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We study the evolution of the (e, e ′p) cross section on nuclei with increasing asymmetry between the
number of neutrons and protons. The calculations are done within the framework of the distorted-wave
impulse approximation, by adopting nonrelativistic and relativistic models. We compare the results obtained
with three different approaches based on the mean-field description for the proton bound-state wave function.
In the nonrelativistic model phenomenological Woods-Saxon and Hartree-Fock wave functions are used; in the
relativistic model the wave functions are solutions of Dirac-Hartree equations. The models are first tested against
experimental data on 16O, 40Ca, and 48Ca nuclei, and then they are applied to calculate (e, e ′p) cross sections
for a set of spherical calcium and oxygen isotopes. From the comparison of the results obtained for the various
isotopes we can infer information about the dependence of the various ingredients of the models on the neutron
to proton asymmetry.
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I. INTRODUCTION

The understanding of the evolution of nuclear properties
with respect to the asymmetry between the number of neutrons
and protons is one of the major topics of interest in modern
nuclear physics. It is going to extend our knowledge about the
effects of isospin asymmetry on the nuclear structure and is
also relevant to the study of the origin and the limits of stability
of matter in the universe.

Nuclear reactions represent our main source of information
on the properties and on the structure of atomic nuclei. Direct
nuclear reactions, where the external probe interacts with only
one, or a few, nucleons of the target nucleus, can give deep
insight into the single-particle (s.p.) properties of a many-body
system. In particular, the (e, e ′p) reaction, where a proton is
emitted with a direct knockout mechanism, represents a very
clean probe to explore the structure of proton-hole states of
the nucleus [1–3].

Electron scattering is probably the best tool for investigating
the structure of atomic nuclei and their constituents. The elec-
tromagnetic interaction is weak compared with the strength
of the interaction between hadrons; therefore the nuclear
many-body system is only slightly perturbed by the probe.
In addition, the possibility of varying independently the energy
and momentum transferred to the nucleus allows us to map
the nuclear response as a function of the excitation energy
with a space resolution that can be adjusted to the scale of
processes we want to study. The theoretical description of the
electron-nucleus interaction is well controlled by perturbative
quantum electrodynamics theory, and, for the energies used
in nuclear physics investigations, the one-photon exchange
approximation is usually enough to obtain a good description
of the electron scattering process. The advantages of electron
scattering have been exploited in the past to study the
properties of stable nuclei. These studies can now be extended
to exotic nuclear matter.

In the last thirty years a large amount of (e, e ′p) data has
provided accurate information on the s.p. structure of stable
closed-shell nuclei. Many high-resolution exclusive (e, e ′p)
experiments on several stable nuclei were carried out at Saclay
[1–5], NIKHEF [2,3,6,7], and MAMI [8]. Specific quantum
numbers and spectroscopic factors have been assigned to
the peaks in the energy spectrum by studying the missing
energy and momentum dependence of the experimental cross
sections. The data analysis was carried out by using the
program DWEEPY [9,10], which describes the process within
the theoretical framework of the nonrelativistic distorted-wave
impulse approximation (DWIA). In the program the effects
of the final-state interactions (FSI) due to the reinteraction
of the emitted proton with the remaining nucleus and also
the distortion of the electron wave functions produced by the
nuclear Coulomb field are included. For the data analysis, phe-
nomenological ingredients were usually adopted to calculate
the s.p. bound and scattering states. In the original analyses
of the experimental data, the outgoing nucleon scattering
wave functions were eigenfunctions of an optical potential
determined through a fit to elastic unpolarized and polarized
nucleon-nucleus scattering data.

The bound-state wave functions were calculated with a
Woods-Saxon (WS) well, where the radius was determined
to fit the experimental momentum distribution and the depth
was adjusted to give the experimentally observed separation
energy of the bound final state. This theoretical approach was
able to describe, with a high degree of accuracy and for a
wide range of nuclei and for different kinematics, the shape of
the experimental momentum distributions at missing-energy
values corresponding to specific peaks in the energy spectrum.
In order to reproduce the size of the experimental cross
sections, the normalization of the bound-state wave function
was fitted to the data and identified with the spectroscopic
factor. The deviations of such normalization factors from
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the predictions of the mean-field (MF) approximation are
interpreted as the effect of nucleon-nucleon correlations.

