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Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs
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Heavy-ion collisions create deformed quark-gluon plasma (QGP) fireballs which explode anisotropically. The
viscosity of the fireball matter determines its ability to convert the initial spatial deformation into momentum
anisotropies that can be measured in the final hadron spectra. A quantitatively precise empirical extraction
of the QGP viscosity thus requires a good understanding of the initial fireball deformation. This deformation
fluctuates from event to event, and so does the finally observed momentum anisotropy. We present a harmonic
decomposition of the initial fluctuations in shape and orientation of the fireball and perform event-by-event
(2 + 1)-dimensional ideal fluid dynamical simulations to extract the resulting fluctuations in the magnitude and
direction of the corresponding harmonic components of the final anisotropic flow at midrapidity. The final
harmonic flow coefficients are found to depend nonlinearly on the initial harmonic eccentricity coefficients.
We show that, on average, initial density fluctuations suppress the buildup of elliptic flow relative to what one
obtains from a smooth initial profile of the same eccentricity and discuss implications for the phenomenological
extraction of the QGP shear viscosity from experimental elliptic flow data.
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I. INTRODUCTION

In ultrarelativistic heavy-ion collision experiments, a frac-
tion of the incoming kinetic energy is converted into new
matter deposited in the collision zone. The distribution of
this matter in the plane transverse to the colliding beams
is inhomogeneous and fluctuates from collision to collision.
At the collision energies available at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC),
the produced matter is sufficiently dense and strongly inter-
acting that it quickly reaches a state of approximate local
thermal equilibrium. Its subsequent evolution can thus be
described by fluid dynamics until it eventually becomes too
dilute and breaks apart. Hydrodynamic forces (i.e., pressure
gradients) convert the inhomogeneities and deformations of
its initial spatial density distribution into anisotropies of the
final hydrodynamic flow. The latter can be extracted from
the momentum distributions of the finally emitted particles.
The efficiency with which the geometric deformation and
fluctuating inhomogeneities in the initial density distribution
are converted into final flow anisotropies is controlled by
the viscosity of the expanding fluid. For a given source
deformation, ideal fluid dynamics generates the largest flow
anisotropy; it corresponds to the limit of zero mean free path
and instantaneous thermalization, which allows for the largest
possible collective response, via final-state interactions, to
irregularities in the geometric structure of the fireball [1].
Viscosity accounts for finite interaction cross sections and
nonzero mean free paths which reduce the amount of flow
anisotropy that can be generated from a given geometric
deformation. In hydrodynamic language, viscous pressure
components inhibit the development of flow anisotropies and
tend to smoothen irregularities in the flow distribution. By
measuring the flow anisotropies and relating them to the initial
geometric deformations (as calculated from theoretical models
for the collision geometry) one can, in principle, determine the
fluid’s viscosity experimentally [2–6].

Until recently, most of the attention has been focused on
elliptic flow v2 = 〈cos(2φp)〉 and its relation to the spatial

eccentricity εx = 〈y2−x2〉
〈y2+x2〉 = 〈r2 cos(2φs)〉/〈r2〉 (more precise

definitions will be given in Sec. II) [2–12]. Event-by-event
fluctuations in the initial state were only treated on average
by taking into account their effects on the average eccentricity
of an ensemble of events [5,6,11–13] and then propagating a
smooth initial density profile corresponding to that ensemble
average hydrodynamically. In this way one can only compute
the average elliptic flow but not its fluctuations from event to
event [14–16]. If one assumes that the elliptic flow is linearly
proportional to the initial eccentricity, one can distribute the
elliptic flow fluctuations around this average v2 value in the
same way as the initial eccentricity fluctuates around its
average [17] and use this to predict flow fluctuations from
eccentricity fluctuations [18]. This ignores, however, the re-
cently discovered [19] fact that initial-state shape fluctuations
of the collision region lead to event-by-event fluctuations
not only of the elliptic deformation εx but, simultaneously,
of all higher-order harmonic eccentricity coefficients [20,21]
and that the simultaneous presence of several harmonic
eccentricity coefficients can lead to hydrodynamic cross-talk
between anisotropic flows of different harmonic order [20].
Without the possibility to hydrodynamically evolve fluctuating
initial conditions event by event, the assumption of a linear
dependence of v2 on εx can thus not be rigorously tested.

Experimentally, anisotropic flow coefficients vn are mea-
sured by analyzing multiparticle correlations in azimuthal
angle around the beam axis [22]. Event-by-event flow fluctua-
tions and additional nonflow correlations influence the elliptic
flow v2 derived from different such measures in different
ways [22–25] and affect the magnitude of the extracted flow.
This has serious implications for the determination of the
quark-gluon plasma shear viscosity from elliptic flow data
[5,6]: Quantitatively trustworthy results require a detailed
understanding of the spectrum of fluctuations of the anisotropic
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flow coefficients in the experimentally observed final state and
its relation to the fluctuations of the corresponding moments
of the initial eccentricity distributions that are believed to
drive the flows measured by various different methods. In
addition, widely held beliefs as to which moments of the initial
eccentricity distribution are directly related to which moments
of the final flow distribution [17,21,26] must be tested by
generating the final states hydrodyamically event by event, i.e.,
separately for each fluctuating initial condition [20,27–31].
These are the goals addressed in the present article. (For related
work using nonhydrodynamic models for the transfer of initial
eccentricities into final flows, see Ref. [32].)

To generate fluctuating initial conditions we use Monte
Carlo versions of the Glauber [33] and fKLN [34,35] models
in the implementation by Hirano and Nara [11,12]. After
defining and compiling in Sec. II several different definitions
of initial-state eccentricities and final-state harmonic flow
coefficients, we explore in Sec. III the centrality dependence
of the average ellipticity, triangularity, and a few higher-order
harmonic coefficients in their various incarnations found in
the literature. In Sec. IV we use ideal event-by-event hydro-
dynamics1 to analyze the correlations between final-state flow
anisotropies and their associated flow angles with the initial
state eccentricity coefficients and their associated angles. We
identify strong mode coupling between coefficients of different
harmonic order, especially in peripheral collisions with strong
elliptic flow. In Sec. V we compare the conversion efficiency
of initial-state ellipticity and triangularity into final-state
elliptic and triangular flow in single-shot and event-by-event
hydrodynamics. We find significant differences and discuss
their implications. We summarize our results in Sec. VI and
discuss different radial weights for the eccentricity definitions
in the Appendix.

II. DEFINITIONS

In this section we discuss different definitions for the har-
monic flow and eccentricity coefficients and briefly describe
the models used in computing the initial entropy and energy
density profiles whose eccentricities are evaluated in Sec. III
and which are evolved hydrodynamically in Secs. IV and V.

A. Ellipticity

Usually known simply as “eccentricity”, we define the
“ellipticity” ε ≡ ε2 of a given matter distribution in the
transverse (x, y) plane in terms of its r2-weighted second

1For convenience we here use the longitudinally boost-invariant
(2 + 1)-dimensional viscous hydrodynamic code VISH2 + 1 [8] for
zero viscosity, restricting our analysis to anisotropic transverse flow at
midrapidity. This allows for easy later inclusion of viscous effects. A
(3 + 1)-dimensional viscous hydrodynamic code has recently become
available [30], and a comparison between (2 + 1)-dimensional and
(3 + 1)-dimensional viscous evolution near midrapidity is in progress
[36].

azimuthal moment [19,26],

ε2 ei2ψPP
2 = −

∫
dx dy r2ei2φ e(x, y)∫

dx dy r2 e(x, y)
, (1)

where x = r cos φ, y = r sin φ. This formula assumes that the
origin is the center of the distribution e(x, y). In a Monte
Carlo approach for generating the initial distribution e(x, y)
(see Sec. II D) this must be ensured by recentering each event
before using Eq. (1). By default we characterize in Eq. (1) the
matter distribution by its energy density e(x, y) [37]. Since
some authors (e.g., Refs. [11,12]) prefer defining the source
ellipticity in terms of its entropy density distribution s(x, y),
we compare in Sec. III B energy- and entropy-weighted
ellipticities.

In Eq. (1), x and y are “reaction plane” (RP) coordinates:
The reaction plane is the (x, z) plane, with z pointing along
the beam and x pointing along the direction of the impact
parameter b between the colliding nuclei; y is perpendicular to
the reaction plane. Because of the minus sign on the right-hand
side of Eq. (1), the angle ψPP

2 on the left-hand side of Eq. (1)
points in the direction of the minor axis of the corresponding
ellipse. For an elliptically deformed Gaussian density distri-
bution, this is the direction of the largest density gradient and
thus of the largest hydrodynamic acceleration and also of the
finally observed elliptic flow. The direction of this minor axis
defines, together with the beam direction z, the “participant
plane” (PP). It is tilted relative to the reaction plane by ψPP

2 .
The label “participant” is motivated by the fact that the initial
energy and entropy density distributions of the collision fireball
reflect (more or less directly, depending on the model for
secondary particle creation) the transverse distribution of the
nucleons participating in the particle production process. The
ellipticity ε2 in Eq. (1) is correspondingly called “participant
eccentricity” and also denoted as εpart.2 It can be written as

εpart ≡ ε2 = ∣∣ε2 ei2ψPP
2

∣∣
=

√
{r2 cos(2φ)}2 + {r2 sin(2φ)}2

{r2}

=
√

{y2−x2}2 + 4{xy}2

{y2+x2} . (2)

