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Assault frequency and preformation probability of the α emission process
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A study of the assault frequency and preformation factor of the α-decay description is performed from the
experimental α-decay constant and the penetration probabilities calculated from the generalized liquid-drop
model (GLDM) potential barriers. To determine the assault frequency a quantum-mechanical method using a
harmonic oscillator is introduced and leads to values of around 1021 s−1, similar to the ones calculated within
the classical method. The preformation probability is around 10−1–10−2. The results for even-even Po isotopes
are discussed for illustration. While the assault frequency presents only a shallow minimum in the vicinity of the
magic neutron number 126, the preformation factor and mainly the penetrability probability diminish strongly
around N = 126.
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The α-decay theory was developed in 1928 [1,2]. It
describes the α radioactivity as a quantum tunneling through
the potential barrier separating the mother nucleus energy
and the total energy of the separated α particle and daughter
nucleus. Later on, cluster-like [3–8] and fission-like [9–14]
theories were used to explain the α emission process. The
decay constant λ is the product of three terms: the assault
frequency ν, the barrier penetrability P , and the α preformation
probability Pα . Often, the assault frequency is calculated
supposing that the α particle moves classically back and
forth inside the nucleus and is even sometimes taken as a
constant. The cluster preformation probability corresponds to
the penetrability of the part of the barrier before reaching the
separation point, while the barrier penetrability is associated
with the external part of the barrier when the fragments are
separated.

First, the potential barrier governing the α-particle emission
has been determined within the generalized liquid-drop model
(GLDM), taking into account the mass and charge asymmetry
[10,14,15]. The total energy is the sum of the volume,
surface, Coulomb, and proximity energies. When the nuclei
are separated,
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where Ai , Zi , Ri , and Ii are the mass numbers, charge
numbers, radii, and relative neutron excesses of the two nuclei,
respectively; r is the distance between the mass centers.

For one-body shapes, the surface and Coulomb energies are
defined as
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EC = 0.6e2(Z2/R0) × 0.5
∫
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(5)

S is the surface of the one-body deformed nucleus. V (θ ) is
the electrostatic potential at the surface, and V0 is the surface
potential of the sphere.

When there are nucleons in regard in a neck or a gap
between separated fragments, a proximity energy must be
added to take into account the effects of the nuclear forces
between the close surfaces,

EProx(r) = 2γ

∫ hmax

hmin

� [D(r, h)/b] 2πhdh, (6)

where h is the distance varying from the neck radius or zero
to the height of the neck border. D is the distance between
the surfaces in regard, and b = 0.99 fm is the surface width.
� is the proximity function. The surface parameter γ is the
geometric mean between the surface parameters of the two
fragments. This term is essential to describe smoothly the
one-body to two-body transition and to obtain reasonable
potential barrier heights. It moves the barrier top to an external
position and strongly decreases the pure Coulomb barrier.
The experimental Qα is taken into account. It has been
previously shown that the combination of this GLDM and
of a quasimolecular shape sequence allows us to reproduce
the fusion barrier heights and radii, the fission, the α decay,
and the proton and cluster radioactivity data [10,15–18].

The barrier penetrability P has been calculated within the
action integral:

P = exp

[
−2

h̄

∫ Rout

Rin

√
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]
. (7)

Then the knowledge of the experimental decay constant λ and
of the calculated barrier penetrability P allows us to determine
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FIG. 1. (Color online) The top panel (bottom panel) shows the
deviations between calculated [10] and experimental α-decay half-
lives for 131 even-even nuclei as a function of the proton number
(neutron number).

the behavior of the product Pαν via the relation

λ = PανP. (8)

Let us first recall that in a previous study [10] the ratio
λ/P was fixed as 1020 s−1. In Fig. 1, the deviation between
the values of log10[T1/2 (s)] within this approximation and the
experimental ones is shown as a function of proton number
(top panel) and neutron number (bottom panel). For the subset
of the 131 even-even nuclei the root-mean-square deviation
is 0.35. The theoretical data are slightly higher than the
experimental ones for the lighter nuclei and systematically
lower for the heaviest systems. When the proton number is
under 74 (top panel) or the neutron number is under 94 (bottom
panel), the calculations are higher than the experimental
data, but for nuclei where the proton number is beyond
100 or the neutron number is beyond 158, these theoretical
predictions are lower than the experimental data. In addition,
the deviations are larger when the proton number is about
82 and the neutron number is about 126. Some details on
nuclear structure are missing when a fixed ratio λ/P is
assumed.

