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Counting the number of correlated pairs in a nucleus
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We suggest that the number of correlated nucleon pairs in an arbitrary nucleus can be estimated by counting
the number of proton-neutron, proton-proton, and neutron-neutron pairs residing in a relative S state. We present
numerical calculations of those amounts for the nuclei 4He, 9Be, 12C, 27Al, 40Ca, 48Ca, 56Fe, 63Cu, 108Ag, and
197Au. The results are used to predict the values of the ratios of the per-nucleon electron-nucleus inelastic
scattering cross section to the deuteron in the kinematic regime where correlations dominate.
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The nucleus is a prototype of a dense quantum liquid with
a high packing fraction [1]. Naively one could expect some
severe medium effects for the nucleons. Several experimental
investigations confirmed the robustness of the nucleons. This
is for example reflected in the successful use of the impulse
approximation (IA) in nuclear reaction theory. In the IA
the bound and free nucleon properties (charges, magnetic
moments, form factors) are considered identical. A few
experiments, however, found indications for medium-modified
nuclear properties. Recent 4He(�e, e′ �p) measurements [2], for
example, could be described after implementing medium-
modified proton form factors. Also in comparing deep inelastic
scattering cross sections with those on the deuteron, one
finds that under some kinematics conditions the naive scaling
ratios do not hold. This observation is known as the EMC
(European Muon Collaboration) effect [3] and indicates that
under selected kinematics the whole of the nucleus appears to
be more than the sum of its constituents.

Recently, it was suggested [4] that the magnitude of the
EMC effect can be predicted from the knowledge of the
measured a2(A/D) coefficients. The a2(A/D) coefficients are
defined as

a2(A/D)(xB,Q2) = 2

A

σA(xB,Q2)

σD(xB,Q2)
, (1)

where σA(xB,Q2) is the inclusive (e, e′) cross section for the
target nucleus A at a particular four-momentum transfer Q2

and Bjorken 1.4 � xB = Q2

2Mω
� 2 (M is the nucleon mass, and

ω the energy transfer). The observed plateau in the measured
xB dependence of a2 for 1.4 � xB � 2 is a strong indication for
scattering from a correlated nucleon pair [5,6]. As a matter of
fact, the a2 coefficients can be interpreted as a measure for the
effect of short-range correlations (SRCs) in the target nucleus
A relative to deuteron D. In this Rapid Communication, we
suggest a technique that allows one to estimate the number of
nucleon pairs prone to SRC in an arbitrary nucleus A(N,Z).
We use these estimates to predict the values of the coefficients
a2(A/D).

A time-honored method to quantify the effect of correla-
tions in classical and quantum systems is the use of correlation
functions. The latter encode those portions of the system that
depart from mean-field behavior. The realistic (correlated)
wave functions |�〉 are constructed by applying a many-body

correlation operator to the mean-field Slater determinant |�〉
[7,8]

|�〉 = 1√
〈�|Ĝ†Ĝ|�〉

Ĝ|�〉 . (2)

The Ĝ reflects the full central, spin, and isospin dependence of
the nucleon-nucleon force but is dominated by the central and
tensor correlations

Ĝ ≈ Ŝ
{

A∏
i<j=1

[1 − gc(rij ) + ftτ (rij )Ŝij �τi .�τj ]

}
,

= Ŝ
{

A∏
i<j=1

[1 − gc(rij ) + t̂(i, j )]