Here {· · ·} = ∫
dx dy (· · ·) e(x, y) defines the “event average”

over the matter distribution e(x, y) in a single collision event
[25]. Equivalently, the participant eccentricity can be written
as

εpart = {y2−x2}′
{y2+x2}′ , (3)

where {· · ·}′ = ∫
dx dy (· · ·) e′(x, y) indicates the

average over a rotated event with energy density

2Traditionally εpart is defined in terms of the transverse density
of wounded nucleons, but since what matters for the subsequent
hydrodynamic evolution is not the distribution of wounded nucleons
themselves but of the matter generated by the wounded nucleons, we
use the name εpart for the ellipticity characterizing the thermalized
matter.
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e′(x, y) = e(x cos ψPP
2 − y sin ψPP

2 , x sin ψPP
2 + y cos ψPP

2 )
whose minor and major axes now align with x and y.
The event-average {· · ·} is to be distinguished from the the
“ensemble average” 〈· · ·〉 = 1

N

∑N
n= 1{· · ·}n, where N is the

total number of events and {· · ·}n is the event-average over
the energy density en(x, y) in event number n. The average
participant eccentricity is thus defined as

〈εpart〉 = 1

N

N∑
n= 1

(εpart)n. (4)

This differs from the mean eccentricity ε̄part of the av-
erage (recentered and rotated by ψPP

2 ) energy density
ē′(x, y) = 1

N

∑N
n = 1 e′

n(x, y) which can be written in the fol-
lowing equivalent ways:

ε̄part = 〈{y2−x2}′〉
〈{y2+x2}′〉 . (5)

In contrast to Eq. (4), one here ensemble-averages over
numerator and denominator separately before forming the
ratio.

Nature performs heavy-ion collisions event by event,
and hydrodynamic forces generate in each event an elliptic
component v2 of the anisotropic flow which is causally
related to the specific initial ellipticity εpart in that event.
Theorists often do not compute the hydrodynamic evolution
of the collision fireball event by event but approximate
nature’s procedure by generating from a superposition of many
fluctuating initial conditions a single smooth initial distribution
ē(x, y) which they then evolve hydrodynamically in a “single
shot,” extracting the mean elliptic flow v̄2 corresponding to the
mean eccentricity ε̄part of that averaged source distribution.
Obviously, v̄2 is a deterministic consequence of ε̄part and does
not fluctuate at all; it cannot be measured experimentally. What
can (at least in principle, although not easily in practice) be
measured experimentally [16] is the average elliptic flow〈v2〉
of a large ensemble of collision events. This observable is
conceptually more closely related to 〈εpart〉 than to ε̄part; for
an exactly linear hydrodynamic response v2 ∼ εpart, one has
〈v2〉/〈εpart〉= v̄2/ε̄part [17]. We will explore the differences
between ε̄part and 〈εpart〉 and discuss consequences for the
theoretically computed v̄2 as opposed to the measured [16]
〈v2〉 in Secs. III A and V.

In addition to these “participant eccentricities” one can also
define “reaction plane eccentricities.” For a single event, the
reaction plane eccentricity εRP is defined by

εRP = {y2 − x2}
{y2 + x2} (6)

in terms of an event-average over the (properly centered)
energy density e(x, y). The so-called standard eccentricity is
defined as the analogous ratio of expectation values taken with
a smooth average energy density ē(x, y) = 1

N

∑N
n = 1 en(x, y)

obtained by superimposing many events without rotating them
from the participant to the reaction plane:

εs ≡ ε̄RP = 〈{y2 − x2}〉
〈{y2 + x2}〉 . (7)

In other words, the standard eccentricity is the mean reaction
plane eccentricity. In contrast, the average reaction plane
eccentricity is defined by

〈εRP〉 =
〈 {y2 − x2}
{y2 + x2}

〉
. (8)

Contrary to what the reader may have been led to believe
by our remarks above, experiments do not directly measure
the average elliptic flow 〈v2〉 [which for linear v2 ∼ εpart

would be directly related to the average participant eccentricity
〈εpart〉 (3)]. Instead, they measure quantities such as v2{EP},
v2{2}, and v2{4} that, even if so-called nonflow contributions
could be completely ignored, are affected by event-by-event v2

fluctuations and thus differ from 〈v2〉. 〈v2〉 can be reconstructed
from the experimental measurements with some additional
assumptions [16] which on the surface look harmless but
should be further tested. Motivated by the hypothesis of linear
hydrodynamic response, v2 ∼ εpart, these v2 measures motivate
the definition of corresponding ellipticity measures [17], the
so-called second- and fourth-order cumulants:

ε{2} =
√〈

ε2
part

〉
(9)

and

ε{4} = (〈
ε2

part

〉2 − (〈
ε4

part

〉 − 〈
ε2

part

〉2))1/4
. (10)

Note that the last expression involves the difference of two
positive definite quantities which itself does not need to be
positive definite. If fluctuations get large, the expression under
the fourth root can become negative, leaving ε{4} undefined.
We will see that this can happen in the most central and the
most peripheral centrality bins.

It was shown in Ref. [24] that in the MC-Glauber model
the real and imaginary parts of the complex ellipticity defined
by Eq. (1), with the wounded nucleon density as weight
function on the right-hand side, both have approximately
Gaussian fluctuations, with equal widths σε. If this is the case,
the magnitude ε2 of this ellipticity exhibits fluctuations of
Bessel-Gaussian type3 [38], leading to the identity [24]

ε{4} = 〈εRP〉. (11)

For sufficiently large average ellipticities 〈ε2〉 (i.e., sufficiently
large impact parameters) one may hope to be able to ignore the
restriction that ε2 can never fluctuate to negative values and,
correspondingly, assume the ε2 exhibits Gaussian (instead of
Bessel-Gaussian) fluctuations. In this case one has [24]

ε{2}2 = 〈εpart〉2 + σ 2
ε ,

ε{4}2 =
√(〈εpart〉2 − σ 2

ε

)2 − 2σ 4
ε , (12)

from which it follows that 〈ε2 = εpart〉4 is the arithmetic mean
of ε{2}4 and ε{4}4:

ε{2}4 + ε{4}4

2〈εpart〉4
= 1. (13)

3This takes into account that ε2 can never fluctuate to negative
values.
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We will use Eqs. (11) and (13) (which hold irrespective of
the fluctuation width σε) in Sec. III A, and their analogs for
the elliptic flow v2 in Sec. V C, to test the assumptions of
Bessel-Gaussian and Gaussian fluctuations of the event-by-
event ellipticity and elliptic flow fluctuations in the Monte
Carlo Glauber (MC-Glauber) and Monte Carlo fKLN (MC-
KLN) models.

If the hydrodynamic response were indeed linear, v2 ∼ εpart,
and nonflow effects could be ignored, the following identities
would hold:

〈v2〉
〈εpart〉 = v̄2

ε̄part
= v2{2}

ε{2} = v2{4}
ε{4} . (14)

To test these theoretically one needs event-by-event hydrody-
namics which is the only possibility to properly account for
event-by-event flow fluctuations. In the past, event-by-event
hydrodynamical evolution of fluctuating initial conditions
has been technologically out of reach. Comparisons between
theory and experiment have been based on “single-shot
hydrodynamic evolution” which propagates a smooth initial
profile obtained by either using the so-called optical versions
of the Glauber and fKLN models or averaging over many
fluctuating initial profiles from their Monte Carlo versions
(MC-Glauber and MC-KLN, respectively). Assuming linear
hydrodynamic response, one can still compare the theoretically
computed 〈v2〉 with the experimentally measured v2{2} or
v2{4} if one normalizes the former by 〈εpart〉 and the latter by
ε{2} or ε{4}, respectively, calculated from the same initial state
model [5,6]. In this context the identity ε{4} = 〈εRP〉 (which
holds if the ellipticity fluctuations are Gaussian) becomes
particularly useful because it suggests that the measured v2{4}
can be directly compared with a single-shot hydrodynamic
v2 obtained from a smooth reaction-plane averaged initial
density of ellipticity 〈εRP〉, without any corrections for flow
fluctuations. Even better, v2{4} can be shown to be completely
free of two-particle nonflow contributions [17,24]. These
arguments have been used in Ref. [12] and provide a strong
motivation for us to test the underlying assumptions (Gaussian
ellipticity fluctuations and linear hydrodynamic elliptic flow
response) in the present work.

We close this subsection by recalling the expression for the
participant plane angle of a given event (see, e.g., Ref. [25])

ψPP
2 = 1

2
tan−1

(
2{xy}

{y2 − x2}
)

(15)

and, for its transverse area,

S = π
√

{x2}′{y2}′. (16)

Both expressions assume that the events are properly centered
at the origin.

