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Charged pion photoproduction with the �(1232) baryon beyond the resonance region
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We investigate the charged pion photoproduction off the proton target with the �(1232) baryon, i.e., γp →
π−�++(1232) and γp → π+�0(1232), based on the effective Lagrangian method, beyond the resonance region,√

s � 2 GeV. We employ the π - and ρ-meson Regge trajectories in the t channel, in addition to the proton and
� pole, in the s and u channels, respectively, and the contact-interaction contributions. A specific scheme for the
form factor which satisfies the Ward-Takahashi identity, crossing symmetry, and on-shell condition is taken into
account. We also consider a smooth interpolation between the Regge and Feynman propagators for the t-channel
meson exchanges as a function of the Mandelstam variable s. We present the numerical results for the energy and
angular dependences of the cross sections and the double- and single-polarization observables. It turns out that
the present framework reproduces the experimental data qualitatively very well. In particular, the interpolation
between the two propagators plays a crucial role in reproducing the high-energy experimental data correctly. The
π+ decay-angle distribution is also studied using the �++-decay frame, i.e., the Gottfried-Jackson frame. The
present results will be a useful guide for future high-energy photon-beam experiments.
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I. INTRODUCTION

Hadron productions via various scattering processes have
been one of the most important experimental and theoretical
methods to investigate the strongly interacting systems, which
are governed by the fundamental theory, i.e., quantum chro-
modynamics (QCD), in terms of the color-singlet degrees of
freedom. Among the various production processes, photo- and
electroproduction have proved to be very useful [1–3]. Since
the photon is a clear probe, these production processes are
well suited for investigating hadronic properties, such as the
structures, reaction mechanisms, and so on. Moreover, the non-
strange-meson electro- and photoproduction are extremely
good methods to investigate the nucleon-resonance search.
On top of these specific features, according to a gauge boson
by nature, coupling of the photon constrains the scattering
processes in such a way that the Ward-Takahashi (WT) identity
must be satisfied to all orders of Feynman diagrams. Due to
this constraint, one can identify simply the necessary Feynman
diagrams for a certain scattering process.

Experimentally and theoretically, meson electro- and pho-
toproduction have been well studied in various ways. For
instance, in the previous work [4], employing the Rarita-
Schwinger formalism for spin-3/2 fermions, it turns out
that the contact term interaction, which is responsible for
conserving the WT identity, plays a dominant role for the
�(1520) photoproduction. If this is the case, there appears
a difference of the production rate between those from the
proton and neutron targets related to their isospin structures in
each reaction process. Interestingly enough, this theoretical
consequence has been confirmed by experiments [5], and
supported theoretically [6]. We also note that the formalism
used in Refs. [4,7,8] reproduced the presently available data

*sinam@kau.ac.kr
†bgyu@kau.ac.kr

qualitatively very well [8]. Moreover, the recent beam-energy
upgrades of the experimental facilities, such as the CLAS12
at Jefferson Laboratory [10] and the LEPS2 at SPring-8 [11],
may shed light on the measurements for new high-energy data
for various photo- and electroproduction processes.

In consideration with the success of the theoretical frame-
work employed in Refs. [4,7,8] and the present situation
mentioned above, we are motivated to investigate the charged
pion (π±) photoproduction off the proton target with �

baryon, γp → π−�++ and γp → π+�0(1232), beyond the
resonance region

√
s � 2 GeV. Although there are other

isospin channels in the final π� state, we would like to focus
on these charge pion productions in the present work because
of the abundant experimental data in these specific channels.
It is also worth mentioning that these elementary processes
are important ingredients to study two-pion photoproduction
γN → ππN . As for the resonance region, the photo- and elec-
troproduction for these elementary-reaction processes were
already investigated in Refs. [12,13]. In those works, it turns
out that the reaction process contains various contributions,
such as those of the Born terms, including the nucleon and
baryon resonances, the final- (FSI) and initial-state (ISI)
interactions, and the Regge poles. However, as will be shown
in the later sections of the present work, only the Born terms
and Regge-pole contributions almost saturate the reaction
process in the high-energy region beyond the resonance
region

√
s � 2 GeV. In Ref. [14], the scattering amplitude for

γN → π� was also parametrized phenomenologically by a
simple one-pion exchange. The Regge poles and absorption
corrections were employed for the � photoproduction in
Ref. [15].

As a theoretical framework, as done in Refs. [7,8], we make
use of the effective Lagrangian method and mesonic Regge
trajectories. Since we are interested in the energy range beyond
the resonance region as mentioned, for simplicity, we will
not consider the resonant contributions in the present work.
Thus, our strategy to investigate the � photoproduction is
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quite simple: We take into account the π - and ρ-meson Regge
trajectories in the t channel for describing the high-energy
experimental data, in addition to the tree-level Born terms,
such as the the proton and � poles, in the s and u chan-
nels, respectively, and contact-term contributions. In treating
�(1232, 3/2+) particles, we make use of the Rarita-Schwinger
vector-spinor formalism [16]. In addition to these ingredients,
we also take into account an interpolation between the
Feynman and Regge propagators by using an ansatz devised
for this purpose, which was proved essential to reproduce
the low- and high-energy data simultaneously [8]. All the
relevant scattering amplitudes are constructed in terms of the
tree-level Born approximation without resonant contributions.
To consider the spatial distributions of the hadrons involved,
we introduce the hadron form factors in a gauge-invariant
scheme which preserves the Ward-Takahashi identity with the
Regge propagators as done in Refs. [8,17].