The description of (e, e ′p) processes was done also
with relativistic DWIA (RDWIA) models [11–28]. In these
approaches the s.p. bound-state wave functions are obtained by
solving Dirac-Hartree equations with an interaction obtained
by a relativistic Lagrangian written in the context of relativistic
MF theory. The scattering wave functions are obtained by
solving the Dirac equation with relativistic optical potentials
determined by a fit to elastic proton-nucleus scattering data.
Some of these models include also an exact treatment of the
Coulomb distortion of the electron waves [12,13,15–17]. The
RDWIA calculations, which provide a good description of
the old (e, e ′p) data, are necessary for the analysis of the
more recent (e, e ′p) data from JLab [29,30], measured in
kinematic conditions with higher values of the momentum
transfer and of the outgoing proton energy, unachievable in
previous experiments.

In upcoming years the advent of radioactive ion beams
facilities [31–33] will provide a large amount of data on
unstable nuclei. A new generation of electron colliders that
use storage rings is under construction at RIKEN (Japan)
[34,35] and GSI (Germany) [36]. These facilities will offer
unprecedented opportunities to study the structure of exotic
unstable nuclei through electron scattering in the ELISe
experiment at FAIR in Germany [37] and the SCRIT project
in Japan [38].

Kinematically complete experiments, where all target-like
reaction products are detected, will become feasible for the
first time, allowing a clean separation of different reaction
channels as well as a reduction of the unavoidable radiative
background seen in conventional experiments. Therefore, even
applications to stable isotope will be of interest.

In this work we investigate how the models successfully
used to describe (e, e ′p) data in stable nuclei behave when
they are used to make predictions on exotic nuclei. In our
study, we consider both the nonrelativistic (DWIA) and the
relativistic (RDWIA) approaches, and we apply them to a set
of calcium and oxygen isotopes. We have chosen these isotopes
since data taken at NIKHEF for the doubly magic nuclei 40Ca,
48Ca [39,40], and 16O [41] are available. We first compare
the performances of our models in describing these data, then
we apply them to some even-even isotopes of these nuclei.
We apply our models to 40,48,52,60Ca and 16,22,24,28O nuclei,
where the s.p. levels below the Fermi surface are fully
occupied. In this manner we work with spherical systems
and minimize the pairing effects. Our models require the
description of both ground and excited states of the nuclear
system; the latter one has a particle in the continuum. In this
paper, we investigate how different descriptions, apparently
equivalent for stable nuclei, can produce different results when
applied to neutron-rich nuclei. The DWIA calculations are
carried out with the same code DWEEPY that was used for
the analyses of the experimental data. In the comparison with
data we repeat the original analyses and present the results of
calculations performed under the same conditions as in Refs.
[39–41]. The results obtained with phenomenological WS
wave functions are compared with those obtained by solving

Hartree-Fock (HF) equations with Gogny-like finite-range
interactions. The RDWIA calculations are performed with the
fully relativistic model developed in Ref. [23]. The theoretical
investigation of exotic nuclei with models of proven reliability
in stable isotopes will test the ability of the established nuclear
theory in the domain of exotic nuclei, revealing the evolution
of nuclear properties as a function of the asymmetry between
the number of neutrons and protons. Moreover, it will provide
valuable references for future experiments.

The paper is organized as follows. In Sec. II, we outline
the basic aspects of the models used for the calculations. We
present and discuss our results in Sec. III and we draw our
conclusions in Sec. IV.

II. THEORETICAL DESCRIPTION OF THE (e, e ′ p)
PROCESS

Our description of the (e, e ′p) reactions is based on
the one-photon exchange approximation, where the incident
electron exchanges a virtual photon, of momentum q and
energy ω, with the target nucleus [3]. In this approximation,
the evaluation of the cross section requires the calculation of
the contraction between the lepton tensor, which contains the
electron current, and the hadron tensor, which contains the
nuclear electromagnetic current. If we neglect the effects of
the nuclear Coulomb field on the electrons, the initial and final
electron wave functions are plane-wave solutions of the Dirac
equation. In this case, we can write the lepton tensor as a
kinematical factor and the hadron tensor as a bilinear product
of the Fourier transforms of the transition matrix elements
of the nuclear electromagnetic current operator between the
initial |�i〉 and final |�f〉 nuclear states,

Jμ(q) =
∫

〈�f|Ĵ μ(r)|�i〉 e iq ·rd3r. (1)

If Coulomb-distorted electron wave functions are consid-
ered in the model, the transition matrix element of the electron
current replaces the exponential in Eq. (1) and the calculation
becomes much more complicated [3,9,10,15]. For the nuclei
and the electron energies considered in this work, however,
a simple and accurate enough method to include the effects
of Coulomb distortion is to preserve expression (1) by using
an effective momentum transfer and change the momentum
transfer into an effective momentum transfer [3,9,10,15].
Therefore in all the calculations presented in this paper we
have used this approximation.

