compared with experimental data from Ref. [31].
Solid and dashed lines show the results from our model with and
without including the p� → p�0 transition diagram, respectively.

parameters taken from Ref. [9] (as = −2.43 fm and rs =
2.21 fm for the spin of �p system S�p = 0; at = −1.56 fm
and rt = 3.7 fm for S�p = 1). The results are shown in Fig. 5
using the dotted line. The spin structure of the amplitudes is
such that one has a weight twice bigger for the transition to
S�p = 1 than to S�p = 0. Thus, this fact is implemented by
changing T�p→�p of Eq. (16) by that of Eq. (20) with the ai

and ri parameters while using the same G�p loop function.
The weighted cross section 1

3 (2σS=1 + σS=0) is taken.
We can see that in Fig. 5 both the solid and dotted lines,

which were obtained by including the p� FSI with different
methods, can reproduce the experimental data quite well for
the excess energy ε lower than 14 MeV, but the dashed line is
about 2.5 times smaller than the experimental data at threshold
but less than a factor of 2 smaller than experimental data at
ε ∼ 14 MeV. This indicates that the p� FSI is very important
in the pp → p�K+ reaction close to threshold. This energy
dependence of the FSI is what allows the determination of
the �N interaction in other approaches that do not try to get
absolute cross sections [9,34].

It is interesting to note that the spin-averaged parameters
ā and r̄ deduced from our approach are very similar to those
of the triplet parameters at and rt in Ref. [9] (which have
largest weight in the cross sections), obtained from the best
fit of both the missing mass spectrum of the reaction pp →
K+ + (p�) and the free �p scattering by using the standard
Jost function approach. Moreover, our results show that only
two parameters in the p� interaction are enough to reproduce
the current lower energy experimental data on the �p → �p

and pp → p�K+ reactions, but equally good results could
be obtained with the parameters of Ref. [9]. This indicates
that one should accept the differences between the results in
our approach and those of Ref. [9] as uncertainties in the
determination of these parameters.

B. The pp → p�0 K+ cross section

For the case of the pp → p�0K+ reaction we need minor
changes with respect to the pp → p�K+ reaction. In A1

π

and A1
K we replace � by �0 in the final states. In the other

rescattering diagrams evaluated in Eqs. (14) and (15) we
replace T i

π and T i
K by substituting � by �0 in the final states.

This takes into account the �p → �0p transition, which we
argued before was an important term to consider.

In Fig. 6, our results for pp → p�0K+ reaction are
shown. The solid and dashed lines show the results from
our model with and without including the p� → p�0

transition diagrams, respectively. The solid line is obtained
using � = 310 MeV and a relative phase φ = π/2 between
the basic pp → p�0K+ amplitude (M1) and the transition
pp → (p�)K+ → (p�0)K+ amplitude (M2). We can see
that the FSI mechanism that we have discussed can indeed
induce a reduction of the pp → p�0K+ reaction, but we
mentioned that we do not have control over � and φ.
On the other hand, we should mention at this point that
the mechanism of pp → p�0K+ production with p�0

FSI, which we have not considered, should be equally
relevant. Indeed, counting simply cross sections we have at
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4 MeV energy excess σpp→p�K+σp�→p�0 ∼ 70 mb × 5 mb
while σpp→p�0K+σp�0→p�0 ∼ 7 mb × 90 mb, which indicates
that the strength of the two amplitudes introduced in the
nucleon-hyperon FSI is similar. The FSI in this case involves
two coupled channels in which we do not have control of
interferences. This means that we do not have at hand enough
information within the present formalism to properly face the
nucleon-hyperon FSI in this case. This stated, the exercise
done indicates that this FSI could account for the difference of
our results without this FSI and the data. On the other hand,
we also found that the strong reduction of the pp → p�0K+
cross section with respect to the pp → p�K+ one is described
by our model at a semiquantitative level.

