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Application of the complex-scaling method to few-body scattering

Rimantas Lazauskas*
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A formalism based on the complex-scaling method is developed for solving the few-particle scattering problem,
in terms of bound state boundary conditions. Several applications are presented to demonstrate the efficiency of
the method for computing the elastic and three-body breakup reactions in systems described by Hamiltonians
which may include both short- and long-range interactions.
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I. INTRODUCTION

The exact solutions of the quantum-mechanical problem of
interacting particles are of fundamental importance in theoreti-
cal physics, and open a broad field of applications related to the
description of the microscopic world. The fast development of
the computational techniques, followed by the rapid evolution
of the computational power, provoked a sizable advance in the
multiparticle bound state problem: the rigorous and accurate
description of systems composed of several or even dozens
of particles have been obtained [1–4]. The progress in the
multiparticle scattering problem is however still moderated.
The major obstacle turns out to be the rich variety of the
reactions one has to consider simultaneously and the resulting
complexity of the wave function asymptotic structure. Till
now only the three-body system has been treated in its full
extent, including elastic and breakup channels [5–9], whereas
a rigorous description by the same methods in the four-particle
scattering remains limited to the elastic and rearrangement
channels [10–12]. Recently, a very courageous effort has been
undertaken to apply Green function Monte Carlo [13] and
no-core shell model [14] techniques to the nucleon scattering
on A � 4 nuclei. Nevertheless these promising approaches
remains limited to the description of the binary scattering
process. Therefore, finding a method which could enable us
to solve the scattering problem without an explicit use of
the asymptotic form of the wave function would be of great
importance.

The complex scaling method has been proposed [15,16] and
successfully applied to the resonance scattering [17]; as has
been demonstrated recently this method can be extended also
for the scattering problem [18,19]. In this study we propose
a novel method to solve the quantum few-particle scattering
problem based on complex scaling method, which allows
us to use trivial boundary conditions. We will demonstrate
its applicability in calculating both elastic and three-particle
breakup observables.

*rimantas.lazauskas@iphc.in2p3.fr
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II. FORMALISM: TWO-BODY CASE

A. Short-range interaction

The complex scaling method has been proposed a while
ago to treat the scattering problem for the exponentially bound
potentials [15]. The underlying idea is quite simple and can
be summarized as follows. First, one recasts the Schrödinger
equation into an inhomogeneous (driven) form by splitting the
system wave function into the sum � = �sc + � in containing
the incident (free) � in(r) = exp(ik · r) and the scattered �sc(r)
waves as

[E − Ĥ0 − V (r)]�sc(r) = V (r)� in(r). (1)

The scattered wave in the asymptote is represented by an
outgoing wave �sc ∼ exp(ikr)/r . If one scales all the particle
coordinates by a constant complex factor, i.e., ri = eiθ ri with
Im(eiθ ) > 0, the corresponding scattered wave �

sc
vanishes

exponentially as �
sc ∼ exp(−kr sin θ ) with increasing particle

separation r . Moreover if the interaction is of short range
(exponentially bound), the right-hand side of Eq. (1) also tends
to zero at large r , enabling us to solve the former equation in
a similar way as for a bound state problem, that is, by using a
compact basis or by solving a differential equation on a finite
domain by imposing �

sc
to vanish on its borders.

In practice, one uses to solve the two-body problem by
expanding the Schrödinger wave function into partial waves:[

h̄2

2μ
k2 − Ĥ0l(r) − Vl(r)

]
ψ sc

l (r) = Vl(r)ψ in
l (r). (2)

The radial part of the incoming wave is represented by the
regular Bessel functions ψ in

l (r) = jl(kr)kr , and the kinetic
energy term is given by

Ĥ0l(r) = h̄2

2μ

[
− d2

dr2
+ l(l + 1)

r2

]
. (3)

After the complex scaling, this equation becomes[
h̄2

2μ
k2 − Ĥ0l(re

iθ ) − Vl(re
iθ )

]
ψ

sc
l (r) = Vl(re

iθ )ψ
in
l (r).