From the numerical analyses, we will compute the energy
and angular dependences, the polarization-transfer coeffi-
cients, and the π+ decay-angle distribution of the process
under various conditions. It turns out that unpolarized physical
quantities, such as the energy and angular dependence of
the total cross section, are reproduced qualitatively well
beyond the resonance region

√
s � 2 GeV, as compared to

the presently available experimental data. We also discuss
the appearance of the strong peak in the forward-scattering
region which decreases as the photon energy grows. It turns
out that this forward peak is generated by the t-channel
pseudoscalar-meson (π ) exchange. The angular dependence
dσ/dt shows that the present framework is not enough to
reproduce the experimental data for the region, where Eγ �
3.5 GeV and −t � 0.05 GeV2. Nevertheless, the present
theoretical framework provides very good agreement with the
experimental data for the high-energy region beyond Eγ ≈
5 GeV. In particular, the ansatz for the interpolation of the
Feynman-Regge realm plays an important role in reproducing
the data appropriately. From the numerical results in the π+
decay-angle distribution we find in the polarization-transfer
coefficients that the ρ-meson exchange, the contact-term
contribution, and the π exchange compete with each other in
the relatively low-energy region. In contrast, only the ρ-meson
exchange and contact-term contribution dominate the process
in the high-energy region.

The present work is structured as follows: In Sec. II, we
briefly explain the theoretical formalism, such as the effective
Lagrangians for the relevant interactions, a gauge-invariant
scheme for form factors, and mesonic Regge trajectories
to compute the reaction process that we are interested in.
Numerical results and related discussions are given in Sec. III.
We summarize and close with a conclusion in Sec. IV.

II. FORMALISMS

In this section, we explain the theoretical framework for
the present calculations for the γp → π� reaction process.
First, we present the relevant Feynman diagrams for the
present reaction process at the tree-level Born approximation
in Fig. 1. The four momenta of the particles involved are
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FIG. 1. Relevant Feynman diagrams for the γN → π�(1232)
reaction process.

also given there. We will consider the (s, u, t) channel, in
which (s, u, t) denotes the Mandelstam variables, and the
contact-term contributions. The contact term is necessary
for preserving the Ward-Takahashi identity of the scattering
amplitude as shown in [4]. The interaction Lagrangians for
each vertex are defined as follows:

LγPP = ieP [(∂μP †)P − (∂μP )P †]Aμ + H.c.,

LγPV = gγPV εμνσρ(∂μAν)(∂σV ρ)P + H.c.,

LγNN = −N̄

[
eN /A − eκN

4MN

σμνFμν

]
N,

Lγ�� = −�̄μ

[(
F1/εgμν − F3/ε

k1μk1ν

2M2
�

)

− /k1/ε

2M�

(
F2gμν − F4

k1μk1ν

2M2
�

)]
�ν,

LPN� = gPN�

MP

�̄μ∂μPN + H.c.,

LV N� = − ig
(1)
V N�

mV

�̄μγ νγ5VμνN − g
(2)
V N�

m2
V

�̄μγ5Vμν∂
νN

+ g
(3)
V N�

m2
V

�̄μ∂νγ5VμνN + H.c.,

LγPN� = − ieNgPN�

MP

�̄μAμPN + H.c., (1)

where eh stands for the electric charge of the hadron h,
whereas e is the unit electric charge. The A, P , V , N , and
� denote the fields for the photon, pseudoscalar, and vector
mesons, nucleon, and �(3/2+), respectively. The magnetic
moment of the proton is 2.79μN , giving κp = 1.79 for the
present case [18]. The antisymmetric tensor is defined by
σ = i(γμγν − γνγμ)/2, and Fμν and Vμν are the field-strength
tensors for the photon and vector mesons, respectively. The
F1–4 are the multipole moments of �, corresponding to
the monopole, dipole, quadrupole, and octupole ones. Since
there is no experimental and theoretical information for F3

and F4, we will ignore them for brevity in the numerical
calculations. As for �++, we have F1 = e� and F2, which
relates to the magnetic moment μ�++ = (3.7–8.5)μN from
the average value of the experimental data [18]. From the
theoretical calculations, such as the model-independent way
of the chiral quark soliton model (χQSM) [19,20] and the
SU(6) quark model [21], it was estimated as (5.34–5.40)μN

and 5.58μN , respectively. Hence, the middle value from
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Ref. [18], 5.6μN , must be a reasonable choice for numerical
calculations, resulting in κ�++ = 3.6. The coupling strength
of gπN� can be computed using the Yukawa vertex, defined
by LPN� in Eq. (1), experimental data of its full decay width

�→πN = (116–120) MeV with 
�/
�→πN ≈ 100% [22],
and the following relation [23]:


�→πN = 1

6

[
(M� + MN )2 − m2

π

M2
�

]
g2

πN�

4π

| pπN |3
m2

π

, (2)

where pπN indicates the three-momentum of the decaying
particle, which can be easily calculated by the Källen function
[22]:

pπN =
√

[M2
� − (MP + MN )2][M2

� − (MP − MN )2]

2M�

≈ 227 MeV. (3)

Substituting the experimental information mπ ≈ 138 MeV,
MN ≈ 939 MeV, and M� ≈ 1232 MeV into Eq. (2) and
using Eq. (3), one is led to gπN� ≈ (2.14–2.18). In numerical
calculations, we will make use of gPN� = 2.16 as a trial.
As for the ρ-meson exchange, the value of gγπρ can be
estimated using the interaction Lagrangian in Eq. (1) and
the experimental data 
ρ±→γπ± ≈ 68.59 keV; we have it
as 0.245/GeV for the charged decay. g

(1,2,3)
V N� stands for the

relevant strong-coupling strengths for each vector-nucleon-�
vertex. Again, taking into account the limited information on
these couplings, we will set them as zero as a trial, except
for g

(1)
V N� ≡ gρN�. Using a mesonic model, the value of gρN�

was determined as (3.5–7.8) from Ref. [24], and references
therein. We will use the average value for it, gρN� = 5.65 for
the numerical calculations.