The evaluation of expression (1) requires a model that
describes the initial and final nuclear many-body states. A
detailed description of our DWIA model, and of the related
assumptions, can be found in Refs. [3,42]. In short, we assume
that in the final state the residual nucleus, which is composed of
A − 1 nucleons, is left in a bound state |�B

α (E)〉, characterized
by energy E and quantum numbers α. Then, for the final
nuclear state we select the channel subspace spanned by
the wave function |�B

α (E)〉, describing the A − 1 nucleons,
and a function describing the state of the emitted nucleon.
Moreover, we assume the direct knockout mechanism, where
the one-body nuclear electromagnetic current operator acts
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exclusively on the space spanned by this type of many-body
state.

Under these assumptions we can write expression (1) as

Jμ(q) =
∫

〈�f|a†(r)
∣∣�B

α (E)
〉
ĵ μ(r)

× 〈
�B

α (E)
∣∣a(r)|�i〉 e iq ·r d3r

=
∫

χ
(−)∗
Eα (r) ĵ μ(r) φEα(r)[Sα(E)]1/2

× e iq ·r d3r, (2)

where we have not explicitly indicated the dependence on the
spin and isospin variables and we understand that the one-body
electromagnetic current operator ĵ μ acts on the nuclear wave
functions only. In Eq. (2) we have indicated with a(r) the
operator which annihilates a nucleon with coordinate r , and
with χ

(−)
Eα the distorted wave function of the emitted nucleon,

〈
�B

α (E)
∣∣a(r)|�f〉 = χ

(−)
Eα (r). (3)

In the initial state for the wave function of the bound nucleon
we have defined the overlap function, which describes the
residual nucleus as a hole state in the target, as〈

�B
α (E)

∣∣a(r)|�i〉 = [Sα(E)]1/2φEα(r). (4)

The overlap function contains the effects of nuclear correla-
tions [3,43–45]. In the definition Eq. (4) the function φEα(r) is
normalized to unity. The spectroscopic factor Sα(E) is the
norm of the overlap function and gives the probability of
removing from the target a nucleon at r , leaving the residual
nucleus in the state �B

α (E).
This model can be formulated in both the DWIA and

the RDWIA. In RDWIA calculations four-vector relativistic
wave functions for the initial bound and the final scattering
states and, coherently, relativistic expressions for the nuclear
current operator are used [23]. We point out that in our DWIA
calculations some relativistic corrections are included in the
kinematics and in the nuclear current operator.

Formally, as described in Refs. [3,42], the s.p. scattering
and bound-state wave functions are derived in the model
of Eq. (2) as eigenfunctions of an energy-dependent non-
Hermitean Feshbach-type optical-model Hamiltonian. Such
a consistent treatment is extremely difficult and, at present,
bound and scattering states calculated from the theoretical
optical potential are not available. For this reason, in actual
calculations phenomenological wave functions are usually
employed. In the nonrelativistic DWIA calculations, the out-
going proton wave functions are eigenfunctions of the complex
phenomenological energy-dependent and A-dependent optical
potential of Ref. [46], which contains a central and a spin-orbit
term, and also a term dependent on the nuclear asymmetry
(N − Z)/A. This is the same optical potential used in the
original analyses of the NIKHEF data [39–41]. We used this
potential in all the DWIA calculations done for the various
isotopes we have investigated.

In our RDWIA model, the ejectile wave function is written
in terms of its positive energy component �f + following
the direct Pauli reduction method [47]. This scheme appears
simpler and it is equivalent to the solution of the Dirac

equation. The resulting Schrödinger-like equation for �f +
contains equivalent nonrelativistic central and spin-orbit
potentials which are functions of the relativistic, energy-
dependent, scalar, and vector potentials. The Darwin nonlo-
cality factor, which contains the effect of the negative-energy
components of the spinor, is reabsorbed in the current operator,
which becomes an effective relativistic one-body operator
depending on the Dirac scalar and vector potentials as well
as on the prescription for the electromagnetic current.