B. Higher-order eccentricity coefficients

The definition (1) can be generalized to higher harmonic
eccentricity coefficients [19,26]:

εn einψPP
n = −

∫
dx dy r2einφ e(x, y)∫

dx dy r2 e(x, y)
. (17)

Alternatively one can use rn instead of r2 as radial weight on
the right-hand side [20]:

ε′
n einψ

′PP
n = −

∫
dx dy rneinφ e(x, y)∫

dx dy rn e(x, y)
. (18)

Still another variant uses the entropy density s(x, y) instead of
the energy density e(x, y) as weight function:

εn(s) einψPP
n (s) = −

∫
dx dy r2einφ s(x, y)∫

dx dy r2 s(x, y)
, (19)

ε′
n(s) einψ

′PP
n (s) = −

∫
dx dy rneinφ s(x, y)∫

dx dy rn s(x, y)
. (20)

We note that the r2-weighted eccentricity coefficients εn fall off
faster with increasing harmonic order n than the rn-weighted
eccentricities ε′

n (see Appendix). Also, as in Eq. (1), the minus
sign in Eqs. (17)–(20) guarantees that, for a Gaussian density
distribution that has only nth-order eccentricity εn, the angle
ψPP

n points in the direction of the steepest density gradient and
thus in the direction of the corresponding hydrodynamically
generated nth-order harmonic flow vn (see next subsection). It
can be written as −1 = e−in(π/n) and amounts to a rotation of
ψPP

n by π/n. For example, if the profile is square-shaped, ψPP
4

points to the sides instead of its corners.
A complete characterization of the fluctuating initial density

profile that captures all aspects of the location of “hot-spots”
and their gradients uses an expansion of the initial (energy or
entropy) density profile in terms of cumulants [39]. We will
postpone their discussion to a future analysis.

As stated, we will use the energy density as the default
weight function; in cases of possible ambiguity, we will use the
notations εn(e), εn(s), etc., to distinguish between energy and
entropy density weighted eccentricity coefficients and angles.
Eccentricities ε without harmonic index n denote ellipicities
(i.e., in the absence of n, n= 2 is implied).

The coefficients εn and angles ψPP
n define the eccentricies

and angles of the matter distribution in the participant plane.
We note that the participant plane angles ψPP

n associated with
eccentricity coefficients of different harmonic order n do not,
in general, agree (see Sec. IV A). We will not study higher
harmonic generalizations of the reaction-plane ellipticity (6).

C. Harmonic flow coefficients

We charaterize the finally observed momentum distribution
dN/(dy pT dpT dφp) by “harmonic flow coefficients” con-
structed in analogy to Eq. (17), but without the extra minus
sign:

vn(y, pT ) einψEP
n (y,pT ) =

∫
dφp einφp dN

dy pT dpT dφp

dN
dy pT dpT

, (21)

vn(y) einψEP
n (y) =

∫
pT dpT dφp einφp dN

dy pT dpT dφp

dN
dy

. (22)

In boost-invariant hydrodynamics they are rapidity indepen-
dent, so we drop the argument y and keep in mind that we
should only compare with midrapidity data at y = 0 where
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the assumption of boost-invariant longitudinal expansion is
most justified. The spectra dN

dy pT dpT dφp
are computed from the

hydrodynamic output with the Cooper-Frye prescription [40]
along an isothermal kinetic decoupling surface of temperature
Tdec = 140 MeV. Equation (21) defines the pT -differential
harmonic flow vn(pT ) and flow angle ψEP

n (pT ), whereas
Eq. (22) gives their pT -integrated values vn and ψEP

n . The
orientation of the final momentum distribution defines the
“event plane,” indicated by superscript EP. Again, different
harmonic flows are usually associated with differently oriented
event planes. The first three harmonic flow coefficients are the
directed flow (v1), elliptic flow (v2), and triangular flow (v3).

D. Initial-state models

We use Monte Carlo versions [11,12] of the Glauber [33]
and fKLN [35] models to generate fluctuating initial conditions
for the entropy density in 200 A GeV Au + Au collisions. For
the MC-Glauber model we assume a two-component (soft +
hard) model with a small hard fraction (δ = 0.14 [11]); we
also use a Woods-Saxon profile for the distribution of nucleon
centers whose radius and surface thickness parameters have
been corrected for the finite nucleon size [11]. The resulting
entropy density profile is normalized to the final charged
hadron multiplicity density dNch/dy in central collisions; after
this normalization, the centrality dependence of the initial
entropy production is fixed by the model (MC-Glauber or
MC-KLN). To convert the initial entropy density to energy
density, we use the equation of state (EOS) s95p-PCE which
matches lattice QCD data at high temperatures to a chemically
frozen hadron resonance gas at low temperatures [41,42], using
Tchem = 165 MeV as chemical freeze-out temperature.

In the following we compute harmonic eccentricity and
flow coefficients as functions of impact parameter b and
collision centrality (%). The centrality classes are defined
in terms of percentages of the total inelastic cross section,
calculated from the distribution of the number of wounded
nucleons dNevent/dNpart in the optical Glauber model (i.e.,
without accounting for fluctuations in Npart at given impact
parameter). Each centrality class is thus characterized by a
range of impact parameters bmin < b < bmax and an average
value b̄, together with a mean number of wounded nucleons
N̄part. They are listed in Table I [11].

E. Averaging procedures for the initial profiles

In this work we compare results obtained from an
event-by-event hydrodynamical evolution of fluctuating ini-
tial conditions with the traditional method of “single-shot”
hydrodynamic evolution, where one first averages over many
fluctuating initial profiles to obtain a smooth average profile
and then evolves this smooth profile hydrodynamically. The
question addressed in this comparison is to what extent
the average harmonic flow coefficients from event-by-event
hydrodynamics can be faithfully represented by the harmonic
flow coefficients extracted (at much lower numerical expense)
from the hydrodynamic evolution of an “average event.”

TABLE I. Centrality table for Au + Au at 200 A GeV [11].

Centrality bmin(fm) bmax(fm) b̄ (fm) N̄part

0–5% 0.0 3.3 2.2 352.2
5–10% 3.3 4.7 4.04 294.7
10–15% 4.7 5.8 5.27 245.6
15–20% 5.8 6.7 6.26 204.2
20–30% 6.7 8.2 7.48 154.5
30–40% 8.2 9.4 8.81 103.8
40–50% 9.4 10.6 10.01 64.9
50–60% 10.6 11.6 11.11 36.6
60–70% 11.6 12.5 12.06 18.8
70–80% 12.5 13.4 12.96 7.5
80–90% 13.4 14.3 13.85 4.4

Taking the initial density profiles from the Monte Carlo
generator and superimposing them directly without additional
manipulations generates a “reaction plane averaged” profile
with ellipticity ε̄RP [Eq. (7)]. After recentering each event
to the origin of the x-y plane, we can compute event by
event the reaction and participant plane ellipticities [Eqs. (6),
(2), and (3)] and evaluate their ensemble averages (8) and
(4), respectively. To generate a smooth average profile with
ellipticity ε̄part [Eq. (5)] we rotate each recentered event by the
angle ψPP

2 (e) [ψPP
2 (s)] if we want to determine the eccentricity

of the average energy (entropy) density. For the calculation
of entropy-weighted average eccentricities we perform any
ensemble average first and convert the result to energy density
later; in this case all events are rotated by their ψPP

2 (s) angles.
For energy-weighted ensemble averages we convert s to e in
each event first, rotate by ψPP

2 (e) and perform the ensemble
average last. Other sequences or mixtures of these steps are
technically possible but physically not meaningful. Note that
the processes of computing the energy density from the entropy
density via the EOS and of averaging the event profiles do not
commute: The energy density obtained via the EOS from the
ensemble-averaged entropy density profile is not the same as
the ensemble-averaged energy density where the EOS is used
in each event to convert s to e.

III. ECCENTRICITIES

A. Centrality dependence of different ellipticities

Figure 1 shows a comparison between the different el-
lipticities defined in Sec. II A as functions of the impact
parameter b in Figs. 1(a) and 1(b) and as functions of collision
centrality (as defined in Sec II D) in Figs. 1(c) and 1(d). For
Figs. 1(a) and 1(b) we generated 10 000 initial profiles for each
impact parameter (except for b = 0, 1, and 2 fm, for which
we generated 30 000 events each); for Figs. 1(c) and 1(d) we
averaged over 10 000 profiles for each centrality bin. Within the
centrality bins, the impact parameters were sampled between
bmin and bmax with b db weight. Compared to Figs. 1(a) and
1(b), this leads to additional ellipticity fluctuations related to
the fluctuating impact parameter, whereas in Figs. 1(a) and
1(b) only Npart fluctuations at fixed b contribute.
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FIG. 1. (Color online) Different ellipticities as a function of impact parameter (top row) or collision centrality (bottom row) for the
MC-Glauber [panels (a) and (c)] and the MC-KLN model [panels (b) and (d)]. Panels (a) and (b) show e-weighted, and panels (c) and (d)
show s-weighted ellipticities. (See Figs. 3 and 4 below for a direct comparison between e- and s-weighted eccentricities.) Open stars indicate
negative values for ε{4}4.

As discussed in Sec. II A, Eq. (10), ε{4}4 can become
negative when fluctuations grow large. Whenever this happens,
we replace ε{4} by 4

√
|ε{4}4| and indicate this by an open star

in Fig. 1 (connected by dotted lines to other points in the
graph). One sees that ε{4}4 has a tendency to turn negative in
the most peripheral collisions. In very central collisions ε{4}4

becomes very small, with central values that can have either
sign depending on whether we keep the impact parameter fixed
[Figs. 1(a) and 1(b)] or average over events with different
impact parameters in a given centrality bin [see the 0–5%
centrality values in Figs. 1(c) and 1(d)]. Statistical errors are
large, however, and within errors ε{4}4 is compatible with
zero for impact parameters b < 3 fm, i.e., in the most central
(0–5% centrality) collisions. We indicate this by open-ended
error bars for 4

√
|ε{4}4|, pointing from its upper limit all the

way to zero.
Comparing Figs. 1(a) and 1(c) for the MC-Glauber model

with Figs. 1(b) and 1(d) for the MC-KLN model we see great
similarities in shape but systematic differences in magnitude
of the ellipticities. The ratio of the MC-KLN and MC-Glauber
ellipticities is shown in Fig. 2. Except for the most central and
most peripheral collisions, the MC-KLN ellipticities exceed

the MC-Glauber ones by an approximately constant factor of
around 1.2. Please note the difference in the ratios for the
reaction plane and participant eccentricities at small b. (The
point for ε̄RP at b = 1 fm is obtained from a ratio of very small
numbers and probably not statistically robust; we had only
30 000 events to determine the ensemble-averaged density
profile.) For the ε{4} ratio we dropped all points where the
statistical error for ε{4}4 extended into the region of negative
values for either the MC-Glauber or MC-KLN model.