(4)
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The complex scaled inhomogeneous term is easily obtained
by using analytical expressions for the regular Bessel function
ψ

in
l (r) = jl(kreiθ )kreiθ . The extraction of the scattering phase

shift may be done directly by determining the asymptotic
normalization coefficient of the outgoing wave:

ψ
sc
l (r) = Al(r) exp(ikreiθ − lπ/2), (5)

with scattering amplitude given by

kfl = eiδl sin δl = Al(r → ∞). (6)

Another well known alternative is to use an integral represen-
tation, which one gets after applying the Green theorem:

fl = −2μ

h̄2

∫
jl(kreiθ )Vl(re

iθ )
[
ψ

sc
l (r) + ψ

in
l (r)

]
re2iθ dr. (7)

B. Coulomb plus short-range interaction

If the interaction contains a long-range term, the problem
turns out to be quite different. The right-hand side of
Eq. (1)—after applying the complex scaling—diverges and
the �sc(reiθ ) term is not anymore exponentially bound. In
Refs. [18,19] the so-called “exterior complex scaling” was
proposed as a solution to circumvent the problem created by
the diverging term on the right-hand side of Eq. (1).

In this paper, when considering the problem of the in-
teraction containing the short-range V s plus the Coulomb
term V C = h̄2η

μr
, we propose to keep the standard smooth

scaling procedure, however, employing analytically continued
Coulomb waves to circumvent the problem of the divergence.
In this case the driven partial wave Schrödinger equation is
written as[

h̄2

2μ
k2−H0l(r)−V s(r)−V C(r)

]
ψ

sc,C
l (r)=V s(r)ψ in,C

l (r),

(8)

where ψ
in,C
l = Fl(η, kr) is the regular solution of the former

Hamiltonian containing Coulomb interaction only. Asymp-
totically, the scattered wave behaves as ψ sc,C ∼ exp(ikr −
η ln 2kr), and therefore vanishes exponentially after the com-
plex scaling:

ψ
C

sc(r) = Al(r) exp(ikreiθ − η ln 2kreiθ − lπ/2). (9)

Equation (8) may be readily solved with the vanishing

boundary condition for ψ
C

sc(r), provided one is able to continue
analytically the regular Coulomb functions standing on the
right-hand side.

The scattering amplitude and the Coulomb-corrected phase
shifts due to the short-range interaction δl can be determined
as previously from the asymptotic normalization coefficient:

e−iσl fl = ei(δl+σl ) sin δl = Al(r → ∞), (10)

where σl is the so-called Coulomb phase shift.
Alternatively, the Green theorem may be used to obtain an

integral relation similar to Eq. (7):

fl = −2μ

h̄2 e2iσl

∫
Fl(η, kreiθ )V s(reiθ )�

C
(r)re2iθ dr. (11)

III. FORMALISM: THREE-BODY CASE

A. Short-range interaction

For the sake of simplicity, let us consider a system of three
identical spinless particles submitted to short-range pairwise
interactions. Only two vector variables are needed in the
barycentric system, which may be one of the Jacobi pairs
xi = rj − rk and yi = 2√

3
[ri − (rk + rj )]. The pair potential is

assumed to support an arbitrary number of two-particle bound
states φ

m
(xi) with eigenvalues εm and angular momentum lm.

The corresponding continuum state has relative momenta qm,
satisfying the energy conservation relation E = h̄2

m
q2

m + εm =
h̄2

m
K2; the second equality defines three-particle breakup

momenta K .
The three-body problem is formulated by using Faddeev

equations [20] in configuration space. By readily separating
the incoming wave of the particle scattered on a bound pair in
the state φ

m
(xi), they result in a single equation:

[E − H0 − Vi(xi)]ψ
sc
i,m(xi , yi) − Vi(xi)

∑
j �=i

ψ sc
j,m(xj , yj )

= Vi(xi)
∑
j �=i

φ
m
(xj ) exp(iqm · yj ), (12)

where ψ sc
i,m is the scattered part of the Faddeev amplitude,

corresponding to the incoming particle i, and where we denote
by Vi the pair interaction of the particles j and k.

