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Reexamination of the α-α “fishbone” potential
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The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the
α-α fishbone potential by simultaneously fitting to two-α resonance energies, experimental phase shifts, and
three-α binding energies. We found that, essentially, a simple Gaussian can provide a good description of two-α
and three-α experimental data without invoking three-body potentials.
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I. INTRODUCTION

The potential is the most important nonobservable physical
quantity in quantum mechanics. It is not an observable, yet
it determines all the physical observables. There are two
ways of determining the quantum mechanical potential. If
the quantum system has a classical counterpart, one can use
the correspondence principle. Otherwise, we determine the
potential by calculating observables and comparing them to
experiments.

Almost all, so-called elementary, particles are in fact
composite particles made of even more elementary particles.
These constituents are fermions that obey the Pauli principle
(i.e., they cannot occupy the same quantum state). The Pauli
principle and the internal structure and dynamics of the
constituent fermions can lead to a very complicated potential
for the composite particles.

The simplest way to model the Pauli effect is to use a
repulsive short-range potential, which suppresses the wave
function at short distances. The parameters of this phenomeno-
logical potential are determined either by the inverse scattering
method or by fitting models to experiments. In most models
local potentials are used. Generally, these models cannot
provide an acceptable description of three-body data, which
results in the need for three-body potentials.

An alternative approach is that we try to incorporate all
the information about the internal structure and dynamics
of composite particles into their mutual interactions. Several
potentials based on the nuclear cluster model [1] have been
proposed. One possibility is to derive the interactions from
the cluster model in the framework of the resonating group
method (see, e.g., Ref. [2] for a recent review). The other
approach is more phenomenological. It uses some information
on the structure of composite particles but incorporates some
phenomenological potential whose parameters are determined
by fitting the results to experiments. The pioneer of this type
of model is the orthogonality-condition model by Saito [3],
where the states are orthogonal to predefined Pauli-forbidden
states. In the method of Buck, Friedrich, and Wheatley [4], a
deep potential is adopted, and it is assumed that the few lowest
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states are forbidden by the Pauli principle. The fishbone model
by Schmid [5,6] goes beyond previous models as it introduces
the concept of partially Pauli-forbidden states.

It was a common belief that, if we incorporate all the
information about the internal structure of the particles
into their mutual interactions, then the three-body potential
would be small, perhaps negligible. However, for α particles,
while phenomenological shallow local potentials under bind
the three-α system, cluster-model-inspired phenomenological
potentials considerably over bind them.

In this work we revisit the problem of interactions of
composite particles. We consider the fishbone model of the
α-α interaction. We have chosen the α-α potential because
the α particle has an exceptionally strong binding energy. We
adopted the fishbone model because, in our opinion, this is the
most elaborated phenomenological cluster-model-motivated
potential. The variant of the fishbone potential has been
designed to minimize and to neglect the three-body potential.
Therefore, we can try to determine the interaction by a
simultaneous fit to two- and three-body data.

Previously, we studied the α-α fishbone model [7] and pro-
posed a new parametrization of the fishbone α-α interaction.
We fit the two-body phase shifts and the three-α ground-state
energy. Later we found that the results are not stable against
varying the parameters. Here, besides two-body phase shifts
and the three-α ground state, we include the three-α L = 0
ground state, the L = 0 resonant state, and the L = 2 bound
state.

In Sec. II we outline the fishbone model for the composite
particles. In Sec. III we determine the α-α potential by using
two-α and three-α data. Finally, we draw some conclusions.

II. FISHBONE OPTICAL MODEL

The fishbone model is motivated by the cluster model.
In the resonating group model the total wave function is an
antisymmetrized product of the cluster � and the intercluster
χ relative states:

|�〉 = |{A�χ}〉. (1)

The state �, which is supposed to be known in this model,
describes the internal properties of the clusters, including spin
and isospin structure. The unknown relative motion state χ is
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determined from the variational ansatz

〈�δχ |A(H − E)A|�χ〉 = 0. (2)

This ansatz results in a rather complicated equation for χ ,
which was possible to solve only by using serious approx-
imations on � and on the interaction of the particles. In a
typical example, � describes fermions in harmonic oscillator
potential wells located some distance apart and χ is the relative
motion of the oscillator wells. We can easily see that, if
we express χ in terms of harmonic oscillator states, some of
the lowest states in the relative motion space are not allowed
due to the Pauli principle.