In the present work, the empirical values of λ/P are
extracted for 154 even-even nuclei. The experimental α-decay
half-lives are given in Refs. [19–22]. Figure 2 displays a plot
of log10 λ/P as a function of the neutron number. The values
present a sharp decrease around the neutron magic number
N = 126, reconfirming this neutron-closure shell structure.
For a neutron number beyond about 155, the decreased trend
appears again, giving us some signals for an island of stability
of superheavy nuclei. So this ratio is in reality slightly sensitive
to the nuclear structure and can at least be used to detect shell
effects.

FIG. 2. log10(λ/P ) for 154 even-even nuclei vs the neutron
number.

As an example the extracted λ/P values are shown in the
sixth column of the Table I for even-even Po isotopes. The
range spans from 1019 s−1 to more than 1020 s−1.

One way to determine the assault frequency is to imagine
the α particle moving back and forth classically inside the

nucleus with a velocity v =
√
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M
. Then it presents itself at

the barrier with a frequency
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)
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where R is the radius of the parent nucleus, Eα is the kinetic
energy of the α particle, corrected for recoil, and M is its
mass. Then the preformation factor Pα of an α cluster inside
the mother nucleus can be estimated using Eq. (8).

As an example, the calculated assault frequency ν from
Eq. (9) as well as the preformation factor deduced from
Eq. (8) and from the experimental constant decay are shown
in the seventh and ninth columns of Table I, respectively, for
the Po isotopes. The order of magnitude of ν is 1021 s−1.
Consequently, the preformation probability is of the order
of 10−2–10−1. Both the penetration and preformation prob-
abilities are reduced in the vicinity of the magic neutron
number 126, but the penetration probability range is very large
compared to that of the preformation factor. The penetration
probability, which is strongly connected to the Qα value,
determines mainly the α-decay half-life.

An approach to deal with the assault frequency is proposed
within a microscopic method deriving from the viewpoint of
quantum mechanics. It assumes that the α particle that will
be emitted vibrates near the surface of the parent nucleus in
a harmonic oscillator potential V (r) = −V0 + 1

2μω2r2 with
classical frequency ω and reduced mass μ. The virial theorem
leads to

μω2r2 = (
2nr + 
 + 3

2

)
h̄ω, (10)

where nr and 
 are the radial quantum number (corresponding
to number of nodes) and angular momentum quantum number,

respectively.
√

r2 = 〈ψ |r2|ψ〉1/2 is the rms radius of outermost
α distributions in quantum mechanics. It equals the rms radius
Rn of the parent nucleus. The assault frequency νM is related
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TABLE I. Characteristics of the α decay for the even-even Po isotopes. The first four columns correspond to the mother nucleus, the
experimental Qα , log10[T1/2 (s)], and the experimental decay constant λ, respectively. The fifth column is the penetration probability. The sixth
through eighth columns give the ratio λ/P , the assault frequency obtained within the classical approach, and the assault frequency using a
quantum-mechanical approach, respectively. The last column displays the preformation probability.