The decomposition of the total wave function into three
Faddeev amplitudes permits us to separate the two-cluster
particle channels, whereas the three-body breakup component
remains shared by the three Faddeev amplitudes. In the yi →
∞ asymptote, the scattered part of the Faddeev amplitude i

takes form

ψ sc
i,m(xi , yi) =

yi→∞ Am (̂xi, ŷi , xi/yi)
exp(iKρ)

ρ5/2

+
∑

n

fnm (̂yi)φn
(xi)

exp(iqnyi)

|yi | , (13)

where ρ =
√

x2
i + y2

i is the hyperradius, Am(̂xi, ŷi , xi/yi) is
the three-particle breakup amplitude, and fmn (̂yi) is denotes
the two-body transition amplitude from channel m to channel
n. In this expression, the sum runs over all open binary
channels n.

One may easily see that the scattered part of the Faddeev
amplitude vanishes for a large hyperradius if the particle
coordinates are properly complex scaled: xi = xie

iθ , yi =
yie

iθ , and ρ = ρeiθ . However in order to obtain a solution
of the problem on a finite grid, one should ensure that
the inhomogeneous term, standing in the right-hand side of
Eq. (12), also vanishes outside the resolution domain. The
inhomogeneous term is indeed null, damped by the potential
term, if xi is large and falls outside of the interaction region.
Alternatively for xi � yi , the modulus of the transformed
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Jacobi coordinates approach xj ≈
√

3
2 yi , yj ≈ yi

2 , and

φ
n
(xj e

iθ ) exp(iqn · yj e
iθ ) ∝ φn(xj e

iθ )
exp(−iqnyj e

iθ )

|yj |eiθ

∝ exp

(
− kn

√
3

2
yi cos θ

)
× exp

(
qn

yi

2 sin θ
)

yi

. (14)

Here we exploited the fact that the bound state wave function
decreases exponentially in the asymptote with momenta kn =√

m|εn|/h̄. The last expression vanishes for large yi only if the
condition

tan θ <
kn

√
3

qn

=
√

3|εn|
E + |εn| (15)

is satisfied.1 Notice that if the scattering energy is large, one
is obliged to restrict the complex scaling angle to very small
values.

The extraction of the scattering observables may be realized
as in the two-body case following two different ways. The
straightforward way is to extract the transition amplitudes from
the yi → ∞ asymptote of the solution ψ

sc
i (xi , yi), using the

fact that different scattering channels are orthogonal to each
other:

fnm (̂yi) = C−1
n |yi | exp(−iqnyie

iθ )

×
∫

φ∗
n
(xie

−iθ )ψ
sc
i,m(xi , yi)e

3iθ d3xi, (16)

where Cn is the normalization coefficient of the two-body wave
function ∫

φ∗
n
(xie

−iθ )φ
n
(xie

iθ )e3iθ d3xi = Cn.

The breakup amplitude can be extracted from the ψ
sc
i,m(xi , yi)

once all the two-body transition amplitudes are calculated by
using Eq. (16).

Alternatively, one can employ the Green theorem. In this
case, the integral relations might be obtained both for the
breakup and for the two-body transition amplitudes. For the
transition amplitude one has

fnm (̂yi) = −C−1
n

m

h̄2

∫ ∫
φ∗

n
(xie

−iθ )
exp(−iqnyie

iθ )

|yi | [Vj (xj e
iθ )

+Vk(xke
iθ )]�m(xi , yi)e

6iθ d3xid
3yi . (17)

1One must note that this condition is derived for a system of three
particles with identical masses. For the case of three particles with

arbitrary masses, one gets tan θ <
√

|εn|Mmk

(E+|εn|)mj mi
, where mi is the

mass of the incoming particle and mk � mj , the binding energy |εn|
corresponds to the weakest bound state of the particle pair (jk) open
for scattering, and M = mi + mj + mk is a total mass of the system.