The Schrödinger equation for the two-body fishbone model
is given by [5]

(h0 + Vl)|χ〉 = E|χ〉, (3)

where h0 is the kinetic energy operator. Our knowledge of the
internal structure and the Pauli principle are incorporated in
the fishbone potential:

Vl = vl −
∑
i,j

|ul,i〉〈ul,i |(h0 + vl − εl,i)|ul,j 〉M̄l,ij 〈ul,j |, (4)

where l refers to a partial wave and vl is a local potential. The
states |ul,i〉 are eigenstates of the norm operator,

〈��r|A|�ul,i〉 = (1 − ηl,i)〈�r|ul,i〉, (5)

where �r is the center-of-mass distance of the two clusters. If
the relative motion is forbidden by the Pauli principle, then
〈��r|A|�ul,i〉 = 0 and ηl,i = 1. The ηl,i eigenvalues are or-
dered such that |ηl,i | � |ηl,i+1|. The matrix M̄ is then given by

M̄ij =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1 − ηl,i

[(1 − η̄l,i)(1 − η̄l,i)]
1/2 if i � j

1 − 1 − ηl,j

[(1 − η̄l,j )(1 − η̄l,i)]
1/2 if i > j,

(6)

where η̄l,i = 0 if ηl,i = 1 and η̄l,i = ηl,i otherwise. In matrix
form, if we have one Pauli-forbidden state, we have

M̄l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · ·
1 0 1 −

√
1−ηl,2

1−ηl,3
1 −

√
1−ηl,2

1−ηl,4
· · ·

1 1 −
√

1−ηl,2

1−ηl,3
0 1 −

√
1−ηl,2

1−ηl,4
· · ·

1 1 −
√

1−ηl,2

1−ηl,3
1 −

√
1−ηl,2

1−ηl,4
0 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

The matrix elements of M̄ exhibit a fishbone-like structure;
hence the name of the model. In this model the Pauli-forbidden
states become eigenstates at energy ε. By choosing a large pos-
itive ε, they become bound states at large positive energy and
thus disappear from the physically relevant part of the spec-
trum. There are several versions of the fishbone model which
differ in off-shell transformations; that is, in transformations
which effect the internal part of the wave function and leave the
asymptotic part, and consequently the spectrum, unchanged.
This version of the model minimizes the three-body potential.

We can extend the two-body fishbone model to three
clusters by embedding the two-body fishbone potential into the
three-body Hilbert space [6]. We use the usual configuration
space Jacobi coordinates. For example, the coordinate x1

denotes the vector between particles 2 and 3, while y1

connects the center of mass of the subsystem (2, 3) with
particle 1. The three-body fishbone Hamiltonian is given
by

H = H 0 + Vx1 1y1 + Vx2 1y2 + Vx3 1y3 , (8)

where H 0 = h0
xi

+ h0
yi

(with i = 1, 2, 3) is the kinetic
energy operator. Here we have omitted the three-body
potential.

The fishbone potential is rather complicated. It has a
local Coulomb-like part augmented by a nonlocal short-range
potential. The numerical treatment is also nontrivial. However,
in the past couple of years, in a series of publications,
we developed a method for dealing with potentials of this
type. We solve the Lippmann-Schwinger integral equation
for two-body problems and Faddeev integral equations for
three-body problems. We approximate the short-range parts
of the potential in the Coulomb-Sturmian basis. This basis
allows an exact analytic evaluation of the Coulomb Green’s
operator in terms of a continued fraction for the two-body
case and in terms of a contour integral for the three-body
case. For details, see, for example, Ref. [7] and references
therein.

III. FISHBONE MODEL OF α-α INTERACTION

We adopt a model that, in the α particles, the nucleons
are in 0s states in a harmonic oscillator well with width
parameter a. The norm kernel eigenvalues are also harmonic
oscillator states with the same width parameter and the eigen-
values are known [8]: η0,i = 1, 1, 1/4, 1/16, 1/64, . . ., η2,i =
1, 1/4, 1/16, 1/64, . . ., and η4,i = 1/4, 1/16, 1/64, . . .. This
shows that, in the l = 0 relative motion channel, there are two
Pauli-forbidden states; in l = 2 there is one and in l = 4 and
higher channels there are none. The decreasing value of η

indicates that, in the relative motion the harmonic oscillator,
states with higher quantum number are less and less suppressed
by the Pauli principle. For the ε parameter of the fishbone
model, which aims to remove the Pauli-forbidden states, we
took ε = 60 000 MeV. In this range of ε, the dependence of
the results was beyond the fifth significant digit. We used the
experimental phase shifts from Ref. [9].