Using the interaction Lagrangians defined in Eq. (1) for the
γp → π (−,+)�(++,0) reaction process, we construct the gauge-
invariant amplitudes for the s-, u-, and t-channel contributions:

iMs = gπN�

Mπ

ūμk
μ

2

[
eN

[
/k1Fs + (/p1 + MN )F̂

]
s − M2

N

+ eκN

2MN

(/k1 + /p1 + MN )Fs /k1

s − M2
N

]
/εu,

iMu = gπN�

Mπ

ūμ/ε

[
e�[(/p2 + M�)F̂ − /k1Fu]

u − M2
�

+ eκ�

2M�

/k1(/p2 − /k1 + M�)Fu

u − M2
�

]
Gμνk2νu,

iMc = −eπgπN�

Mπ

F̂ ūμεμu,

iMt(π) = −2eπgπN�

Mπ

F̂ ūμ

(
k

μ

1 − k
μ

2

)
(k2ε)uDπ ,

iMt(ρ) = igγπρgρN�

Mρ

Ft ū
μ

2 γν

[(
k

μ

1 − k
μ

2

)
gνσ − (

kν
1 − kν

2

)
gμσ

]
× (

ερηξσ k
ρ

1 εηk
ξ

2

)
γ5u1 Dρ, (4)

where k1, k2, p1, and p2 are the momenta of the photon, pion,
proton, and �. Dπ(ρ) = 1/(t − M2

π(ρ)) are the t-channel π -
and ρ-meson propagators, respectively. Fs,u,t stands for the

phenomenological hadronic form factors:

Fx = �4

�4 + (
x − M2

x

)2 , (5)

where subscript x stands for the Mandelstam variables
[25–27]. The cutoff mass � will be determined to reproduce
the experimental data in the next section. Gμν denotes the
projection operator for the spin-3/2 fermion, assigned as

Gμν = gμν − 1

3
γμγν − 2

3M2
�

qμqν + qμγν − qνγμ

3M�

,

q = p2 − k1. (6)

Although the spin-3/2 propagator was defined above, we will
simplify it by setting Gμν ≈ gμν , and verify that no significant
distinction is observed by this simplification as long as we are
interested in the two-body final-state reaction process beyond
the resonance region. The F̂ indicates a common hadronic
form factor to maintain the Ward-Takahashi identity of the
scattering amplitude [4,7,8,25–27]:

F̂ = 1 − (1 − Fs)(1 − Ft )(1 − Fu). (7)

We note that this form-factor scheme preserves the gauge
invariance, crossing symmetry, and on-shell condition of the
form factors. We have verified that the above invariant am-
plitudes lead to the following charge conservation, satisfying
the Ward-Takahashi identity, together with the electric charge
in Eq. (4), assigned as (eπ , eN , e�) = (−e,+e,+2e) and
(+e,+e, 0) for the π− and π+ photoproductions, respectively.

As mentioned previously, since we are interested in the
region beyond that of the resonances, it is necessary to take into
account a method to go over the Born approximation, which
is believed to be reliable only for the low-energy region. As in
Refs. [8,28–31], the Regge-trajectory prescription is one of the
most successful and practical methods for this purpose. As for
the γp → K+�(1520) photoproduction [8], whose threshold
energy is about Eγ ≈ 1.67 GeV, the Regge contribution
becomes significant beyond Eγ ≈ 4 GeV. Furthermore, the
Regge contribution turns out to be responsible for reproducing
the angular dependence of the scattering process correctly,
especially for the momentum-transfer t dependence, i.e.,
dσ/dt in the high-energy region.

In the present work, we will consider the Regge trajectories
for the pion and ρ meson in the t channel. However, for
simplicity, we will not consider the axial-vector and tensor
mesons, such as a1(1260, 1+), b1(1235, 1+), a2(1320, 1+),
and so on. As discussed in Refs. [8,9], the prescription for
the reggeization can be applied to the present framework by
replacing the t-channel Feynman propagators in the invariant
amplitudes in Eq. (4) with the following one:

PX = πα′
X


[αX(t) − JX + 1] sin[παX(t)]

(
s

s0

)αX(t)−JX

,

αX(t) = JX + α′
X(t − m2

X) GeV−2, (8)

where αX denotes the Regge trajectory for meson X as a
function of t with slope α′

X. JX and mX stand for the spin and
mass of the meson, respectively. Here is a caveat; in deriving
Eq. (8), all the even and odd spin trajectories are assumed
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TABLE I. Relevant inputs for the Regge trajectory of the meson X.