These integrals are convergent on the finite domain, if the
following condition is satisfied:2

tan θ <

√
3km

qm + 2qn

=
√

3|εm|√|εm| + E + 2
√|εn| + E

, (18)

which is stronger than the condition given by Eq. (15).
For the breakup amplitude several different relations can

be obtained [21]. It seems that the one employing two-body

outgoing states φ
(+)

(p, xi), generated by the correspondingly
scaled strong potential at relative momenta p, is the most
reliable numerically:

Ai,m (̂xi, ŷi , xi/yi) = m

h̄2

∫ ∫
φ

(+)
(Kxi/yi, xi)

exp(−iqnyie
iθ )

|yi |
×Vi(xie

iθ )(ψj,m + ψk,m)e6iθ d3xid
3yi .

(19)

In practice, calculations are performed by expanding the
former equations into partial waves. This pure technical issue is
not the subject of this paper, and we refer the interested reader
to [21] for the details on the partial wave Faddeev equations.
One should however notice that the partial wave expansion has
no effect on the validity of the presented method.

B. Coulomb plus short-range interaction

The former discussion can be readily extended to the case
of particles interacting via short-range plus Coulomb forces.
In this case we prefer to use Faddeev-Merkuriev equations
[22], which generalizes the Faddeev formalism in order to
accommodate Coulomb forces.

Indeed, the Faddeev original equations suppose free asymp-
totic behavior of the particles and in the presence of long-range
interaction become ill behaved due to the noncompactness
of their kernel. These equations can still provide satisfactory
solution for the bound state problem, but are impractical for
dealing with the scattering case.3 Faddeev equations do not
shed any light on the asymptotic behavior of the separate
amplitudes when long-range interaction is present.

The seminal idea of Merkuriev work [22] was to split
the Coulomb potential V C into a short- plus a long-range
part, V C = V s.C + V l.C , by means of some arbitrary cutoff
function χ :

V s.C
i (xi, yi) = V C

i (xi)χi(xi, yi), (20)

V l.C
i (xi, yi) = V C

i (xi)[1 − χi(xi, yi)], (21)

2For the case of three particles with arbitrary
masses, one gets tan θ <

√
mkM|εm|/[

√
mjmi(|εm| + E) +√

(M − mi)(M − mk)(|εn| + E)], where |εn| is the ground state
binding energy of the particle pair (ij ).

3In principle, Faddeev equations may be also solved for the long-
range scattering problem after the complex scaling. However only the
vanishing of the total wave function and not of the separate Faddeev
amplitudes (ones work with) is assured in this case.

034002-3



RIMANTAS LAZAUSKAS AND JAUME CARBONELL PHYSICAL REVIEW C 84, 034002 (2011)
δ

θ
θ

δ

θ
θ

(a) (b)

FIG. 1. (Color online) NN 1S0 phase shifts at Ecm = 1 MeV
extracted using relations Eqs. (5) and (6) and Eqs. (9) and (10) for
panels (a) and (b), respectively. Calculations were performed with a
cutoff imposed at rmax = 50 (in red, curves diverging close to 50 fm)
and 100 fm (in blue, curves diverging close to 100 fm) using a complex
rotation angle θ = 10◦ (dashed lines) and 30◦ (solid line). The pure
strong interaction result is presented in panel (a) and calculations
including repulsive Coulomb interaction for a pp pair are presented
in panel (b). They are compared to the exact results indicated by a
dotted horizontal line.

and properly reshuffle the long-range terms. One is then left
with a system of equivalent equations having the form:(

E − H0 − Wi − V s
i

)
ψ sc

i − V s
i

∑
i �=j

(
ψ sc

j + ψ in
j,m

)
= (

Wi − V l
i − V C.res

i

)
ψ in

i,m , Wi = V l
i + V l

j + V l
k (22)

where V s
i = V s.C

i + Vi denote the sum of the short-range
interaction Vi(xi) of the pair (jk) plus the short-range part
of the Coulomb force (20).

The incoming state is defined by

ψ in
i,m(xi , yi) = φ

m
(xi)ϕ

C(qm, yi), (23)

where ϕC(qm, yi) is an incoming Coulomb plane wave of the
incident particle i interacting with a cluster of particles (jk)

via the Coulomb potential: V C.res
i (yi) = 4h̄2ηi,jk√

3myi

. The φ
m
(xi) is

the eigenfunction of the mth bound state of the particle pair
(jk).