Figure 1 shows that, for central and midperipheral colli-
sions, the ensemble-averaged participant and reaction plane
eccentricities 〈εpart〉 and 〈εRP〉 agree very well with the mean
eccentricities ε̄part and ε̄RP of the corresponding ensemble-
averaged profiles. For strongly peripheral collisions (b � 10
fm), however, the average of the ratio [Eqs. (3), (4), and (8)]
differs strongly from the ratio of averages [Eqs. (5) and (7)],
indicating strong event-by-event fluctuations. We note that in
very peripheral collisions the average event ellipticity drops
quickly with increasing b while the ellipticity of the average
profile remains large; single-shot hydrodynamic calculations
based on a smooth average initial profile thus overestimate
the effective initial source ellipticity and produce more elliptic
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FIG. 2. (Color online) Impact parameter dependence of the ratio
of ellipticities obtained from the MC-KLN and MC-Glauber models
as shown in Figs. 1(a) and 1(b).

flow than expected from event-by-event hydrodynamic evolu-
tion of individual peripheral events. Still, as first emphasized
in [6], the calculated v2 from single-shot hydrodynamics
decreases steeply at large collision centralities [12,43–45], due
to the decreasing fireball lifetime, which contrasts with the
initially reported experimentally observed behavior [46,47]
but agrees qualitatively with a recent reanalysis [48] where
nonflow effects have been largely eliminated and/or corrected
for. We do point out that our Monte Carlo simulations do not
include fluctuations in the amount of entropy generated per
nucleon-nucleon collision [20]; these could have important
effects on the ellipticities in very peripheral collisions.

Comparing the curves for 〈εpart〉, ε{2}, and ε{4} in Fig. 1
we see that [as is manifest in the Gaussian model analysis in
Eq. (12)] ε{2} receives a positive and ε{4} receives a negative
contribution from event-by-event ellipticity fluctuations. In
Fig. 3 we check, as a function of impact parameter, the validity
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FIG. 3. (Color online) Checks of the assumption of Gaussian and
Bessel-Gaussian fluctuations for εpart (see text for discussion).

of the identities (11) and (13) which follow from Bessel-
Gaussian and Gaussian εpart distributions, respectively. We see
that both hold with good accuracy in the midcentrality range
[b � 10 fm for Eq. (11), 5 � 11 fm for Eq. (13)] but break
down in the most peripheral collisions. Both the Gaussian
and Bessel-Gaussian hypotheses work slightly better for the
MC-KLN than for the MC-Glauber model. Consistent with
the analysis in Ref. [24], the Gaussian fluctuation hypothesis
for εpart breaks down at small impact parameters, whereas (as
theoretically expected [24]) the Bessel-Gaussian hypothesis
appears to continue to hold, although we are unable to
make this statement with statistical confidence. [For the ratio
(ε{4}−〈εRP〉)/(ε{4}+〈εRP〉) we again dropped all points for
which the error band for ε{4}4 reaches into negative territory.]

The assumption of Gaussian fluctuations of the real and
imaginary parts of the complex ellipticity (1) is often used
to argue that the average reaction-plane ellipticity 〈εRP〉 can
serve as a proxy for ε{4} [see Eq. (11)] and that therefore
reaction-plane averaged initial density profiles can be used
in single-shot hydrodynamics (which ignores event-by-event
fluctuations) to simulate the experimentally measured v2{4}
values. Figure 1 and the bottom curves in Fig. 3 show that v2{4}
values obtained from single-shot hydrodynamic simulations
with reaction-plane averaged initial conditions [12,44] should
not be trusted quantitatively for centralities >40%.

To summarize this subsection, all the simplifying assump-
tions that allow to focus attention on the three quantities
〈εpart〉, ε{2}, and ε{4} only (by substituting 〈εpart〉 for ε̄part

and ε{4} for ε̄RP or 〈εRP〉) hold well for central to midcentral
collisions (�40% centrality) but break down for peripheral
collisions. For >40% centrality there exists no substitute for
event-by-event hydrodynamics if one aims for quantitative
precision in the comparison with experimental data, since the
latter are strongly affected by non-Gaussian event-by-event
fluctuations at those centralities.

B. Ellipticities with different weight functions

Figure 4 shows a comparison between the energy- and
entropy-weighted ellipticities of the initial profiles generated
with the MC-KLN model on an event-by-event basis. The
scatter plot is based on 6000 events, 1000 each for b = 0 and
for the following finite-width centrality bins: 0–5%, 15–20%,
20–30%, 30–40%, and 50–60%. This is not a realistic mix in
the experimental sense but permits us to explore the full range
from very small to very large event ellipticities. The blue dots
in Fig. 4 represent bin averages, and the solid black line is a
linear fit through the origin. The fitted slope is 1.00, the scatter
plot is seen to be tightly clustered around this fitted line, and
only at small ellipticities ε2 < 20% the e-weighted values are
seen to be slightly larger on average than their s-weighted
counterparts [see also Fig. 5(a) below].

C. Higher-order harmonics

In Figs. 5(a)–5(d) we compare the centrality dependences
of the ensemble-averaged second to fifth harmonic eccen-
tricity coefficients (energy and entropy weighted) from the
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FIG. 4. (Color online) εpart(e) vs. εpart(s) for 6000 initial profiles
from the MC-KLN model (1000 each for b = 0, 0–5%, 15–20%,
20–30%, 30–40%, and 50–60% centrality).

MC-Glauber and MC-KLN models. The contour plots give a
visual impression of the degree of deformation corresponding
to the (larger) MC-KLN eccentricities, assuming (for illustra-

tion) the absence of any other eccentricity coefficients than the
one shown in the particular panel.

First, one observes very little difference between the
eccentricities of the entropy and energy density profiles, except
for very central collisions (b � 5 fm for the MC-Glauber and
b � 3 fm for the MC-KLN model) where the energy-weighted
eccentricities lie systematically somewhat above the entropy-
weighted ones (for all orders n studied here). The difference
between s- and e-weighted eccentricities at small b is bigger
in the MC-Glauber model than in the MC-KLN model.

Next, one notes the significantly larger ellipticities and
quadrangularities of the MC-KLN distributions compared
to those from the MC-Glauber model for all but the most
central collisions. These are driven by geometry, i.e., by
the almond-shaped deformation of the nuclear overlap zone
in noncentral collisions, which in the KLN-model is more
eccentric than in the Glauber model. The third- and fifth-order
harmonics, which are entirely due to fluctuations (and whose
associated angles ψPP

n are, therefore, completely uncorrelated
to the reaction plane; see Ref. [20] and discussion below), show
remarkably similar eccentricity values in the two initialization
models, except for the most peripheral events. Comparing
the viscous suppression of elliptic and triangular flow thus
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FIG. 5. (Color online) Harmonic eccentricity coefficients ε2 = εpart (a), ε3 (b), ε4 (c), and ε4 (d) as functions of impact parameter, calculated
from the MC-Glauber (filled symbols, solid lines) and MC-KLN models (open symbols, dashed lines), using the energy density (circles) or
entropy density (triangles) as weight function. The contour plots illustrate deformed Gaussian profiles e(r, φ) = e0 exp{− r2

2ρ2 [1+εn cos(nφ)]},
with eccentricity εn(e) taken from the MC-KLN model at the corrsponding impact parameter.
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FIG. 6. (Color online) Scatter plots illustrating the event-by-event correlation of ε3 (a), ε4 (b), and ε5 (c) with the fireball ellipticity ε2 = εpart,
for the same set of 6000 event profiles analyzed in Fig. 4. The blue dots connected by a line indicate ε2-bin averages, to guide the eye.

should allow us to distinguish experimentally between the
MC-Glauber and MC-KLN models [49].

Third, in central collisions all four eccentricity coefficients
are roughly of the same size. In peripheral collisions, the
fluctuation-dominated eccentricity coefficients (ε3 and ε5) are
generically smaller than the geometry-dominated ones (ε2

but also to some extent ε4).4 This is less obvious when one
defines the higher-order eccentricities with rn instead of r2

weight [20], which tends to increase the values of the higher
harmonics in peripheral collisions.

Even with “only” an r2 weight, ε4 and ε5 are seen to become
large enough around b ∼ 10–13 fm that, if collective accel-
eration happens predominantly in the directions of steepest
descent of the density profile, one has to expect cross-currents
in the developing anisotropic flow patterns. These can lead
to destructive interference and a correspondingly reduced
efficiency of converting nth-order eccentricities εn into nth-
order harmonic flows vn [26]. In realistic situations this issue
is exacerbated by the simultaneous presence of several large
eccentricity components εn, which is expected to lead to a
strongly nondiagonal and probably nonlinear response matrix
relating vn to εn [20]. This will be discussed in Sec. IV.