Nuclei Qα (MeV) log10[Tα (s)] λ (s−1) P λ/P (s−1) νC (s−1) νM (s−1) Pα

188
84 Po 8.087 −3.40 1.733 × 103 8.129 × 10−17 2.133 × 1019 1.451 × 1021 2.055 × 1021 0.0147
190
84 Po 7.693 −2.60 2.772 × 102 5.907 × 10−18 4.698 × 1019 1.411 × 1021 2.039 × 1021 0.0333
192
84 Po 7.319 −1.54 2.392 × 101 3.909 × 10−19 6.119 × 1019 1.371 × 1021 2.023 × 1021 0.0446
194
84 Po 6.990 −0.41 1.782 × 100 3.249 × 10−20 5.485 × 1019 1.335 × 1021 2.008 × 1021 0.0410
196
84 Po 6.660 0.76 1.205 × 10−1 2.041 × 10−21 5.904 × 1019 1.299 × 1021 1.993 × 1021 0.0455
198
84 Po 6.310 2.18 4.580 × 10−3 8.283 × 10−23 5.529 × 1019 1.259 × 1021 1.978 × 1021 0.0439
200
84 Po 5.980 3.79 1.124 × 10−4 3.066 × 10−24 3.666 × 1019 1.222 × 1021 1.963 × 1021 0.0300
202
84 Po 5.700 5.13 5.138 × 10−6 1.721 × 10−25 2.985 × 1019 1.188 × 1021 1.949 × 1021 0.0251
204
84 Po 5.480 6.28 3.638 × 10−7 1.376 × 10−26 2.644 × 1019 1.161 × 1021 1.935 × 1021 0.0228
206
84 Po 5.330 7.15 4.907 × 10−8 2.254 × 10−27 2.177 × 1019 1.141 × 1021 1.921 × 1021 0.0191
208
84 Po 5.220 7.97 7.427 × 10−9 5.727 × 10−28 1.297 × 1019 1.126 × 1021 1.908 × 1021 0.0115
210
84 Po 5.407 7.08 5.765 × 10−8 7.615 × 10−27 0.757 × 1019 1.142 × 1021 1.895 × 1021 0.0065
212
84 Po 8.950 −6.52 2.295 × 106 4.598 × 10−14 4.991 × 1019 1.466 × 1021 2.056 × 1021 0.0341
214
84 Po 7.830 −3.87 5.138 × 103 4.309 × 10−17 1.187 × 1020 1.366 × 1021 2.042 × 1021 0.0873
216
84 Po 6.900 −0.82 4.580 × 100 3.670 × 10−20 1.248 × 1020 1.278 × 1021 2.028 × 1021 0.0976
218
84 Po 6.110 2.27 3.722 × 10−3 2.844 × 10−23 1.309 × 1020 1.199 × 1021 2.015 × 1021 0.1092

to the oscillation frequency ω by
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The relationship R2
n = 3

5R2 is used. The global quantum
number G = 2nr + 
 of a cluster state is estimated by the
Wildermuth rule [23] as

G = 2n + 
 =
4∑

i=1

gi, (12)

where n is the number of nodes of the α-core wave function, 

is the orbital angular momentum of the cluster motion, and gi

is the oscillator quantum number of a cluster nucleon. gi = 4
for nuclei with (Z,N ) � 82, gi = 5 for 82 < (Z,N ) � 126,
and gi = 6 for (Z,N ) > 126, corresponding to the 4h̄ω, 5h̄ω,
and 6h̄ω oscillator shells, respectively, where N and Z are the
proton and neutron numbers of the parent nucleus (see also
Ref. [24]). However, since a heavy nucleus involves usually
mixed oscillator shells, the determination of the G value with

FIG. 3. log10 ν for the even-even Po isotopes.

the Wildermuth rule can be ambiguous to some extent, usually
with an uncertainty of 2 or 4 in even-even heavy nuclei [25].

The estimated microscopic assault frequency from Eq. (11)
is shown in the eighth column of the Table I and Fig. 3 for even-
even Po isotopes. The order of magnitude of νM is 1021 s−1,
the same as that of νC , which proves that the two calculations
are consistent.

To study the correlation between the assault frequency
and the structure properties, the values of ν/1021 s−1 for the
even-even Po isotopes used within the classical approach and
estimated by the microscopic method are shown as a function
of the neutron number in the Fig. 4 using triangles and black
circles, respectively. The shapes of the two curves are similar,
and the values of νM from the microscopic calculations are
always larger than νC used classically but never beyond 2
times, implying again that the two different methods can
be used. The assault frequency of the isotopes generally
decreases with increasing neutron number up to the spherical
shell closure N = 126, where the minimum of the assault
frequency occurs, and then they increase quickly with the

FIG. 4. ν/1021 for the even-even Po isotopes.
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neutron number. It is clear that the α assault frequencies against
the potential barrier are sensitive to the nuclear shell closure
effects.

In conclusion, a study of the assault frequency and
preformation factor of the α decay is performed from the
experimental α-decay constant and the penetration probabili-
ties calculated from the WKB approximation and the GLDM
potential barriers. The approximation of a constant value of
λ/P is relatively rough. To determine the assault frequency
a quantum-mechanical method using a harmonic oscillator is
introduced and leads to values of around 1021 s−1, similar to the
ones calculated within the classical method using the picture
of a particle moving back and forth inside the nucleus. Then
the preformation probability is around 10−1–10−2. The results

for even-even Po isotopes from ground-state to ground-state
α emissions are discussed for illustration. While the assault
frequency presents only a shallow minimum in the vicinity of
the magic neutron number 126, the preformation factor and
mainly the penetrability probability diminish strongly around
N = 126. The small value of the preformation factor suggests
that the α decay is rather a radioactive emission process of
a cluster formed on the surface of the nucleus but before the
potential barrier penetration.
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