The former equations are solved and the scattering observ-
ables extracted in a similar way as for the Coulomb free case.
For example the transition amplitudes are given, via the Green
theorem, by

f C
nm (̂yi) = −C−1

n

m

h̄2

∫ ∫
φ∗

n
(xie

−iθ )ϕC∗(qm, yie
−iθ )

[
V s

j (xj e
iθ )

+V s
k (xke

iθ ) + Wi(xie
iθ , yie

iθ ) − V C.res(yie
iθ )

−Vi(xie
iθ )

]
�m(xi , yi)e

6iθ d3xid
3yi , (24)

with Vi(xi) representing the full interaction between particle
pair (jk).

There is however a formal difficulty associated with the
extraction of the breakup amplitude for the case when all three
particles are charged, since the asymptotic form of the breakup
wave function is not known. In this case one may still rely on
the approximate relation employing the Peterkop integral [23]
as it was claimed in [24].

δ δ

(a) (b)

FIG. 2. (Color online) NN 1S0 phase shifts calculation at Ecm =
1, 5, and 50 MeV extracted using relations Eqs. (5) and (6) and
Eqs. (9) and (10), respectively for panels (a) and (b). Calculations
were performed with a cutoff imposed at rmax = 100 fm using the
complex rotation angle θ = 10◦. The pure strong interaction results
are presented in panel (a), and those including repulsive Coulomb
interaction for a pp pair are presented in panel (b).

C. Numerical solution

To solve the three-body problem, the Faddeev amplitudes
are expanded in the basis of partial angular momentum, spin
and isospin variables, according to

ψ sc
i (�xi, �yi) =

∑
α

Fα
i (xi, yi)

xiyi

Y α
i (x̂i , ŷi). (25)

Here Yα
i (x̂i , ŷi) denote the generalized bipolar harmonics

containing spin, isospin, and angular momentum variables of
the three particles. The so-called Faddeev partial amplitudes
Fα

i (xi, yi) are continuous functions in radial variables x, y.
The label α represents the set of intermediate quantum
numbers. By projecting Eq. (12) or Eq. (22) on the partial wave
basis Yα

i (x̂i , ŷi), a set of two-dimensional integro-differential
equations is obtained.

This set of equations is solved by expanding the partial
Faddeev amplitudes in the basis of piecewise Hermite

θ( )

δ(
)

FIG. 3. (Color online) Dependence of the calculated NN 1S0

phase shift using an integral expression as a function of the complex
rotation angle. The grid was limited to rmax = 100 fm. The upper curve
corresponds to the Coulomb-free case and the bottom one includes
Coulomb.
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TABLE I. Calculation of the scattering phase shift using integral expressions at Ecm = 1 MeV.

MT I-III MT I-III+Coulomb

rmax (fm) 5◦ 10◦ 30◦ 50◦ 5◦ 10◦ 30◦ 50◦

10 44.420 49.486 55.790 56.676 33.999 36.390 41.528 43.805
25 34.704 44.211 62.654 63.743 24.772 34.910 50.693 50.698
50 56.812 61.083 63.482 63.512 39.895 46.546 50.487 50.491
100 66.502 63.822 63.512 63.512 55.463 50.811 50.491 50.491
150 62.497 63.485 63.512 63.512 49.317 50.474 50.491 50.491

exact 63.512 50.491

polynomials (splines):

Fα
i (x, y) =

∑
cα
i,jkSj (x)Sk(y). (26)

The spline functions are defined in a rectangular grid inside the
domain [0, xmax] × [0, ymax] and are such that Sj (x = 0) ≡ 0
and Sk(y = 0) ≡ 0 as well as Sj (x � xmax) ≡ 0 and Sk(y �
ymax) ≡ 0. We have alternatively used a cubic and quintic
spline basis. This implies thatFα

i (x, y) are regular at the origin
and vanish on the borders x = xmax and y = ymax.