J P mX JX α′
X

π 0− 140 MeV 0 0.7
ρ 1− 770 MeV 1 0.8

to be degenerate, although in reality these trajectories are not
degenerated [29–31]. Moreover, for convenience, we have set
the phase factor for the propagators to be positive unity as done
in Ref. [17]. The cutoff parameter s0 is chosen to be 1 GeV
conventionally [29–31]. Since the gamma function in Eq. (8)
plays the role of the form factor in the Feynman propagator
to suppress the divergence of the Regge propagator at the
singularities sin[παX(t)] = 0, we will not consider the form
factors given in Eq. (4), setting all of them to unity in the
Regge-pole calculation. Hereafter, we use a notation iMRegge

for the amplitude thus constructed with the Regge propagators
in Eq. (8). We list the relevant inputs for the Regge trajectories
in Table I.

Let us now discuss gauge invariance of the present invariant
amplitude where the π and ρ exchanges in Eq. (4) are
reggeized with the Regge propagators in Eq. (8). Following
the procedure in Refs. [29–31] for the t-channel reggeization,
we write the reggeized amplitude for the π exchange as

iM = iMRegge
t(π,ρ) + (iMs + iMu + iMc). (9)

It is, then, easy to show that the amplitude in Eq. (9) does not
satisfy the current conservation as follows:

k1(iM) = k1
(
iMRegge

t(π) + iME
s + iME

u + iMc

) �= 0. (10)

Hence, the sum of the π exchange in t-channel and electric s

and u channels must be zero to satisfy the gauge invariance,
whereas the ρ exchange and magnetic contributions are
automatically zero, due to their antisymmetric nature. To
satisfy the gauge invariance, we follow the prescription in
Refs. [29–31] as

iMRegge
t(π) + iME

s + iME
u + iMc

→ iMRegge
t(π) + (

iME
s + iME

u + iMc

)(
t − m2

π

)
Pπ

≡ iM̄Regge, (11)

where we set Fs,u and F̂ to be unity for the iM̄Regge. Thus, the
reggeized amplitude can be written as follows:

iM = iM̄Regge + iMM
s + iMM

u + iMRegge
t(ρ) , (12)

where superscript M denotes the magnetic contributions of the
s and u channels.

Considering that the Regge propagators work properly
for (s, |t |) → (∞, 0) and assuming that the Regge contribu-
tions can survive even in the low-energy region (s, |t |) →
(sthreshold, finite), it is natural to expect a smooth interpolation
between two regions. Hence, it is physically natural to consider
that the meson propagators are supposed to smoothly shift
from the Regge one for s � sRegge to a usual Feynman one
for s � sRegge. Here, sRegge indicates a certain value of s from
which the Regge contributions become effective. Moreover, it
is also likely that the interpolation reveals unknown production

mechanisms parametrically in the intermediate energy region.
As discussed in Ref. [8] in detail, there is no unique scheme to
interpolate these two regions. Thus, as a trial, we introduce a
Feynman-Regge interpolating ansatz by redefining the form
factors in the relevant invariant amplitudes in Eq. (4) as
follows:

F̂ → F̄c ≡ [(
t − M2

X

)
PX

]
R + F̂ (1 − R), (13)

where

R = 1

2

[
tanh

(
s − sRegge

s ′

)
+ 1

]
. (14)

Here, s ′ denotes a free parameter to make the argument
of tanh in Eq. (14) dimensionless. It is easy to understand
that R goes to unity as s → ∞ and approaches zero as
s → 0. This asymptotic behavior of R ensures that F̄c in
Eq. (13) interpolates the two energy regions smoothly. As
already shown in Ref. [8], this interpolating description works
qualitatively very well in reproducing the low- and high-energy
region data simultaneously. We will determine the parameters
sRegge and s ′ with experimental data in the next section.

As discussed above, we have three different models in the
following sections, assigned as

(1) Born: The scattering amplitude is defined with the
conventional Born propagators with the phenomenological
form factors as in Eqs. (4), (5), and (7).

(2) Regge: The scattering amplitude is modified by the
Regge contributions without form factors as in Eq. (12).

(3) Interpolation: The Regge approach is modified by the
interpolation formula in Eqs. (13) and (14).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results for the
various physical observables such as the energy and angular
dependences of the cross sections for the two charged pion
photoproduction processes. We also show the numerical results
for the polarization-transfer coefficient (Cx,z) [7,32,33] and
the π+-decay angle distribution [8,34] for the γp → π−�++
process, in addition to the photon-beam asymmetry with
the linearly polarized beam. The results are compared with
experimental data to provide theoretical estimations useful for
future experiments.

First, we investigate the unpolarized total cross section as
a function of the photon energy Eγ in the three different
models, using the cutoff mass � = 450 MeV. We present
the results for the π− photoproduction in panel (a) of Fig. 2
in which the solid, dotted, and dot-dashed lines correspond
to the Born, Regge, and interpolation models, respectively.
The experimental data are taken from Refs. [35–37]. The
simple Born method provides qualitatively good agreement
with the data, whereas the Regge one corresponding to
R = 1 shows overshoot in the lower-energy region. This
observation indicates that the simple replacement of the
t-channel Feynman propagators with the Regge ones in the
present case does not work very well. In the application of the
interpolation ansatz with the relevant parameters determined
as sRegge = (3.5 GeV)2 and s ′ = (2.5 GeV)2, we obtain a
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FIG. 2. (Color online) Total cross sections for the γp → π−�++ (a) and γp → π+�0 (b) reaction processes as a function of Eγ .
Experimental data are taken from Refs. [35] [Ballam (i)], [36] [Struczinski (i)], [37] [Ballam (ii)], [42] [Struczinski (ii)], and [43] (ABBHHM).
We show the curves from the numerical results for the Born terms (solid), that plus the Regge (dotted), those with the interpolation (dashed),
separately. For more details, see the text.