D. Eccentricity correlations

It is reasonable to ask whether and how the different
harmonic eccentricity coefficients εn are correlated with
each other. Figure 6 shows scatter plots of the correlations
between ε3,4,5 and the ellipticity ε2 which, for large ε2 values,
is dominated by geometric overlap effects. We note that,
according to the definition (17), all eccentricity coefficients
are positive definite, εn � 0. Keeping this in mind, Figs. 6(a)
and 6(c) show that ε3 and ε5 are uncorrelated with the fireball
ellipticity; the slight growth of 〈ε3,5〉 with increasing ε2 is
related to the growth of the variances of their distributions in
more peripheral collisions.

4We checked that the centrality dependences of the ratios εn/ε3

agree qualitatively, but not quantitatively with Fig. 3 in Ref. [21]. We
suspect that the differences, which are larger for the MC-Glauber than
the MC-KLN model, are due to somewhat different Woods-Saxon
and (in the MC-Glauber case) fluctuation size parameters used in
Ref. [21].

In contrast, the quadrangularity ε4 shows a clear positive
correlation with the ellipticity; see Fig. 6(b). It is of geometrical
origin: It reflects the football or almond shape of the overlap
zone in noncentral collisions which is a little sharper than
a pure cos(2φ) deformation. This is corroborated by the
angle ψPP

4 shown in Fig. 7(a) which, on average, points
45◦ relative to ψPP

2 (which again points in the x direction).
This means that the quadrangular component of the initial
fireball definition is oriented like a diamond, with its corners
on the x and y axes. Superimposing it on a pure cos(2φ)
deformation leads to a somewhat sharper shape of the density
distribution.

IV. EVENT-BY-EVENT HYDRODYNAMICS AND FLOW
FLUCTUATIONS

In this section we analyze the results from ideal fluid
event-by-event hydrodynamic evolution of the fluctuating
initial profiles studied in the previous section. We focus on
the anisotropic flow coefficients vn, their relationship to the
initial eccentricity coefficients εn, and the correlation between
the nth-order flow angles ψEP

n and the corresponding nth-order
participant-plane angles ψPP

n associated with εn.

A. Correlations among participant plane, event plane,
and reaction plane

One of the key characteristics of fluid dynamics is its
ability to transform initial geometric deformation into a
deformation of the final momentum distribution via collective
flow. This happens through spatially anisotropic hydrody-
namic forces (i.e., pressure gradients) which cause anisotropic
acceleration of the fluid. As a result, correlations between
participant and event planes are expected: The angle ψPP

n points
in the direction of the largest pressure gradient associated with
the nth harmonic component of the spatial deformation of the
initial density distribution, while ψEP

n points into the direction
where the nth harmonic component of the final collective flow
is largest. Without interference between harmonics of different
order, we would thus expect ψPP

n and ψEP
n to point, on average

and up to event-by-event fluctuations, in the same direction.
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FIG. 7. (Color online) Event-by-event correlation of the participant plane (PP) (a) and event plane (EP) (b) angles with the reaction plane
(RP), as well as the correlation between participant and event plane angles (c), for different harmonic eccentricity and flow coefficients. The
same 6000 events as in Fig. 4 were analyzed.

In Figs. 7(a) and 7(b) we show the distribution of partic-
ipant and event plane angles, associated with the nth-order
eccentricities and harmonic flows, relative to the x-z reaction
plane. The analysis uses the same 6000 events as before. In
Fig. 7(a) we see that ψPP

3,5 are completely uncorrelated with
the reaction plane [20], as expected from the fact that the
corresponding eccentricities are entirely fluctuation driven,
without contribution from the collision geometry. Figure 7(b)
shows that the same holds true for ψEP

3,5, which is (at least
superficially) consistent with the expectation that v3 is mostly
or entirely driven by ε3 and v5 by ε5. We will revisit this below.
ψPP

2 and ψEP
2 are strongly correlated with the reaction plane,

at least for this mixed-centrality set of events. This is expected
since, for noncentral collisions, ε2 is mostly controlled by the
almond-shaped overlap geometry, and v2 is mostly a collective
flow response to this geometric deformation; event-by-event
fluctuations contribute to ε2 (and thus v2) but in general do not
dominate them.

The behavior of ψPP
4 in Fig. 7(a) is interesting because it is

on average strongly “anticorrelated” with the reaction plane, in
the sense that it points (on average) at 45◦ relative to the x axis.
The geometric reason for this has already been discussed above
in subsection III D. On the other hand, Fig. 7(b) shows that
the angle ψEP

4 points on average into the reaction plane. This
correlation of ψEP

4 with the reaction plane is somewhat weaker
than the anticorrelation of ψPP

4 with that plane seen in Fig. 7(a).
Still, it suggests that quadrangular flow v4 does not, on average,
develop predominantly in the direction of the steepest pressure
gradient associated with ε4 but in the direction of steepest ε2-
induced pressure gradient. This can be understood as follows:
since ε2 generates a second harmonic deformation of the
flow velocity profile which elliptically deforms the exponent
of the flow-boosted Boltzmann factor exp[−pu(x)/T (x)]
describing the local thermal momentum distribution of par-
ticles, it leads to harmonic contributions v2k of all even
orders n= 2k in the momentum distributions of the finally
emitted particles [50]. Figure 7(b) suggests that, on average,
this effect wins over initial-state quadrangular deformation
effects.

Figure 7(c), however, in which we analyze directly the cor-
relation between the event and participant plane angles, paints
a more subtle picture. It shows, surprisingly, a correlation
peak at zero relative angle between ψEP

4 and ψPP
4 , whereas

the above discussion should have led us to expect a correlation
peak at 45◦. The resolution of this paradox is presented in
the next subsection: The relative importance of geometric and
fluctuation-induced contributions to εn, vn, and their associated
angles changes with collision centrality, with geometry playing
a relatively larger role in peripheral collisions. One should
therefore look at the angle correlations as a function of
collision centrality. One finds that the correlation function
peaks in Figs. 7(a) and 7(b) for the fourth-order angles
relative to the reaction plane are almost entirely due to
geometric effects in peripheral collisions, while in central
collisions both ψPP

4 and ψEP
4 are fluctuation dominated and

thus essentially uncorrelated with the reaction plane. On the
other hand, precisely because in central collisions geometric
effects such as geometrically driven elliptic flow do not
dominate the hydrodynamic response to the fluctuation-driven
higher-order eccentricities, ψEP

4 and ψPP
4 remain relatively

strongly correlated in near-central collisions. This is the reason
for the peak at 0◦ for n= 4 in Fig. 7(c). [A hint of the
“anticorrelation” at 45◦ is still visible in Fig. 7(c), and it
would be stronger if we had not (for unrelated reasons)
strongly oversampled central collisions in our mixed-centrality
sample.]

We close this discussion with the following additional
observations about Fig. 7(c): (i) The second-order participant
and event planes are much more strongly correlated with each
other than either one of them is with the reaction plane. This
shows that even in very central collisions, where the source
ellipticity is mostly fluctuation driven and its angle, therefore,
only weakly correlated with the reaction plane, elliptic flow
develops event by event in the direction of the short axis of
the ellipsoid. (ii) Even though the angles associated with ε3

and v3 are uncorrelated with the reaction plane [Figs. 7(a)
and 7(b)], they are strongly correlated with each other. This
indicates that v3 is mostly driven by ε3, especially in the more
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central collisions, with relatively little interference from other
harmonics. (iii) The fifth-order event and participant plane
angles show correlation peaks both at 0 and π/5. As we will
see in the following subsection, the former results from central
and the latter from peripheral collisions. The peak at π/5 indi-
cates significant cross-feeding between modes with n= 2, 3,
and 5.

B. Centrality dependence of event- and participant-plane
correlations

Figure 8 looks at the correlation between the nth-order
EP and PP angles at different collision centralities. This
generalizes a similar analysis for n= 2 in Ref. [29] to higher
harmonics. Plotted are the distributions of the absolute value
of the difference between the two angles in the main graph and
the rms of this distribution (i.e., the width around zero of the
correlation) in the inset, as a function of collision centrality.
Figure 8(a) shows that the second-order participant and event
planes are strongly correlated at all collision centralities. This
demonstrates that elliptic flow is generated almost exclusively
by the source ellipticity. The variance of the correlation is
∼0.05 rad in the midcentral range (15–40% centrality) and

increases in very central and very peripheral collisions due to
growing ellipticity fluctuations.

A similar correlation exists for the third-order participant
and event planes, at all collision centralities, but with a larger
variance of order 0.2–0.3 rad (depending on centrality). The
relatively strong correlation suggests that ε3 is the dominant
driver for v3 [19].

For the fourth- and fifth-order participant and event
planes the situation is complicated, as seen in Figs. 8(c)
and 8(d). The planes are correlated with each other (i.e.,
the distributions peak at zero difference angle) in central
collisions, but become essentially uncorrelated in midcentral
collisions and anticorrelated (i.e., peaked at a difference angle
of π/n, n= 4, 5) in peripheral collisions. The anticorrelation
in peripheral collisions indicates strong mode mixing, driven
by the large ellipticity ε2 and strong elliptic flow v2 at large
impact parameters which generates v4 and v5 contributions
by coupling to lower harmonics, as described in the previous
subsection. For v4 in particular, a strong cos(2φ) component
in the collective flow velocity generates a v4 of the final
momentum distribution, without any need for nonzero ε4. At
large impact parameters, ε2-induced quadrupolar flow from the
initial elliptic deformation of the overlap region thus dominates
over any contribution from initial quadrangular deformation.