Using this technique, the set of integro-differential equa-
tions are converted into a linear algebra problem with the
unknown complex spline expansion coefficients cα

i,jk to be
determined. Nowadays, the computational resources permit us
to perform rather elaborate three- and two-body calculations.
Therefore the spline basis has been chosen to be sufficiently
large in order to assure four digits accuracy in three-body
calculation and five digits accuracy in the two-body case. For
the three-body problem we were using from one to two hundred
spline functions in each direction (x and y). The convergence
of the results has been checked by increasing the number of
splines until the desired number of digits is unchanged. We
have also checked the stability of the final result by changing
the cubic spline basis into the quintic one. One should mention
however that three digits accuracy may readily be obtained by
using a spline basis containing as few as 30–40 elements. For
more details of the numerical method, the interested reader
may refer to [25].

IV. RESULTS

To test the applicability of our approach, we consider
a system of three identical nucleons with mass h̄2

m
=

41.47 MeV fm2, where the strong part of the nucleon-nucleon
(NN ) interaction is described by the spin-dependent S-wave
Malfliet and Tjon potential, MT I-III, defined as

VS(r) = −AS

exp(−1.55r)

r
+ 1438.72

exp(−3.11r)

r
, (27)

where VS(r) is in MeV and r is in femtometers. The attractive
Yukawa strength is given by As=0 = −513.968 MeV fm and
As=1 = −626.885 MeV fm for the two-nucleon interaction in
spin singlet and triplet states respectively.

The MT I-III potential has been chosen for two reasons.
On one hand it is a widely employed potential for which
accurate benchmark calculations exist. On the other hand
this potential, being a combination of the attractive and
repulsive Yukawa terms, reflects well the structure of the
realistic nucleon-nucleon interaction: it is strongly repulsive
at the origin; however it has a narrow attractive well situated
at r ≈ 1 fm. Note that many numerical techniques fail
for the potentials that, like MT I-III, contain a repulsive
core.

We have first considered the two-body case. In Fig. 1 we
present our results for the NN 1S0 phase shifts at Ecm =
1 MeV. Two calculation sequences have been performed by
forcing ψ

sc
l to vanish at the border of the numerical grid set at

rmax = 50 fm (in red) and rmax = 100 fm (in blue), respectively,
whereas the complex scaling angle θ has been chosen to be
10◦ (dashed lines) and 30◦ (solid lines). The phase shifts are
extracted from the ψ

sc
l (r) value at fixed distance r , according

to Eqs. (5) and (6) for the Coulomb free case [Fig. 1(a)] and
Eqs. (9) and (10) for the case of short range plus Coulomb
interaction [Fig. 1(b)]. As one can see, the extracted phase
shifts oscillate with r . This oscillatory behavior is due to the
premature enforcement of ψ

sc
l (r) to vanish at the border of the

TABLE II. Calculation of the scattering phase shift using integral expressions at Ecm = 50 MeV.

rmax (fm) MT I-III MT I-III+Coulomb

3◦ 5◦ 10◦ 30◦ 3◦ 5◦ 10◦ 30◦

10 19.400 19.719 19.923 19.605 19.795 20.245 20.610 20.313
25 20.788 20.135 20.027 20.032 21.530 20.864 20.755 20.760
50 20.014 20.026 20.027 20.027 20.734 20.754 20.755 20.755
100 20.027 20.027 20.027 20.027 20.755 20.755 20.755 20.755

exact 20.027 20.755

034002-5



RIMANTAS LAZAUSKAS AND JAUME CARBONELL PHYSICAL REVIEW C 84, 034002 (2011)

TABLE III. Neutron-deuteron scattering phase shift and inelasticity parameter as a function of the complex rotation angle θ compared with
benchmark results of [26,27]. Our calculations has been performed by setting ymax = 100 fm.