reasonable result as shown in panel (a) of Fig. 2. These values
indicate that the Regge contribution starts to prevail over the
present reaction process beyond

√
s ≈ 3.5 GeV. Note that the

cutoff mass � = 450 MeV used for the present calculation is
about 25% smaller than that for the �(1520) photoproduction
[4,7,8]. As for the π+ photoproduction, it turns out that one
needs much smaller cutoff mass to reproduce the experimental
data qualitatively, i.e., � ≈ 200 MeV as shown in panel
(b) of Fig. 2 for the Born and interpolation models. Note
that this cutoff value is much smaller than that for the π−
photoproduction, indicating that there can be considerable
contributions beyond those from the ground-state hadrons.
The numerical results for the Born and interpolation models
show similar energy dependence, whereas their strengths are

rather different, although the experimental data contain sizable
uncertainties in this channel. Note that the Regge-model result
strongly overshoots the data, which are not depicted here.

Panel (a) of Fig. 3 shows the differential cross section for the
π− photoproduction as a function of Eγ for the three different
angles, θ = (0, 30◦, 60◦) with the same notations for the lines
as those in Fig. 2. At the very forward angle θ = 0, the strength
of the cross section decreases monotonically for the three cases
without showing significant differences. On the contrary, as
the angle increases, the difference between them becomes
obvious, according to the considerable contributions of the
Regge ones. By applying the interpolation ansatz, the differ-
ence between the models with and without the interpolation
turns out to be moderate for θ � 30◦, and becomes negligible
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d
σ

/c
o

s
Θ

 [
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b
]

Θ [degree]

d
σ
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Θ
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µ

b
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FIG. 3. (Color online) Differential cross section for γp → π−�++ as a function of Eγ for different angles θ = (0, 30◦, 60◦) for the Born
terms (solid), that plus the Regge (dotted), and those with the interpolation (dashed), separately in (a). In (b) we plot the differential cross
section as a function of θ for different energies, Eγ = (2, 6, 10) GeV, represented in the same manner as (a).
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at θ = 60◦. In panel (b) of Fig. 3, we draw the differential cross
section as a function of θ for different energies, Eγ = (2, 6, 10)
GeV, represented in the same manner as panel (a). From this we
can conclude that there is strong t-channel contribution, which
makes a peak in the forward-scattering region. This tendency
is rather different from that of the �(1520) photoproduction,
in which case the contact-term contribution dominates the
reaction process [4,7,8]. As the energy increases, the overall
strength of the differential cross sections becomes smaller and
the peak position moves to the vicinity around θ = 0. We
will discuss the shift of the peak position in detail below. We
note that the Born and interpolation models provide almost
negligible contributions in the backward-scattering region,
θ � 60◦, which can be understood easily from panel (a) in
Fig. 3: the smaller strengths for the larger angles.

Now we are in a position to discuss the momentum-transfer
t dependence of the present reaction process, represented
by dσ/dt as a function of −t for the π− photoproduction,
as in Fig. 4. The three cases for the Born (a), Regge (b),
and interpolated (c) models are presented separately for
the four different energy ranges; Eγ = 2.4–2.8 GeV, Eγ =
2.8 − 3.6 GeV, Eγ = 3.6–4.4 GeV, and Eγ = 4.4–4.8 GeV,
in which the shaded band stands for each energy interval. The
experimental data are taken from Ref. [38]. As for the Born
model (a) in Fig. 4, the experimental data are qualitatively well
reproduced in the region −t = (0.05–0.2) GeV2. Outside the
region, only the high-energy data around Eγ ≈ 4.6 GeV are
in relatively good agreement with the theoretical prediction.
In other words, these observations tell us that there can
be missing contributions for the lower-energy region in the
present framework, especially for the small |t | region. Such
discrepancies indicate the need for further contributions from
the N and � resonances around

√
s = (2–3) GeV and possibly

from other kinds of t-channel meson exchanges which we
are not considering here. As we take into account the Regge
contributions as shown in Fig. 4(b), there appears strong
enhancement for the region beyond −t � 0.2 GeV2, which
overshoots the data. Again, this unexpected overestimation is
tamed by including the interpolating ansatz as seen in Fig. 4(c),
which leads to relatively good agreement with the experimental
data. In Fig. 4(d) we draw each contribution separately for
the dσ/dt at Eγ = 2.4 GeV, using the Born model, in order
to see which contribution is essential to produce the curve.
As shown, the π -exchange and contact-term contributions
dominate the forward-scattering region, whereas the others
are considerably small. Moreover, one can easily see that the
contact-term contribution makes the peak shift to the smaller
t region (−t ≈ 0.01 GeV2). By comparing this observation
with Fig. 3(b) and seeing the shift of the peak, one can easily
find that the contact-term contribution prevails over the π

exchange as Eγ increases, although the contribution of the
π exchange is still manifesting. In Fig. 4(e), we also show the
numerical results, using the interpolation model, for the π+
photoproduction. Again, we observe similar tendency with
that for the π− case.