}
, (3)

where gc(r12) and ftτ (r12) are the central and tensor correlation
functions, Ŝ12 the tensor operator, and Ŝ the symmetrization
operator. The correlation functions gc and ftτ determine the
radial dependence and magnitude of the correlations. Over the
last couple of decades, various many-body calculations adopt-
ing a plethora of techniques [7–10] have made predictions
for the correlation functions gc and ftτ . These calculations
confirmed the following robust features. First, the two-nucleon
correlations represent a local property. This implies that the
correlations are universal or only weakly A dependent [11].
This means that gc and ftτ are very much confined to the
bulk part of the nuclear density and only depend on the
internucleon distance. The universality property implies that
the ftτ (rij )Ŝij �τi .�τj correlation operator in a nucleus A is
not very different from the one that mixes the 3D1 and
3S1 wave-function components in deuterium [8]. Second,
it was observed that for moderate relative pair momenta
(300 � k12 � 600 MeV), the effect of the tensor correlations
is dominant [12,13]. As the Ŝ12 exclusively affects nucleon
pairs in a spin S = 1 state, it makes the proton-neutron (pn)
correlations to dominate at moderate values of the relative pair
momentum. We stress that the universality property does not
imply that the correlation functions gc and ftτ are insensitive
to model assumptions. The correlation functions depend on
the choice of the Hamiltonian, for example. Indeed, a softer
Hamiltonian (implying less correlated wave functions) will
require other correlation functions than a hard Hamiltonian
[14].
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Upon computing the response of the nucleus to some one-
body operator �̂ = ∑A

i=1 �̂[1](i), into lowest order the effect of
the correlations can be implemented by means of an effective
transition operator, which includes the effect of the correlations
[8,12]

�̂eff = Ĝ† �̂ Ĝ ≈ �̂ +
A∑

i<j=1

{[�̂[1](i) + �̂[1](j )]

× [−gc(rij ) + t̂(i, j )] + H.c.} . (4)

Obviously, through the correlations a typical one-body opera-
tor (like the γ ∗-nucleus interaction in the IA approximation)
receives two-nucleon contributions, which are completely
determined by the product of the correlation functions and
the one-body operator. The nucleon-nucleon correlations are
very local and will only affect nucleon pairs which are close.
Accordingly, the correlation operators −gc(rij ) + t̂(i, j ) act as
projection operators and will almost exclusively affect nucleon
pairs that reside in a relative S state.

We suggest that the significance of two-nucleon correla-
tions in a certain nucleus A(N,Z) is proportional to the number
of relative S states. In order to compute this number, a coordi-
nate transformation from (�r1, �r2) to (�r12 = �r1 − �r2, �R = �r1+�r2

2 )
is required. The single-particle states in the Slater determinant
|� 〉 are denoted by αa = (nalajamata), where ta = ± 1

2 is
the isospin quantum number. In a harmonic-oscillator (HO)
basis the normalized and antisymmetrized two-nucleon wave
functions can be written as

|αaαb; JRMR〉
=

∑
LML

∑
nl

∑
N	

∑
SMS

∑
T MT

1√
1 + δαaαb

[1 − (−1)l+S+T ]

× C(αaαbJRMR; (nlN	)LMLSMST MT )

×
∣∣∣∣(nl,N	)LML,

(
1

2

1

2

)
SMS,

(
1

2

1

2

)
T MT

〉
, (5)

where T (S) is the total isospin (spin) of the pair. Further,
|nl〉 (|N	〉) is the relative [center of mass (c.m.)] pair wave

function. The explicit expression for the coefficient C can be
found in Eq. (20) of Ref. [15]. With the aid of the above
expression [Eq. (5)] one can project two-nucleon states in
(�r1, �r2) on nucleon states in (�r12, �R) and determine for each pair
(αaαb) of shell-model states the weight of the various relative
(nl) and c.m. (N	) quantum numbers. For two-nucleon states
in a non-HO basis, one can obtain the weights of the various
(nlN	) combinations by expanding the single-particle wave
functions in a HO basis.