3◦ 4◦ 5◦ 6◦ 7.5◦ 10◦ 12.5◦ Refs. [26,27]

nd doublet at Elab = 14.1 MeV

Re(δ) 105.00 105.43 105.50 105.50 105.50 105.49 105.48 105.49
η 0.4559 0.4638 0.4653 0.4654 0.4653 0.4650 0.4649 0.4649

nd doublet at Elab = 42 MeV

Re(δ) 41.71 41.63 41.55 41.51 41.45 41.04 41.35
η 0.5017 0.5015 0.5014 0.5014 0.5015 0.5048 0.5022

nd quartet at Elab = 14.1 MeV

Re(δ) 68.47 68.90 68.97 68.97 68.97 68.97 68.97 68.95
η 0.9661 0.9762 0.9782 0.9784 0.9783 0.9782 0.9780 0.9782

nd quartet at Elab = 42 MeV

Re(δ) 37.83 37.80 37.77 37.77 37.74 38.06 37.71
η 0.9038 0.9034 0.9032 0.9030 0.9029 0.8980 0.9033

grid rmax. The phase shifts extracted close to rmax are strongly
affected by the cutoff and are thus not reliable. The amplitude
of the close-border oscillations is sizeably reduced by either
increasing rmax or θ , i.e., by reducing the sharpness of the
numerical cutoff. The extracted phase shifts corresponding to
the calculation with rmax = 100 fm and θ =30◦ are stable in
a rather large window, which starts at r ∼ 5 fm (right outside
the interaction region) and extends up to r ∼ 70 fm. Beyond
this value the effect due to cutoff sets in. In the stability region
the extracted phase shifts agree well with the “exact” results
(dotted line), obtained by solving the scattering problem using
the standard (i.e., not complex rotated) boundary condition
technique.

In Fig. 2 we have compared the NN 1S0 phase shifts at
different energies (Ecm = 1, 5, and 50 MeV) by fixing rmax =

100 fm and θ = 10◦. One can see that when increasing the
energy, the effect of the cutoff reduces, sizeably improving
the stability of the extracted phase shifts. The inclusion of the
repulsive Coulomb term does not have any effect on the quality
of the method.

One may improve considerably the accuracy of the phase
shifts calculations by using the integral relation given in
Eq. (7). The results are displayed in Tables I and II and in
Fig. 3. The phase shifts converge to a constant value by either
increasing the cutoff radius rmax or the complex rotation angle.
An accuracy of five digits is easily reached. One should notice
however that the use of very large values of θ should be
avoided, due to the fact that the function ψ

sc
l (r) as well as

the complex scaled potential V (reiθ ) might become very steep
and rapidly oscillating. At a higher energy, the function ψ

sc
l (r)

TABLE IV. Proton-deuteron scattering phase shift and inelasticity parameter as a function of the complex rotation angle θ compared with
benchmark values of [27]. Our calculations has been performed by setting ymax = 150 fm.

3◦ 4◦ 5◦ 6◦ 7.5◦ 10◦ 12.5◦ Ref. [27]

pd doublet at Elab = 14.1 MeV

Re(δ) 108.46 108.43 108.43 108.43 108.43 108.43 108.42 108.41[3]
η 0.5003 0.4993 0.4990 0.4988 0.4986 0.4984 0.4981 0.4983[1]

pd doublet at Elab = 42 MeV

Re(δ) 43.98 43.92 43.87 43.82 43.78 44.83 43.68[2]
η 0.5066 0.5060 0.5056 0.5054 0.5052 0.5488 0.5056

pd quartet at Elab = 14.1 MeV

Re(δ) 72.70 72.65 72.65 72.64 72.64 72.63 72.62 72.60
η 0.9842 0.9827 0.9826 0.9826 0.9826 0.9828 0.9829 0.9795[1]

pd quartet at Elab = 42 MeV

Re(δ) 40.13 40.11 40.08 40.07 40.05 40.35 39.96[1]
η 0.9052 0.9044 0.9039 0.9036 0.9034 0.9026 0.9046
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TABLE V. Neutron-deuteron 3S1 breakup amplitude calculated at Elab = 42 MeV as a function of the breakup angle ϑ .