0 0.5 1 1.5
0

2000

4000

6000

8000

10000

12000

|             |ψ EP
2 -ψ PP

2

d
(N

u
m

b

(a)

er
of

ev
en

ts
)/

d
(ψ

)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Centrality (%)

σ
(ψ

E
P

2
-ψ

P
P

2
)

50−60%
30−40%
20−30%
15−20%
0−5%
b=0

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

ψ|            |EP
3 -ψ PP

3

d(
N

um
b
er

of
ev

en
ts

)/
d(

ψ
) (b)

0 10 20 30 40 50 60

0.2

0.25

0.3

0.35

Centrality (%)

σ
(ψ

E
P

3
-ψ

P
P

3
)

0 0.2 0.4 0.6
0

1000

2000

3000

4000

|            |ψ EP
4 -ψ PP

4

d(
N

um
b
er

of
ev

en
ts

)/
d(

ψ
)

(c)

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

Centrality (%)

σ
(ψ

E
P

4
-ψ

P
P

4
)

0 0.2 0.4 0.6
0

1000

2000

3000

4000

5000

ψ|            |EP
5 -ψ PP

5

d(
N

um
b
er

of
ev

en
ts

)/
d(

ψ
) (d)

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

Centrality (%)

σ
(ψ

E
P

5
-ψ

P
P

5
)

FIG. 8. (Color online) Event-by-event correlation between the absolute values of the event plane (EP) and participant plane (PP) angles
for the harmonics of order 2–5 [panels (a)–(d)] for events in different centrality classes as indicated in the legend. (The same set of MC-KLN
events as in Fig. 4 was used.) The insets show the centrality dependence of the widths of these correlations around zero.
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In near-central collisions, on the other hand, where all εn stem
mostly from shape fluctuations, v4,5 are dominantly driven
by ε4,5.

C. Harmonic flows and their corresponding initial
eccentricities: Nonlinear hydrodynamic response

As discussed in the Introduction, it is often assumed that
the harmonic flows vn respond linearly to the eccentricities
εn, at least as long as the latter are small. This assumption
receives support from hydrodynamic simulations [26] as long
as one probes deformed initial profiles with only a single
nonvanishing harmonic eccentricity coefficient. In Fig. 9 we
investigate the validity of this assumption with fluctuating
MC-KLN events which feature nonzero εn values for all n.

Figure 9(a) generally provides support for the assumption of
a linear dependence of the elliptic flow v2 on initial ellipticity
ε2, with two important caveats:

(i) At small and large ellipticities, v2 deviates upward
from a best-fit line through the origin, indicating
additional contributors to the elliptic flow. Indeed, for
zero ellipticity, ε2 = 0, we find a nonzero average 〈v2〉.
These are events with typically large nonzero values for
eccentricities of higher harmonic order which generate
elliptic flow through mode mixing (e.g., between ε3

and ε5). We see that this happens at all centralities,

even for b = 0, due to event-by-event fluctuations of
the eccentricity coefficients.

(ii) The slope of the curve 〈v2〉(ε2) decreases in very
peripheral collisions, indicating destructive inter-
ference via mode mixing from other harmonics
in the hydrodynamic evolution of the small and
highly fluctuating fireballs created at large impact
parameters.

The ε3 dependence of triangular flow 〈v3〉, shown in
Fig. 9(b), shows a qualitatively similar story, but the deviations
from linear response are stronger, with significant nonzero tri-
angular flow in events with zero initial triangularity, especially
for larger impact parameters.

For 〈v4〉 and 〈v5〉, shown in Figs. 9(c) and 9(d), mode-
mixing effects are very strong, and a linear response of vn to
εn (n = 4, 5) can no longer be claimed. This differs markedly
from the results in Ref. [26] where v4 was studied for a source
that had only ε4 deformation: in this case v4(ε4) was found
to be approximately linear for small ε4, with a downward
bend at larger ε4 values due to negative interference from
cross-currents for sources with large quadrangularities. (This
approximately linear dependence survived in the pT -integrated
v4 even though it was noticed in a related study [51] that,
for midcentral collisions, the differential quadrangular flow
v4(pT ) appears at high pT to be mostly determined by
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FIG. 9. (Color online) 〈vn〉(εn) for n = 2, 3, 4, 5 [(a)–(d)]. As in Fig. 4, each centrality class contains 1000 MC-KLN events, grouped in
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FIG. 10. (Color online) Transverse-momentum spectra for directly emitted π+ (a) and protons (b) from event-by-event (solid lines) and
single-shot hydrodynamics (dashed lines) for 200 A GeV Au + Au collisions at five selected impact parameters.

the elliptic deformation of the hydrodynamic flow profile
generated by ε2.) Our present study shows that it is unlikely
that the anisotropic flow resulting from highly inhomogeneous
initial profiles with nonzero eccentricity coefficients of all
harmonic orders can be obtained by some sort of linear
superposition of flows generated from sources with only a
single nonzero harmonic eccentricity coefficient, as suggested
[39]. The hydrodynamic response {vn} to a set of initial
eccentricity coefficients {εn} is not only nondiagonal but also
(via mode mixing) nonlinear, and there is no suitable single-
shot substitute for event-by-event hydrodynamic evolution of
fluctuating initial conditions.

We note, however, that nonlinear mode-mixing effects
appear to be minimal for the elliptic and triangular flow
[Figs. 9(a) and 9(b)]. v2 and v3 remain, therefore, the best
candidates for an extraction of the fluid’s viscosity by studying
(with quantitative precision) the fluid’s efficiency in converting
initial spatial deformations into final momentum anisotropies
and anisotropic flows. We will further elaborate on this theme
in the next section.

V. SINGLE-SHOT VERSUS EVENT-BY-EVENT
HYDRODYNAMICS

We now discuss the effects of event-by-event initial-state
fluctuations on the finally observed pion and proton pT

spectra and anisotropic flow, comparing traditional single-
shot hydrodynamic evolution of an appropriately constructed
smooth average initial profile with event-by-event evolution
of fluctuating initial conditions (with an ensemble average
taken at the end). Since the calculation of resonance decay
feed-down corrections is computationally expensive but not
expected to cause qualitative changes, we here concentrate
on directly emitted (“thermal”) pions and protons. For the
graphs shown in this section, we generated for each impact
parameter 1000 fluctuating events and propagated them either
individually (“event-by-event hydrodynamics”) or in a single

hydrodynamic run after rotating and averaging their profiles
(“single-shot hydrodynamics”) down to a decoupling temper-
ature of 120 MeV.

A. Transverse-momentum spectra

In a very interesting recent paper [31] Chatterjee et al.
showed that thermal photon spectra from exploding heavy-ion
collision fireballs with fluctuating initial conditions which
were hydrodynamically evolved event by event are signif-
icantly harder than those obtained from single-shot hydro-
dynamic evolution of the corresponding ensemble-averaged
(and therefore much smoother) initial profiles. The authors
of Ref. [31] attributed this effect to the existence of “hot
spots” in the fluctuating initial conditions that radiate photons
at a higher-than-average temperature. Figure 10 shows that
the same hardening occurs in the pion and proton spectra
even though these strongly interacting hadrons are emitted
only at freeze-out, with the same decoupling temperature
assumed in both types of evolution.5 This proves that the
effect is due to stronger radial flow in the event-by-event
evolved fluctuating fireballs, driven by the stronger-than-
average pressure gradients associated with the “hot spots” (i.e.,
overdense regions) in the initial profile. The importance of
initial-state fluctuation effects on the final pT spectra becomes
stronger in peripheral collisions where the initial fireballs are
smaller and “hot spots” have a relatively larger influence. If
stronger radial flow is the explanation of the fluctuation-driven
hardening of the pion and proton spectra observed in Fig. 10,
it is probably also a dominant contributor to the hardening
of the photon spectra noted in Ref. [31], at least for low pT

5A similar effect was also seen in Ref. [29] whose authors further
pointed out that the strength of this “hardening effect” depends on
the fluctuation size parameter in the initial conditions (i.e., the area
over which the entropy produced in a nucleon-nucleon collision is
distributed).
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FIG. 11. (Color online) Eccentricity-scaled elliptic flow v2/ε2 as function of impact parameter, for pions [panels (a) and (b)] and protons
[panels (c) and (d)], from the ideal fluid dynamic evolution of initial MC-Glauber [(a) and (c)] and MC-KLN [(b) and (d)] density profiles.
Solid (dashed) lines correspond to event-by-event (single-shot) hydrodynamics. See text for discussion.

(i.e., in the hydrodynamic regime). This could be checked by
comparing the photon radiation from the late hadronic stage in
event-by-event and single-shot hydrodynamics which, if our
interpretation is correct, should show the same fluctuation-
driven, flow-induced hardening as the total photon spectra.

B. Elliptic and triangular flow

In Figs. 11 and 12, we compare the eccentricity-scaled ellip-
tic and triangular flows, v2/ε2 and v3/ε3, for pions and protons
as a function of impact parameter, from single-shot (dashed
lines) and event-by-event hydrodynamics (solid lines). These
ratios represent the efficiency of the fluid for converting initial
spatial deformations into final-state momentum anisotropies.
This conversion efficiency is affected (i.e., reduced) by shear
viscosity, so these ratios form the basis of many analyses
that aim to extract this transport coefficient from experimental
heavy-ion data.