We have computed the C coefficients for all target nuclei A

either for which the a2(A/D) coefficient has been published or
for which one may expect data in the foreseeable future [16].
The Slater determinant is constructed by filling the single-
particle states as they are determined in the nuclear shell model.
We denote the Fermi level for the proton and neutron single-
particle states as α

p

F and αn
F . The quantity∑

JRMR

∑
αa�α

p

F

∑
αb�αn

F

〈αaαb; JRMR|αaαb; JRMR〉 = NZ , (6)

determines exactly the number of proton-neutron pairs. Similar
expressions hold for the number of proton-proton [ Z(Z−1)

2 ] and
neutron-neutron pairs [N(N−1)

2 ]. After inserting the right-hand
side of Eq. (5) in the above expression, one can compute how
much of each combination |(nl,N	)LML, SMS, T MT 〉 of
pair quantum numbers contributes to the total number of pairs.
Here, we are particularly interested in the quantum numbers
(nl) of the relative wave function. We denote the relative
orbital angular momentum l = 0, 1, 2, . . . as S, P,D, . . .. The
numerical calculations get increasingly more time consuming
as A increases due to the combinatorics of all possible
shell-model pairs. The accuracy of the numerical calculations
can be checked against the normalization condition of Eq. (6).
In Fig. 1 we display the relative contribution of the various l to
the pair wave functions |(nl,N	)LML, ( 1

2
1
2 )SMS, ( 1

2
1
2 )T MT 〉

for the nuclei 4He, 9Be, 12C, 27Al, 40Ca, 48Ca, 56Fe, 63Cu,
108Ag, and 197Au. It is obvious that with increasing A a
smaller fraction of the nucleon pairs resides in a relative

FIG. 1. The distribution of the relative quantum numbers l = S, P,D, F,G, H, I, � J for (a) the proton-neutron pairs, (b) the proton-proton
pairs, and (c) the neutron-neutron pairs for the various target nuclei. For the proton-neutron pairs there are contributions from 1S0(T = 1)
and 3S1(T = 0). The contribution from the 1S0(T = 1) is indicated by the dashed line. Results are obtained in HO basis with h̄ω(MeV) =
45A− 1

3 − 25A− 2
3 .

031302-2



RAPID COMMUNICATIONS

COUNTING THE NUMBER OF CORRELATED PAIRS IN A . . . PHYSICAL REVIEW C 84, 031302(R) (2011)

 0.1

 1

 10

 100

 1000

 1  10  100

nu
m

be
r 

of
 S

 p
ai

rs

mass number A

np(T=0)HO
np(T=0)WS

np(T=1)
pp
nn
Fit

FIG. 2. (Color online) The computed number of pp, nn, and
pn pairs with l = 0. For pn we discriminate between 3S1(T = 0) and
1S0(T = 1). Unless indicated otherwise the results are for a HO basis.
For the 3S1(T = 0) pn pairs also the predictions in a WS basis are
shown. The parametrizations for the WS potentials are from Ref. [17].

S state. Whereas, for 12C about 50% of the pn pairs has
l = 0 for the heaviest nucleus 197Au this is a mere 10%.
Accordingly, with increasing A, a smaller and smaller fraction
of the nucleon-nucleon pairs will be prone to correlation
effects. In addition, there is a strong isospin dependence as
the fraction of the proton-neutron pairs residing in a relative
S state is substantially larger than for proton-proton and
neutron-neutron pairs.

Naively, one could expect that the number of correlated
pn (pp) pairs in a nucleus scales like NZ (Z(Z−1)

2 ) ∼ A2. As
illustrated in Fig. 2 our calculations rather indicate that the
number of pairs that are prone to correlation effects follows
a power law ∼ A1.44±0.01. As a matter of fact, we find that
the power law is very robust. Calculations with Woods-Saxon
(WS) wave functions, for example, result in a computed
number of S states that is very close (order of one percent)
to the HO predictions. The N -Z asymmetry is reflected in
an unequal number of pp, nn, and pn 1S0(T = 1) pairs.
We stress that the ratio of the nn to pp 1S0(T = 1) pairs
can be considerably smaller than predicted by naive N(N−1)

Z(Z−1)
combinatorics. For Au, for example, one expects a ratio of
2.24 whereas the data of Fig. 2 lead to 1.77.