In Fig. 5, we present the numerical results of the
momentum-transfer t dependence for the higher photon-
energy regions, Eγ = 5 (a), 8 (b), 11 (c), and 16 (d) GeV.
The experimental data are taken from Refs. [39–41]. Similarly,

we draw the three models, Born (solid), Regge (dotted), and
interpolation (dashed), separately. It can be clearly seen that
the one with the interpolation yields considerably excellent
results in comparison with the experiment. We also find that
the results from the Born approximation are only reliable
below −t ≈ 0.1 GeV2 for all the photon energies. Beyond
this value, we observe that the Regge contribution plays
a critical role, as shown in Fig. 5. At the same time, the
interpolation ansatz works very well for these relatively
high-energy ranges. For instance, we see that the value of
R becomes about 0.4, which indicates that the contributions
from the Regge and Feynman propagators are almost in the
same portion for Eγ = 5 GeV. As expected, with a much
higher energy such as Eγ = 16 GeV, the R becomes almost
unity, i.e., the Regge propagator prevails almost completely
over the Feynman one. Hereafter, we will show the numerical
results only from the interpolation case, since we have
seen that the ansatz for the interpolation has reproduced
the experimental data qualitatively very well so far. As
for the π+ photoproduction, we again find a qualitative
agreement with the data as shown in Fig. 5(e), although
sizable deviation is observed in comparison to that for the
π− one.

Now we discuss the polarized quantities for the �++
photoproduction, such as the polarization-transfer coefficients
Cx,z. Among the polarization observables in a meson pho-
toproduction, Cx and Cz are identified as the spin asym-
metry along the direction of the polarization of the recoil
baryon with the circularly polarized photon beam. First, we
define the polarization-transfer coefficients in the (x ′, y ′, z′)
coordinate, being similar to those for the spin-1/2 hyperon-
photoproduction as in Refs. [32,33]:

Cx ′,|Sx′ | =
dσ
d� r,0,+Sx′ − dσ

d� r,0,−Sx′
dσ
d� r,0,+Sx′ + dσ

d� r,0,−Sx′

,

(15)

Cz′,|Sz′ | =
dσ
d� r,0,+Sz′

− dσ
d� r,0,−Sz′

dσ
d� r,0,+Sz′

+ dσ
d� r,0,−Sz′

,

where subscripts r , 0, and ±Sx,′z′ stand for the right-handed
photon polarization, unpolarized target nucleon, and polariza-
tion of the recoil baryon along the x ′ or z′ axis, respectively.
Since the photon helicity is fixed to be +1 here, Cx ′ and
Cz′ measure the polarization transfer to the recoil baryon.
Moreover, Cx ′ and Cz′ behave as the components of a three-
vector so that it can be rotated to the (x, y, z) coordinate as(

Cx

Cz

)
=

(
cos θK sin θK

− sin θK cos θK

) (
Cx ′

Cz′

)
, (16)

where the (x, y, z) coordinate stands for when the incident
photon momentum is aligned with the z axis. These polariza-
tion quantities were already investigated for the spin-1/2 [33]
and spin-3/2 [7,8] baryons. The numerical results for Cx,z are
presented in Fig. 6, employing the interpolation mode only,
for different Eγ values, (2–12) GeV corresponding to panels
(a)–(f). All the results show Cz = 1 and Cx = 0 in the collinear
limit, i.e., at cos θ = ±1, due to the helicity conservation. Gen-
erally, we observe very complicated structures for the vicinity

025203-6



CHARGED PION PHOTOPRODUCTION WITH THE . . . PHYSICAL REVIEW C 84, 025203 (2011)

0 0.1 0.2 0.3 0.4 0.5
-t [GeV ²]

0.1

1

10

100

d
σ

/d
t 

[µ
b

/G
eV

²]

0 0.1 0.2 0.3 0.4 0.5
-t [GeV ²]

0.1

1

10

100

d
σ

/d
t 

[µ
b

/G
eV

²]

0 0.1 0.2 0.3 0.4 0.5
-t [GeV ²]

0.1

1

10

100

d
σ

/d
t 

[µ
b

/G
eV

² ]

0 0.1 0.2 0.3 0.4 0.5
-t [GeV ²]

0.1

1

10

100

d
σ

/d
t 

[µ
b

/G
eV

²]

0 0.2 0.4 0.6 0.8 1
-t [GeV²]

0.01

0.1

1

10

d
σ

/d
t 

[µ
b

/G
eV

²]

FIG. 4. (Color online) Angular dependence dσ/dt [μb/GeV2] for γp → π−�++ as a function of −t (GeV2) for the low-energy region
Eγ = (2.4–4.8) GeV for the Born terms (a), that plus the Regge (b), and those with the interpolation (c), separately. Experimental data are
taken from Ref. [38] (Barber). Each contribution is also drawn for Eγ = 2.4 GeV (d). In (e) we draw the numerical result for the γp → π+�0,
using only the interpolation model.
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FIG. 5. (Color online) (Color onnline) Angular dependence dσ/dt (μb/GeV2) for γp → π−�++ as a function of −t (GeV2) for the
high-energy region Eγ = (5, 8, 11, 16) GeV in (a), (b), (c), and (d), respectively. Experimental data are taken from Refs. [39] (Boyarski), [40]
(Anderson), and [41] (Quinn). In (e) we draw the numerical result for the γp → π+�0.

cos θ � 0.5, because of complicated interferences between the
π -exchange and contact-term contributions. For Eγ � 8 GeV,

the shapes of the curves remain relatively unchanged. This
tendency, negligible changes for the higher photon energies,
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cos Θ cos Θ

cos Θ cos Θ

cos Θ cos Θ

FIG. 6. (Color online) Polarization-transfer coefficients Cx,z for the spin-1/2 and -3/2 components for γp → π−�++ as functions of cos θ

for different photon energies, Eγ = (2–12) GeV, corresponding to panels (a)–(f), computed from the interpolation model.