0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

This work Re(3S1) 1.49[ − 2] 8.84[ − 4] − 3.40[ − 2] 3.33[ − 2] 7.70[ − 2] 2.52[ − 1] 4.47[ − 1] 6.47[ − 1] 6.30[ − 1] − 1.62[ − 1]
This work Im(3S1) 1.69[0] 1.74[0] 1.87[0] 1.92[0] 1.80[0] 1.68[0] 1.70[0] 1.96[0] 2.23[0] 3.17[0]
Ref. [26] Re(3S1) 1.48[ − 2] 9.22[ − 4] − 3.21[ − 2] 3.09[ − 2] 7.70[ − 2] 2.52[ − 1] 4.51[ − 1] 6.53[ − 1] 6.93[ − 1] − 1.05[ − 1]
Ref. [26] Im(3S1) 1.69[0] 1.74[0] 1.87[0] 1.92[0] 1.80[0] 1.67[0] 1.70[0] 1.95[0] 2.52[0] 3.06[0]

vanishes faster, and thus one achieves a convergent result by
employing smaller values of rmax and/or θ .

Our analysis has been extended to the three-body case. We
have considered the nucleon-deuteron (N -d) L = 0 scattering
in spin-doublet (S = 1/2) and spin-quartet (S = 3/2) states.
Calculations have been performed both below and above the
three-particle breakup threshold. Below the breakup threshold
the results are stable and independent of the scaling angle, in
a similar way as for the two-body case. Phase shifts might
be accurately extracted using either differential or integral
expressions.

The application of the differential relations for extracting
scattering phase shifts and inelasticities above the breakup
threshold does not lead to very convincing results. It is always
a difficult task to find the stability domain. We have therefore
employed integral expressions Eqs. (24) and (19), obtained
using the Green theorem, which once again proved their worth.
We have summarized some obtained results in Tables III
and IV, respectively, for n-d and p-d scattering above the
breakup threshold. Very accurate results are obtained for both
the phase shifts and inelasticity parameters, once the complex
scaling angle is chosen in the interval [4◦, 12.5◦] for incident
neutrons with energy Elab = 14.1 MeV and in the range
[3◦, 7.5◦] at Elab = 42 MeV. A stability of the final result
within at least three significant digits is assured, providing
an excellent agreement with the benchmark calculations of
[26,27]. The calculated integral gradually ceases to converge
on the finite domain for the calculations when higher complex
scaling angles are chosen. This happens due to the fact
that the condition of Eq. (18)—which set as a limit θmax =
14.2◦ and 8.9◦ at Elab = 14.1 and 42 MeV, respectively—is
violated.

We have displayed in Table V the 3S1 n-d breakup
amplitude as a function of the breakup angle ϑ , which defines
the pair and spectator wave numbers via k = Kcos(ϑ) and q =
2Ksin(ϑ)/

√
3, respectively. A nice agreement is obtained with

the benchmark calculation of [26]. Some small discrepancy
appears only for the ϑ values close to 90◦, which corresponds
to a geometric configuration where, after the breakup, one pair

of particles remains at rest. This is due to the slow convergence
of the integral (19) for ϑ → 90◦ in the y direction. A special
procedure must be undertaken in this particular case to evaluate
the contribution of the slowly convergent integral outside the
border of resolution domain limited by ymax.

V. CONCLUSION

We have presented in this work a method based on the
complex scaling, which enables us to solve the few-nucleon
scattering problem using square-integrable functions, without
an explicit implementation of the boundary conditions. The
validity of the method has been demonstrated for two- and
three-particle scattering, including the three-particle breakup
case with repulsive Coulomb interaction. A three-digit accu-
racy may be easily obtained using this method.

As it is well known in the two-body case, the complex
scaling angle is, in principle, only limited to 90◦. We have
shown that in order to solve the three-body breakup problem,
the scaling angle must be, on the contrary, strongly restricted
from above according to Eq. (18). For the scattering at high
energy the scaling angle should be limited to very small values.
Nevertheless this limitation does not spoil the method at high
energies, since after the complex scaling a fast vanishing of the
outgoing wave is ensured by the large wave number values.

This method opens a way to the many-body scattering and
breakup reactions and allows an accurate treatment of a rich
variety of problems in molecular as well as in nuclear physics.
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