A fishbone potential of the α-α system was determined
by Kircher and Schmid [10]. The harmonic oscillator width
parameter was fixed to a = 0.55 fm−2, which leads to the
length parameter r0 = (2a0)−1/2 = 0.9535 fm. The local po-
tential was taken in the form

vl(r) = v0 exp(−βr2) + 4e2

r
erf

(√
2a

3
r

)
, (9)

where v0 and β are fitting parameters. They were determined
by fitting to experimental phase shifts. The values v0 =
−108.419 98 MeV and β = 0.188 98 fm−2 were found to
provide the best fit.
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FIG. 1. Fit to experimental l = 0, l = 2, and l = 4 phase shifts
from two-body data.

While this potential provides a reasonably good fit to
l = 0 and l = 2 phase shifts, it results in too much bind-
ing for the three-α system. It gives E3α

L=0 ∼ −15.5 MeV,
while the experimental three-α binding energy is E3α

expt =
−7.275 MeV. One may conclude that, similarly to conven-
tional local-potential models, there is a need for a three-body
potential. This was the choice that Oryu and Kamada [11]
adopted. They added a phenomenological three-body potential
to the fishbone potential of Kircher and Schmid and found
that a huge three-body potential is needed to reproduce the
experimental data. So, the conclusion was that, although the
fishbone potential provides a good fit to two-body data, it
needs a strong three-body force to reproduce the three-body
data. This is with a potential that was designed such that the
three-body force could be neglected. This is certainly not the
case. So, although the model has some good features with this
parametrization, it does not live up to its promise.

IV. RESULTS

We refit the two-α experimental data with the poten-
tial (9). Besides the phase-shift data, we also incorporated
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FIG. 2. Wave function of l = 0 α-α resonant state at energy
Eα-α = 0.091 58 − 0.000 003i MeV.
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FIG. 3. Fit to experimental l = 0, l = 2, and l = 4 phase shifts
from two- and three-body data.

the famous l = 0 two-α resonance state at Eα-α = 0.0916 −
0.000 003i MeV. We found that the parameters a =
0.5838 fm−2, v0 = −109.97 MeV, and β = 0.194 17 fm−2

provide the best fit. The fit to the α-α phase shift is given
in Fig. 1. By calculating three-α states we get E3α

L=0 =
−13.6 MeV, E3α

L=0 = −0.2 MeV, and E3α
L=2 = −11.3 MeV.

So, the fishbone model with parameters extracted from only
two-body data still cannot provide a good description of
three-body experimental binding energies.

On the other hand, two-body data are sensitive mostly
on the outer part of the potential and are less sensitive on
the inner part. We may use this fact to find a fishbone
potential which fits simultaneously two- and three-body data.
So, besides the two-body phase shifts and the l = 0 two-α
resonant state, we incorporated the L = 0 three-α ground
state at E = −7.275 MeV, the L = 0 three-α excited state
at E = 0.375 MeV, and the L = 2 three-α bound state at
E = −2.836 MeV.

We achieved the best fit to experiments with parameters a =
0.6266 fm−2, v0 = −101.78 MeV, and β = 0.1881 fm−2.
This set of parameters provides an l = 0 two-α resonant state at
Eα-α = 0.091 58 − 0.000 003i MeV. The corresponding wave
function is shown in Fig. 2. Note the peculiarity of the fishbone
model in that the ground-state wave function has nodes due to
the orthogonality to the fully Pauli-forbidden states. Figure 3
shows the α-α phase shifts. We can see that the agreement
with experiments is almost as good as before. For the three-α
states we get E3α

L=0 = −7.01 MeV, E3α
L=0 = 0.51 MeV, and

E3α
L=2 = −4.5 MeV. The L = 0 states are almost in perfect

agreement with the experimental values. The L = 2 bound
state is slightly over bounded.

V. SUMMARY AND CONCLUSION

In this work we propose a unified parametrization of the
fishbone α-α potential. We determined the potential by a
simultaneous fit to two-α and three-α data. We found that,
with three fitting parameters, one can describe the two-body
resonance and phase shifts in all partial waves. The potential
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also provides a reasonably good description of three-body data
without invoking any three-body potential.

We can learn from this study that, if we incorporate our
knowledge of the structure of composite particles into their
interaction, like we do in the fishbone model, we can achieve
a substantial simplification of the potential. Here, in the α-α
case, we have only three parameters, while in the conventional
Ali-Bodmer-type potentials, we have a couple of independent
parameters in each partial wave plus additional parameters for
the three-body potential. We believe that cluster-model-based
models for the interaction of composite particles deserve
further consideration. The fishbone model of Schmid is

especially appealing because it faithfully represents the Pauli
principle and uses the concept of partly Pauli-forbidden states.
It could also serve as a framework for the nucleon-nucleon
potential.
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