was already observed for the �(1520) photoproduction [7,8].
We expect that Cx,z for the � photoproduction at high

energy can be measured by CLAS Collaboration at Jefferson
Laboratory, considering their upgraded photon-beam energy
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p

+

−

+ +
p

+ +p

p

+

FIG. 7. (Left) Feynman diagram for γp → π+π−p. In the box, the subsequent process, ψp → �++ → π+p, is depicted, where ψ

indicates a meson exchanged. The diagram in the box can be interpreted using the Gottfried-Jackson frame as shown on the right. The angle φ

is defined by that between the initial and final particles.

and high performance of the circular photon polarization, as
already done for the ground-state � hyperon, i.e., �(1116)
[32].

In regard to Cx,z, we want to discuss the π+ decay-angle
distribution function for the π− photoproduction process.
The decay-angle distribution has already been discussed
experimentally for the �(1520) photoproduction [34,44].
Theoretically, it was also explored in the previous work [7,8].
The decay-angle distribution is the angle distribution of π+
that decays via �++ → π+p in the t-channel helicity frame,
i.e., the Gottfried-Jackson frame [45]. Schematic figures for
this frame and kinematics are shown in Fig. 7, wherein the
decay angle φ is defined. From this distribution function one
can see which meson exchange is dominating the production
process. According to the spin statistics, the distribution
function becomes proportional to sin2 φ for �++ in Sz =
±3/2, whereas 1

3 + cos2 φ for �++ in Sz = ±1/2. As in
Refs. [44,46], considering all the possible contributions, we
can parametrize the distribution function as follows:

Fπ+ = A sin2 φ + B
(

1
3 + cos2 φ

)
, (17)

where we have used a notation Fπ+ indicating the distribution
function for convenience. The coefficients A and B stand for
the strength of each spin state of �++ with the normalization
condition A + B = 1. In other words, if A > B, one can think

that the spin-1 particle exchange or an equivalent contribution
in the t channel dominates the scattering process, and vice
versa for the spin-0 particle exchange. We note that there can
be other N∗ and/or �∗ contributions in addition to �++, so
that one can add an additional term to Eq. (17) representing
the interference effects. However, we will ignore this for
simplicity, as in Refs. [7,8].

Now we provide theoretical estimations on Fπ+ . Note that
we again only show the numerical results for the interpolation
model hereafter. Since the outgoing pion (π−) carry no spin,
all the photon helicity will be transferred to �++ through
the exchanging particle in the t channel, Hence, it is natural
to think that the polarization-transfer coefficients in the z

direction should relate to the strength coefficients A and B.
Therefore, we can write A and B in terms of Cz,1/2 and Cz,3/2

as follows:

A = Cz,3/2

Cz,1/2 + Cz,3/2
, B = Cz,1/2

Cz,1/2 + Cz,3/2
, (18)

which satisfy the normalization condition. In other words,
A denotes the strength that �++ is in its Sz = ±3/2 state,
and B for Sz = ±1/2. In Fig. 8, we depict it as a function
of φ for different θ = (10–50)◦ and Eγ = 3 and 9 GeV in
panels (a) and (b), respectively. As for the lower energy
(Eγ = 3 GeV), the numerical results tell us that the scattering

FIG. 8. (Color online) Decay-angle distribution for γp → π−�++ for the π+ as a function of cos φ, which is the angle between the p and
π+ decaying from the �++ in the Gottfried-Jackson frame, for two different photon energies Eγ = 3 and 9 GeV in (a) and (b), respectively.
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cos cos

FIG. 9. (Color online) Photon-beam asymmetry � defined in Eq. (19) as a function of cos θ for γp → π−�++ (a) and γp → π+�0

(b) for various photon energies, Eγ = (2–11) GeV, using the same model parameters with the above calculations.

process is mainly dominated by the spin-1 exchange or
equivalent contribution for the very forward-scattering angles.
Moreover, this observation indicates that the contact-term
contribution dominates the process, since it can be interpreted
equivalently as a spin-1 exchange, and the contact-term one is
more effective than that of the ρ exchange, as discussed above.
However, for the angle around θ = 30◦, the spin-0 exchange,
i.e., π -meson exchange, contributes significantly as denoted
by the short-dashed line in Fig. 8(a). Beyond that angle, again,
the contact-term contribution prevails over that from the spin-0
one. As for the higher-energy region, the situation becomes
quite different from the lower-energy case. In Fig. 8 we show
the decay-angle distribution for Eγ = 9 GeV. We see that for
all the π− angles, the contact-term contribution dominates
the process, in addition to the tiny ρ-meson exchange one, as
understood from Fig. 4(d).