For event-by-event hydrodynamics we show two curves,
using either the entropy density (blue open circles) or the en-
ergy density weighted (red solid circles) average eccentricities
to normalize the average final flow 〈vn〉. For the ellipticity

(Fig. 11) this choice is seen to make a difference only in
rather central collisions (b < 4 fm), but for the triangularity
the differences are significant out to average impact parameters
probed in minimum bias samples, b � 8 fm. As stated earlier,
we prefer the energy density weighted eccentricities (solid
circles) as deformation measures because energy density
and pressure are closely related through the EOS, and it is
the pressure gradients (and their anisotropies) that drive the
collective flow (and its anisotropies).

For the single-shot hydrodynamic simulations, a question
arises as to how exactly one should construct the ensemble-
averaged smooth initial profile which is then evolved hydro-
dynamically. We have explored three reasonable procedures
(variations of which have been used in the literature) and
show them as dashed lines in Figs. 11 and 12. For the
lines labeled by stars, we rotate the entropy density for
each fluctuating event by the corresponding entropy-weighted
participant-plane angle ψPP

n (s) [n= 2, 3, see Eq. (19)],6 then
average the rotated entropy profiles, compute the eccentricity

6Note that for computation of v̄3 we rotate the events by a different
angle before averaging than for v̄2, i.e., v̄3 and v̄2 are obtained from
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FIG. 12. (Color online) Same as Fig. 11 but for the eccentricity-scaled triangular flow v3/ε3.

ε̄n(s) of the resulting average entropy density profile, and
convert it to energy density using the EOS for input into
the hydrodynamic code. For the lines labeled by crosses,
we rotate the energy density for each fluctuating event (ob-
tained from the EOS) by the corresponding energy-weighted
participant-plane angle ψPP

n (e) [see Eqs. (1) and (2)], compute
the averaged rotated energy density profile and its eccentricity
ε̄n(e), and use it directly as hydrodynamic input. For the dashed
lines without symbols, finally, the averaged initial energy
density (and therefore the final v̄n) are exactly the same as
for the lines with crosses, but the final v̄n is scaled by the
entropy-weighted (rather than energy-weighted) eccentricity
of the averaged initial profile, where the entropy density
is obtained from the smooth averaged energy density via
the EOS.

The differences between the different dashed lines illustrate
the uncertainties associated with the choice of averaging
procedure for the initial state. Keeping in mind that a
20% reduction in v2/ε2 corresponds (very roughly) to an
increase of η/s by 1/4π [5], one sees that these differences
are not negligible if one aims for quantitative precision in

two different single-shot hydrodynamic runs, starting from different
averaged initial energy density profiles.

the extraction of the specific shear viscosity. Comparing the
three dashed lines we see that it does not make much difference
whether we use the s-weighted or e-weighted participant-
plane angles to rotate the events before superimposing them
(the dashed lines without symbols and with stars are all very
close to each other), but that in the more central collisions
we obtain significantly different values for the conversion
efficiencies v̄n/ε̄n if we normalize by e- or s-weighted mean
eccentricities. Even though they look similar in Fig. 5(a), at
small impact parameters ε̄part(e) and 〈ε2(e)〉 are larger than
ε̄part(s) and 〈ε2(s)〉, respectively, and this is the main reason
why the red and blue lines in Fig. 11 diverge at small b, for both
event-by-event (solid lines) and single-shot hydrodynamics
(dashed lines).

An apples-to-apples comparison between event-by-event
and single-shot hydrodynamics (and between theory and
experimental data) therefore must ensure that the same (or
at least conceptually compatible) eccentricities are used to
normalize the anisotropic flow coefficients that are to be
compared. In Figs. 11 and 12 we should, therefore, compare
blue solid with blue dashed, or red solid with red dashed lines,
but not curves of different colors.

Even this is not good enough if one wants to accurately
assess the relative space-to-momentum anisotropy conversion
efficiency in single-shot and event-by-event hydrodynamics:
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FIG. 13. (Color online) Ratio of the average flow coefficient 〈vn〉 from event-by-event hydrodynamics and the corresponding mean v̄n from
single-shot hydrodynamics, as a function of impact parameter in 200 A GeV Au + Au collisions, for n = 2 (a) and n = 3 (b). Shown are the
ratios for directly emitted pions (circles) and protons (diamonds) from fluctuating events using the MC-Glauber (dashed lines) and MC-KLN
models (solid lines). Average events for computing v̄n using single-shot hydrodyamics were obtained by rotating the energy density of each
event by ψPP

n (e) before superimposing them.

In the single-shot hydro curves we use ε̄part to normalize the
final elliptic flow, whereas the event-by-event hydro results
were normalized with 〈ε2〉 ≡ 〈εpart〉. While each of these
eccentricity measures makes perfect sense in its own context,
they differ at large impact parameters, ε̄part being larger [see
Figs. 1(a) and 1(b)]. To avoid this problem we have added in
Figs. 11 and 12 an additional “mixed ratio” (dash-dotted purple
line) which normalizes the ensemble-averaged anisotropic
flow 〈vn〉 (n= 2, 3) from event-by-event hydrodynamics (used
in the ratio 〈vn〉/〈εn〉 denoted by solid lines with solid red
circles) by the mean e-weighted eccentricity ε̄n from single-
shot hydrodynamics (used in the ratio v̄n/ε̄n denoted by dashed
lines with crosses). This dot-dashed purple line agrees almost
perfectly with the solid red line with circles over most of
the impact parameter range, except for peripheral collisions
with b � 10 fm where ε̄n and 〈εn〉 begin to diverge. The red
dashed lines with crosses and purple dash-dotted lines show
the anisotropic flows from single-shot and event-by-event
hydrodynamics normalized by the same eccentricity measure
characterizing the fluctuating event sample. Their comparison
allows an unambiguous assessment of the different efficiencies
of single-shot and event-by-event hydrodynamics in convert-
ing initial eccentricities to final momentum anisotropies. Their
ratio is shown in Fig. 13.

From Fig. 13(a) one concludes that, for ideal hydrody-
namics, event-by-event fluctuations on average reduce the
efficiency of the fluid in converting initial source ellipticity into
elliptic flow. Over most of the centrality range this reduction
is about 4% for pions and about twice as large for protons,
and it is similar for MC-KLN and MC-Glauber initial profiles.
In very central collisions the ratio of conversion efficiencies
for event-by-event vs. single-shot hydrodynamics is closer
to 1, but it degrades strongly in very peripheral collisions
where event-by-event evolution generates on average 30–
40% less elliptic flow than single-shot hydrodynamics. The
generic tendency of event-by-event hydrodynamic evolution
of fluctuating initial profiles to generate less elliptic flow than

expected from hydrodynamic evolution of the corresponding
smooth average profile has been observed before [27,30]; our
systematic study in Fig. 13(a) quantifies this effect over the
full range of collision centralities.

The situation with triangular flow, shown in Fig. 13(b),
differs markedly: Event-by-event propagation of initial-state
flutuations can lead to an increase or decrease of the triangular
flow compared to single-shot hydrodynamics, depending on
particle mass (pions or protons), the nature of the fluctuations
(MC-Glauber or MC-KLN), and collision centrality. Contrary
to elliptic flow, in peripheral collisions event-by-event evolu-
tion leads to significantly larger average triangular flow than
single-shot hydrodynamics.

We expect that nonzero viscosity will dampen fluctuation
effects and somewhat reduce the differences between event-
by-event and single-shot hydrodynamic evolution of elliptic
and triangular flow shown in Fig. 13. Nevertheless, it appears
that, for quantitative studies of the influence of viscosity on
the generation of anisotropic collective flow, event-by-event
hydrodynamic evolution is an essential and indispensable
ingredient.

C. Elliptic flow fluctuations

Similar to what is shown in Figs. 1(a) and 1(b) for the initial
source ellipticities, Fig. 14 shows the elliptic flow measures
〈v2〉, v2{2}, and v2{4} from event-by-event hydrodynamics,
together with v̄2 from single-shot hydrodynamic evolution
of the corresponding averaged initial profile, for pions and
protons, using MC-Glauber and MC-KLN initializations,
respectively. v2{2} and v2{4} are defined in analogy to Eqs. (9)
and (10) by

v2{2}2 = 〈
v2

2

〉
, (23)

v2{4}4 = 2
〈
v2

2

〉2 − 〈
v4

2

〉
. (24)
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FIG. 14. (Color online) Different measures for the final elliptic flow v2 (similar to Fig. 1) for directly emitted pions (a) and (b) and protons
(c) and (d) as functions of impact parameter from event-by-event ideal fluid dynamics, using MC-Glauber (a) and (c) and MC-KLN (b) and (d)
initial conditions for 200 A GeV Au + Au collisions.

Here v2 is calculated event-by-event via Eq. (22) from the
Cooper-Frye spectrum at freeze-out (with zero statistical un-
certainties since it is determined with mathematical precision
by the event-by-event hydrodynamic output).

As in Fig. 1, open stars show the central values for 4
√

|v2{4}4|
whenever v2{4}4 turns negative, and open-ended error bars
indicate that the error band for v2{4}4 ranges from positive to
negative values. Similarly to the ellipticities shown in Fig. 1,
the latter happens at small impact parameters, but for the MC-
Glauber model the b range over which this happens for v2{4}
(for both pions and protons) is somewhat larger than for ε{4}.
Still, v2{4} is compatible with zero over this entire range, and
we do not find statistically significant negative values for v2{4}
at small impact parameters. At large b > 12 fm v2{4}4 turns
negative for both pions and protons when we use MC-Glauber
initial conditions, whereas it remains positive for MC-KLN
initial profiles.