Now, we wish to connect the number of pairs with l =
0 with the measured values of a2(A/D). In an inclusive
A(e, e′) process the correlated part of the electron-nucleus (eA)
response [corresponding with the last two terms in Eq. (4)] can
be probed by selecting events 1.4 � xB � 2. The magnitude
of the response is proportional with a product of two terms.
First, the number of pairs that are prone to SRC, and, second,
the value of the correlation functions evaluated at the relative
momentum of the pair. Indeed, as is pointed out in Refs. [19,20]
in the kinematical regime where correlations are probed, the
eA response obeys ∼ F (P )σeNN(k12), where P is the c.m.
momentum of the correlated pair on which the absorption takes
place and F (P ) is the corresponding c.m. distribution (the
combination F (P )σeNN(k12) is referred to as the decay function
in Ref. [19]). The σeNN stands for the elementary cross section
for electron scattering from a correlated NN pair. The σeNN

contains the Fourier-transformed correlation functions gc(k12)

and ftτ (k12) evaluated at the relative momentum k12 of the pair.
An analytic expression for σepp can be found in Ref. [20]. It
is worth stressing that given the kinematics, there are two
possible values of k12 corresponding with photoabsorption
on nucleon “1” and photoabsorption on nucleon “2” of the
pair. The dominant contribution to the inclusive A(e, e′) cross
section for 1.4 � xB � 2 stems from pairs with kF � k12 �
2kF , with kF the Fermi momentum. In that momentum region,
the gc(k12) is substantially smaller than ftτ (k12), which causes
the tensor correlated pn pairs to dominate [21–23].

The universality of the tensor correlations, which translates
to the weak A dependence of ftτ (k12), allows one to assume
that the cross section σepn for electron scattering from a
correlated proton-neutron pair in the nucleus will almost equal
the one for electron scattering from the deuteron, provided
that the cross sections are evaluated at equal values of the
high relative momentum k12 of the pair. In a symbolic way,
this feature can be expressed through the scaling relation
σepn(k12) ≈ σeD(k12). This property is related to the fact that
at high momenta the nuclear momentum distributions nA(k)
are very much like scaled deuteron momentum distributions:
nA(k) ≈ CAnD(k), where CA is a measure for the number of
pn correlations in A [11,24].

With the above-mentioned scaling relation σepn(k12) ≈
σeD(k12) valid at high relative momenta, one can transform the
ratio of of Eq. (1) (the per-nucleon electron-nucleus inelastic
scattering cross section to the deuteron) into the form

a2(A/D) = 2

A

∫
PS d�k12d �PF (P )Bnp

l=0(A)σepn(k12)∫
PS d�k12σeD(k12)

,

≈ 2

A
B

np

l=0(A)
∫

PS
d �PF (P ) , (7)

where the integrations extend over those parts of the
phase space (PS) that are compatible with 1.4 � xB � 2.
The quantity B

np

l=0(A) is the number of pn pairs in a
relative |n, l〉 state with the quantum numbers of the
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FIG. 3. (Color online) The computed values for the a2(A/D) for
various nuclei. The data are from Refs. [5] (SLAC), [6] (JLAB Hall
B) and [18] (JLAB Hall C). The triangles denote the theoretical
predictions obtained with the Eq. (7).
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TABLE I. The a2(A/D) values for various nuclei. The data from direct measurements of the nucleus to deuteron cross sections are from
Refs. [5] (SLAC), [6] (JLAB Hall B), and [18] (JLAB Hall C). The values of Ref. [4] are phenomenological extractions based on the measured
EMC data and the observed linear correlation between the magnitude of the EMC effect and the measured a2 scaling factor. The quoted values
of Ref. [18] are the raw values. Reference [18] also contains corrected values for a2 which are about 15% smaller.