Finally, in the present work we explore a single-polarization
observable, i.e., the photon-beam asymmetry �, defined by the
following [4,47,48]:

� = dσ‖ − dσ⊥
dσ‖ + dσ⊥

, (19)

where dσ‖ and dσ⊥ represent the differential cross sections
with the polarized photon beam parallel and perpendicular
to the reaction plane, respectively. From this definition, pure
π -exchange amplitude gives � = 1. Note that this physical
quantity can be measured by the experiments, such as LEPS
and CLAS Collaborations, in comparison to the double polar-
izations as discussed above. In Fig. 9, we present the numerical
results for � as a function of cos θ for γp → π−�++ in
panel (a) and γp → π+�0 in panel (b) for various photon
energies, Eγ = (2–11) GeV, using the same model parameters
as the above calculations. As for the π− photoproduction in
Fig. 9(a), we observe that a bump moves toward the region
around cos θ = 1, i.e., the forward-scattering region, as the
energy increases. We verified that this tendency originated
dominantly from the nontrivial interference between the
contact-term and t-channel contributions. On the contrary, we

have no u-channel contribution for the π+ photoproduction,
as long as the resonances are not taken into account in the
present work. Moreover, since there is a sign difference in the
electric coupling for the t-channel contributions between the
processes, the � curves for the π+ photoproduction, as shown
in Fig. 9(b), represent quite different shapes in comparison
to those for the π− photoproduction. It turns out that, even
for the π+ photoproduction, the contact-term and t-channel
contributions play a crucial role in shaping the curves.

IV. SUMMARY AND CONCLUSION

In the present work, we have investigated the photoproduc-
tion of the charged pion with the �(1232, 3/2+) baryon off
the proton target at tree level, using the effective Lagrangian
approach, beyond the resonance region. We took into account
the nucleon- and �-pole diagrams corresponding to s- and
u-channel contributions, respectively. The π and ρ exchanges
are considered in the t channel. For the gauge invariance of
the scattering amplitude, the contact-term contribution was
further included together with the gauge-invariant scheme for
the form factors. The Regge trajectories for the π and ρ mesons
are introduced to describe the high-energy experimental data
correctly. We introduced an ansatz designated to interpolate the
Feynman and Regge propagators. These three different cases
were assigned as the Born, Regge, and interpolation models.
It turned out that the present numerical results are in good
agreement with the experimental data and could provide useful
theoretical guides and estimations for future experiments. We
list the important observations in the present work as follows:

(1) Unpolarized physical quantities such as the energy and
angular dependences of the cross sections are reproduced
qualitatively well beyond the resonance region

√
s � 2 GeV

for the interpolation model, in comparison to the presently
available experimental data.

(2) We observe a strong peak in the forward-scattering
region. It is suppressed with respect to Eγ . It also turns
out that this forward peak is generated by the t-channel
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pseudoscalar-meson (π ) exchange on top of the subleading
contact-term contribution, although the latter gets stronger as
Eγ increases. In general, the peak shifts to the very forward
region as Eγ increases.

(3) The angular dependence dσ/dt shows that the present
framework is not enough to reproduce the experimental data
for regions Eγ � 3.5 GeV and −t � 0.05 GeV2. The observed
discrepancy may indicate the necessity of the further unknown
contributions from the higher-spin meson exchanges in the t

channel as well as the higher-mass baryon resonances, though
not taken into account in the present work.

(4) On the contrary, the present theoretical framework
provides very good agreement with the experimental data for
the high-energy region beyond Eγ ≈ 5 GeV. In particular, the
ansatz for the Feynman-Regge interpolation plays an important
role in reproducing the data appropriately.

(5) We also present the numerical results for one of the
various double polarization observables, i.e., the polarization-
transfer coefficients Cx,z. With the collinear-limit conditions
for the region Eγ � 8 GeV, Cx,z remains almost unchanged,
whereas nontrivial structures are shown at the forward-
scattering regions due to interference between the contact term
and π exchange.

(6) From the numerical results in the π+ decay-angle
distribution function, we find that in the low-energy region
the spin-1 exchange (small ρ-meson exchange plus the large
contact-term contribution) and that of spin-0 (π exchange)
compete with each other, depending on the θ angles. In con-
trast, only the spin-1 exchange gives the dominant contribution
to the process in the high-energy region, i.e., the contact-term
contribution.

(7) Finally, as a single-polarization observable, we compute
the photon-beam asymmetry � as a function of cos θ , showing
that the nontrivial interference between the contact-term and
t-channel contributions plays a dominant role in reproducing
the � curves.

In conclusion, the present theoretical framework can re-
produce the available experimental data qualitatively well,
although the resonances and higher-spin meson exchanges,

which are not considered here, might improve the deviations
observed in the region Eγ � (3–4) GeV. In particular, it
also turns out that the role of the ansatz for the Feynman-
Regge interpolation is very crucial in correctly reproducing
the experimental data in the higher-energy region. However,
being different from the �(1520, 3/2−) photoproduction, the
t-channel meson exchange and contact-term contributions are
competing with each other, especially for the lower-energy
region. However, we also note that, although the interpolation
plays a significant role in reproducing the data qualitatively,
we still have several uncertainties and unknown factors in
this highly phenomenological approach: We do not have a
firm theoretical ground for it, especially for the ansatz, so
that the form of the ansatz has not been uniquely determined
yet. Moreover, the interpolation effects can nevertheless be
replaced by other Feynman diagrams, such as the nucleon and
hyperon resonances, or the production mechanisms, which
are not taken into account and tested in the present work
of this exploratory study. For more concrete applications of
this interpolation approach, those issues mentioned above will
be addressed intensively in future works. We expect that the
results from the present theoretical work would be a useful
guide for the high-energy photon-beam experiment, such as the
future experiments planned in LEPS2 at SPring-8 and CLAS12
at Jefferson Laboratory, for instance. More sophisticated
works, with other π� isospin channels, baryon resonances,
and other contributions as mentioned, are in progress and will
appear elsewhere.
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