C. Invariant mass spectra and Dalitz plot

In Figs. 7 and 8, we give our prediction for the invariant
mass spectra and the Dalitz plot for pp → p�K+ and pp →
p�0K+ reactions at excess energy ε = 13 MeV. The dashed
line reflects the pure phase space, while the solid lines include
the full amplitudes. The p� FSI is very strong and can be
seen in the invariant mass distribution of the p� system in
Fig. 7.

In Fig. 7, the invariant mass distribution of K+� is
interesting and counterintuitive. Indeed, we have introduced
explicitly the FSI of the K+� state, which is dominated by
the N∗(1535) resonance below threshold in our approach.
We should expect that the solid line, accounting for the FSI
should be shifted to lower invariant masses as a consequence
of the presence of the N∗(1535) resonance below threshold.
However the opposite effect is observed. This is a consequence
of the strong effect of the �p FSI and we have observed that

FIG. 7. The invariant mass spectra and the Dalitz plot for the
pp → p�K+ reaction at excess energy ε = 13 MeV with the
contributions from the full amplitude (solid curve), compared with
pure phase space distributions (dashed curve).

FIG. 8. The invariant mass spectra and the Dalitz plot for the
pp → p�0K+ reaction at excess energy ε = 13 MeV with the
contributions from the full amplitude (solid curve), compared with
pure phase space distributions (dashed curve).

by removing this �p FSI the solid line in the K+� mass
distribution is indeed shifted to lower invariant mass with
respect to phase space.

In Fig. 8 we have taken the nucleon-hyperon FSI from
the p� → p�0 transition discussed in the text. We can see
features from the FSI in the invariant mass distribution that
can help us understand these effects better by comparison with
future experiments.

The invariant mass spectra and the Dalitz plots in Figs. 7
and 8 are direct information about the � and �0 production
mechanism and may be tested by experiments at COSY or
HIRFL-CSR.

IV. SUMMARY

We have made a theoretical study of the pp → p�K+
and pp → p�0K+ reactions involving π and K exchange
and implementing FSIs of any of the two hadron pairs in
the final states. The amplitudes and loop functions involved
have been obtained using the chiral unitary approach for
meson-baryon interactions [20,27]. The aims were two. First
we wanted to see if the theory provides a fair description
of the cross sections for these two reactions, including the
factor around 30 smaller cross sections of the pp → p�0K+
reaction than for the pp → p�K+ one at similar excess
energies. We found that the theory indeed accomplished that
qualitatively.

Second, we wanted to see the effect of the FSI and
eventually determine the �p → �p low-energy parameters,
scattering length, and effective range. Here we also suc-
ceeded and found reasonable parameters compatible with
the low-energy �p → �p transition cross section and the
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pp → p�K+ cross section. These results are also compatible
with those determined in a recent empirical analysis [9], but
we were able to show that there are intrinsic uncertainties
in the determination of these parameters from these data, in
particular the separation of the results for the S = 1 and S = 0
�p systems. For the case of the pp → p�0K+ reaction, with
much smaller cross sections than the pp → p�K+ reaction,
we could obtain qualitative results, but the FSI was influenced
by the �p → �0p transition which required extra information
than the one deduced and used in the pp → p�K+ reaction
close to threshold. In this case we have implemented the
FSI by introducing a couple of parameters (a phase and
a cutoff) to the data, within a reasonable range. A better
agreement with experiment could be found, but certainly one
does not obtain a quantitative theoretical prediction. We also
show that one should also consider the nucleon-hyperon FSI
from the p�0 → p�0 amplitude, but one would not know
the interference between the two mechanisms. The results
obtained for a and r for the �N interaction at low energies are

valuable as empirical determinations of these data, in line with
other determinations. However, by using realistic amplitudes
extracted from the chiral unitary approach, we could also show
that a determination of the absolute value of the cross sections
is possible, in line with similar findings with amplitudes from
the Juelich model.

We also made predictions for the invariant mass distribu-
tions and Dalitz plots that can be used for comparison with
future experiments.
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