A Ref. [5] Ref. [6] Ref. [4] Ref. [18] Eq. (7)

4He 3.3 ± 0.5 3.80 ± 0.34 3.60 ± 0.10 2.4
9Be 4.08 ± 0.60 3.91 ± 0.12 2.8
12C 5.0 ± 0.5 4.75 ± 0.41 4.75 ± 0.16 3.3
27Al 5.3 ± 0.6 5.13 ± 0.55 4.4
40Ca 5.44 ± 0.70 5.2
48Ca 5.2
56Fe 5.2 ± 0.9 5.58 ± 0.45 5.4
63Cu 5.21 ± 0.20 5.6
108Ag 7.29 ± 0.83 6.3
197Au 4.8 ± 0.7 6.19 ± 0.65 5.16 ± 0.22 7.0

deuteron, 3S1(T = 0). One can estimate the B
np

l=0(A) from
Eq. (5) by combining the computed coefficients for all
possible |(n = 0, l = 0, N	)LML, S=1MS, T =0MT = 0〉
combinations. In Fig. 2 we have summed over all possible n

to obtain the total number of l = 0 states. For all target nuclei,
the n = 0 contribution dominates, but its relative importance
decreases with growing A. The n = 0 represents 100% of the
l = 0 pn states for 4He, about 80% for the medium-heavy
nuclei (Ca, Fe, Cu), 70% for 108Ag, and 62% for 197Au. Pairs
residing in a |n 	= 0, l = 0〉 state have a much smaller chance
of being close than their |n = 0, l = 0〉 counterparts and are
less prone to SRC effects. We assume that only |n = 0, l = 0〉
proton-neutron pairs contribute to B

np

l=0(A).
The c.m. motion of the pair in finite nuclei (absent in

the deuteron) and the imposed conditions in xB make that a
fraction of the correlated proton-neutron pairs are not counted
in the A(e, e′) signal in the numerator of Eq. (1). The F (P )
for a nucleus A can be reliably computed in a mean-field
model. Indeed, the 12C(e, e′pp) measurements of Ref. [25]
determined F (P ) over a large P range and observed it to be
compatible with a mean-field prediction. We have performed
Monte-Carlo simulations in order to determine the correction
factor

∫
PS d �PF (P ) for all nuclei that are considered here. We

find that for A > 4 about 25% of the correlated pairs are
excluded from the experimentally scanned phase space due
to the c.m. motion of the correlated pair. From the simulations
we observed that the correction factor is only slightly mass
number dependent. With this correction factor, Eq. (7) allows
us to make predictions for the a2(A/D). The predictions are
contained in Fig. 3 and Table I and compared with experimental
data. One striking observation from our calculations, is that
the predicted a2(A/D) for 40Ca and 48Ca are identical and
equal to 5.2. On the basis of naive NZ combinatorics one

may have expected a 30% difference between the two. For
heavier target nuclei, the data seem to suggest that the a2(A/D)
coefficient saturates. Our calculations predict a strong linear
rise in the A dependence of the a2 for A � 40. At higher
A one enters a second regime with a much softer linear rise
with A. Our calculations increase linearly with log(A) and
tend to underestimate the data at low A and overestimate
the data for the heavier nuclei. Final state interactions, for
example, which are neglected in this work, may induce some
additional A dependence in the a2 ratio [18]. It is clear that
more data are needed to establish the situation at large A.
The observed phenomenological linear relationship between
the scaling factor a2 and the magnitude of the EMC effect [4]
gives a2 = 7.29 ± 0.83 for Ag and a2 = 6.19 ± 0.65 for Au,
values that are not inconsistent with our results.

In conclusion, we suggest that the number of correlated
pairs in a nucleus is proportional with the number of relative
S two-nucleon states. We find this number to obey a power
law dA1.44±0.01 with d = 0.39 ± 0.02 (d = 0.13 ± 0.01) for
T = 0 (T = 1) proton-neutron pairs. The power law is robust
in that it is independent of the choices made with regard to the
single-particle wave functions. We have used the computed
number of T = 0 pn pairs to predict the value of the measured
a2(A/D) coefficients, which provide a measure of the number
of correlated pairs in the target nucleus A relative to the
deuteron. The observed power law in the number of relative
S states translates to a linear increase of a2 with log(A). We
observe that our predictions are not inconsistent with the trend
and magnitude of the data, lending support to our suggestion.
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