By comparing v̄2 (open circles in Fig. 14) with 〈v2〉 (solid
green circles) one sees that in midcentral to peripheral colli-
sions the v2 suppression from event-by-event hydrodynamic
evolution is of the same order as or (especially for protons)
even larger than the difference between v2{2} and 〈v2〉 (solid
blue vs. solid green circles) that arises from event-by-event

flow fluctuations. As a result, v2{2} from event-by-event
hydrodynamics lies in peripheral collisions even below v̄2 from
single-shot hydrodynamics, in spite of its fluctuation-induced
enhancement.

Similar to Eqs. (11)–(13) we can test whether the v2

fluctuations from event to event have Gaussian or Bessel-
Gaussian distributions. This is done in Fig. 15. The upper
set of curves (thick lines) test the v2 analog of relation
(13), whereas the lower set (thin lines) tests the validity
of Eq. (11). (In the lower set of curves we dropped all b

values for which the error band for v2{4}4 extends to negative
values.) Just as we saw for the initial ellipticities in Fig. 3,
both the Gaussian and Bessel-Gaussian hypotheses for v2

fluctuations are seen to hold quite well in midcentral (4 ∼
10 fm) collisions. The Bessel-Gaussian hypothesis breaks
down in peripheral collisions (b > 10 fm). Whether it holds
(as expected Ref. [24]) in central collisions is a question that,
with our present statistics of 1000 events per b value, we cannot
reliably answer, but we see no indications for the opposite. The
assumption of Gaussian v2 fluctuations breaks down in central
collisions (b < 5 fm), as expected. For the MC-Glauber model
it also breaks down in very peripheral collisions, whereas for
MC-KLN initial conditions the final elliptic flow exhibits a
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FIG. 15. (Color online) Similar to Fig. 3 but for the elliptic flow
v2 of pions and protons. See text for discussion.

nice Gaussian distribution all the way to the largest impact
parameters.

Overall, a comparison of Figs. 15 and 3 (as well as of
Figs. 14 and 1) shows that the statistical properties of v2

fluctuations are qualitatively similar but differ quantitatively
from those of the initial ellipticity fluctuations. This is
consistent with the fact that the main driver for elliptic flow
is the initial ellipticity, but that eccentricity coefficients of
higher harmonic orders affect the evolution of v2 weakly but
measurably through nonlinear mode-coupling effects.

VI. SUMMARY AND CONCLUSIONS

In this work we presented a comprehensive analysis of
event-by-event shape fluctuations in the initial state and flow
fluctuations in the final state of relativistic heavy-ion collisions,
as quantified by the first four nontrivial harmonic eccentricity
and flow coefficients, εn and vn (n= 2, 3, 4, 5). Using the
MC-Glauber and MC-KLN models to generate fluctuating
initial entropy and energy density profiles, we explored the
centrality dependence of a number of different variants of
these anisotropy measures that are being used by practitioners
in the field and compared them with each other. Although they
all exhibit similar qualitative behavior, quantitative differences
exist and must be carefully taken into account in the theoretical
analysis of experimental data. As far as we know, ours is the
first comprehensive analysis quantifying these differences for
both the Glauber and color glass condensate models.

We list a few key results:

(i) The average and mean ellipticities 〈ε2〉 and ε̄2

agree with excellent accuracy over a wide range
of impact parameters but diverge in very peripheral
collisions (�60% centrality) where ε̄2 > 〈ε2〉 (both
for participant-plane and reaction-plane-averaged pro-
files).

(ii) The average energy and entropy density weighted
eccentricities agree with excellent accuracy over a wide
range of impact parameters, except for central collisions
(b � 4 fm), where 〈εn(e)〉> 〈εn(s)〉.

(iii) Whether the fluctuating entropy density distributions
for individual events are first converted to energy
density and then rotated by ψPP

n (e) and averaged or
first rotated by ψPP

n (s) and averaged and then converted
to energy density has very little influence on the shape
of the resulting smooth average initial energy density
profile for single-shot hydrodynamics. We prefer (and
propose as standard procedure) the conversion to
energy density as the first step, since in event-by-event
hydrodynamics the energy density gradients of each
event generate (through the EOS) the pressure gradients
that drive the evolution of collective flow.

(iv) The shortcut of using reaction-plane averaging to gener-
ate a smooth profile for single-shot hydrodynamics with
ellipticity approximately equal to ε{4} of the ensemble,
in the hope of generating with a single hydrodynamic
run an elliptic flow v̄2 that can be directly compared
with v2{4} measurements, works only in the 0–40%
centrality range. For peripheral collisions this method
cannot be trusted.

(v) The assumption of Bessel-Gaussian fluctuations for
initial source ellipticity and final elliptic flow
works well for b � 10 fm but breaks down in more
peripheral collisions. For more peripheral collisions
the hypothesis that ε2 and v2 are Gaussian distributed
works better than the Bessel-Gaussian assumption,
but it breaks down for b < 5 fm. For MC-Glauber
initial conditions, directly emitted pions and protons
feature negative values of v2{4}4 in very peripheral
collisions. The fluctuations of initial source ellip-
ticities and final elliptic flow values have qualita-
tively similar but quantitatively different statistical
properties.

(vi) Except for rather central collisions, the eccentricities
〈ε2〉, 〈ε4〉, and 〈ε5〉 from the MC-KLN model are all
significantly larger than those from the MC-Glauber
model. In contrast, 〈ε3〉 is numerically very similar
for the two models over most of the impact parameter
range. The viscous suppression of triangular flow v3

may thus allow for a determination of the QGP shear
viscosity (η/s)QGP that is free from the large model
uncertainties that arise from the different MC-Glauber
and MC-KLN ellipticities when using v2 for such an
extraction [49].

(vii) The second- and fourth-order eccentricities ε2 and ε4

are strongly correlated by collision geometry, and v4

receives strong contributions even from a purely ellip-
tical deformation of the final flow velocity distribution.
These complications make v4 a poor candidate for
systematic studies of viscous effects on the evolution
of collective flow. Similar comments apply to v5 since
it couples via mode coupling to triangularity from
fluctuations and to ellipticity from collision geome-
try. This mixture of contributions from conceptually
different origins complicates a systematic analysis. In
general, flow coefficients vn of high harmonic order
(n > 3) show poor correlation with the eccentricity
coefficients εn of the same harmonic order, except
for very central collisions where all eccentricities
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FIG. 16. (Color online) Correlation between εn and ε′
n, for n = 2, 3, 4 [panels (a)–(c)]. The blue dots are bin averages for bins that contain

more than 10 events. The thick black lines are linear fits.

are driven by fluctuations alone (and not by overlap
geometry).

(viii) In spite of nonlinear mode-coupling effects, the basic
response of elliptic flow v2 to ellipticity ε2, and of trian-
gular flow v3 to triangularity ε3, is approximately linear.
These two observables thus remain prime candidates
for systematic studies of viscous effects on collective
hydrodynamic flow.

(ix) Event-by-event hydrodynamics generates harder pT

spectra for the emitted hadrons than single-shot hydro-
dynamic evolution of the corresponding averaged initial
profile. This is due to additional radial flow generated by
large pressure gradients arising from “hot spots” in the
initial fluctuating density distribution. The hardening
effect is particularly strong in peripheral collisions
which produce small fireballs that fluctuate strongly.

(x) Event-by-event hydrodynamic evolution of fluctuating
initial conditions leads to smaller average elliptic flow
than obtained by evolving the corresponding averaged
initial condition in a single shot. This suppression
depends somewhat on collision centrality, and for ideal
fluids it is generically of order 4–5% for pions and
8–10% for protons. The effect is sufficiently large
to lead to a significant overestimate of the fluid’s
specific shear viscosity if one extracts it from elliptic
flow measurements by comparing with single-shot
hydrodynamic simulations. Even though we expect
the discrepancy between event-by-event and single-

shot hydrodynamics to decrease a bit in viscous fluid
dynamics, we believe that a quantitatively precise
experimental determination of η/s from collective
flow data will require comparison with event-by-event
hydrodynamical calculations.
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APPENDIX: COMPARISON BETWEEN ECCENTRICITIES
DEFINED WITH r2 AND rn WEIGHTS

We here present a brief comparison between the
r2-weighted eccentricity coefficients εn [Eq. (17)] and the
rn-weighted ε′

n [Eq. (17)], as well as their associated angles
ψPP

n and ψ
′PP
n . Figure 16 shows a scatter plot of ε′

n versus
εn for n= 3, 4, 5. One observes approximate proportionality
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FIG. 17. (Color online) Event-by-event correlation between the participant plane angles associated with r2- and rn-weighted eccentricities
for harmonic orders n = 3, 4, and 5 [panels (a)–(c)].
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(ε′
3 ≈ 1.22 ε3, ε′

4 ≈ 1.48 ε4, ε′
5 ≈ 1.80 ε5) over most of the

eccentricity range, with slopes that increase with n. So where
Fig. 5 shows a decrease of εn with increasing n at large impact
parameters, the same is not true for the ε′

n [20]. On the other
hand, the linear relations between ε′

n versus εn imply that the
relations between vn and ε′

n will look qualitatively the same as
those between vn and εn in Fig. 9, with appropriately rescaled
horizontal axes.

At the same time the participant plane angles associated
with r2-weighted and rn-weighted eccentricities are tightly
correlated, as shown in Fig. 17. For given n, the angles ψPP

n

and ψ
′PP
n fluctuate around each other, with a variance that

increases with n, on account of the decreasing values of εn.
From a practical point of view, we therefore consider both
definitions as equivalent, and choosing between them is a
matter of personal preference.
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