In our calculations we used the relativistic EDAD1 potential
of Ref. [48], constructed to fit proton elastic scattering data on
several nuclei in an energy range up to 1040 MeV.

The s.p. bound-state wave functions φEα have been obtained
in a MF model, and the values of the spectroscopic factors have
been set to unity. In this paper we intend to study the sensitivity
of our results to the changes of the hole s.p. wave function.
To this aim, we have performed calculations for the various
nuclei under investigation with different MF approaches.

In a first approach, for the DWIA calculations, we re-
peat for the comparison with data the original analyses of
Refs. [39–41] and adopt the same phenomenological in-
gredients. As indicated in the introduction, in these calcu-
lations the hole wave functions are calculated by using a
WS well where the values of the depth and of the radius
are adjusted to reproduce, respectively, the experimentally
observed separation energy of the bound final state and the
width of the experimental momentum distributions. The values
of the parameters used in the calculations can be found in
Refs. [39–41]. In order to reproduce the magnitude of the
experimental cross sections a multiplicative reduction factor
is applied to the calculated cross sections. These factors,
identified with the spectroscopic factors, indicate that in
(e, e ′p) reactions the removal of the MF s.p. strength for
quasi-hole states near the Fermi energy is about 60%–70% of
the prediction of the s.p. model [3,7,40]. This information from
(e, e ′p) experiments is up to now limited to stable isotopes.

The source of the reduction of the (e, e ′p) spectroscopic
factor with respect to the MF value has been investigated
by using various methodologies which consider different
types of correlations, i.e., effects beyond the MF model.
The short-range and tensor correlations, which arise from
the characteristics of the bare nucleon-nucleon interaction,
account for a reduction factor of at most 10%–15% [49–54].
The remaining, and larger, part of the quenching is due to
long-range correlations related to the coupling between s.p.
motion and collective surface vibrations [45,55].

In a second approach, also used in DWIA calculations,
the hole s.p. wave functions are obtained by solving HF
equations with the technique presented in Refs. [56,57]. In
these calculations we use two different parametrizations of the
finite-range Gogny interactions, the more traditional D1S force
[58] and the new D1M force [59]. The differences between the
results obtained with these two forces are rather small when
compared with the differences with the results obtained with
the other methods. For this reason we shall present here only
the results obtained with the D1M interaction, which produces
a neutron matter equation of state which has a plausible
behavior at high densities, in contrast to that obtained with
the D1S interaction.
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In the third approach we made RDWIA calculations where
the hole wave functions are obtained in the context of
the relativistic MF approach by solving the Dirac-Hartree
equations. The nucleon interaction is derived from a relativistic
Lagrangian containing σ , ω, and ρ meson fields and also the
photon field. The nuclear and Coulomb potentials are obtained
by solving self-consistently the Klein-Gordon and Maxwell
equations. This approach satisfactorily reproduces global and
s.p. properties of several nuclei [60–62].

The last ingredient necessary to calculate expression (2) is
the current ĵ μ. In RDWIA calculations the electromagnetic
one-body current operator corresponds to the relativistic
current-conserving cc2 expression of Ref. [63]. This ex-
pression is consistent with the current we use in DWIA
calculations, where the relativistic corrections up to order
1/M2, where M is the nucleon mass, are obtained from a
Foldy-Wouthuysen transformation applied to the interaction
Hamiltonian where the nuclear current has the same form as
in the cc2 expression.

The values of some quantities related to the wave func-
tions and density distributions, obtained in the different MF
approaches for the nuclei under investigation, are compared in
Table I for the oxygen isotopes and in Table II for the calcium
isotopes. In these tables the proton separation energies and
the root-mean-squared (rms) radii of the bound-state wave
functions are shown. The proton separation energies of the
WS calculations reproduce the experimental values. For 28O
and 60Ca nuclei, where no experimental values are available,
the depth of the WS well has been chosen to reproduce the
separation energy obtained in the nonrelativistic HF approach.
We remark that, experimentally, 28O and 60Ca nuclei are
unbound; however, our MF calculations bind all the nuclei
we have investigated.

In Tables I and II we also present the rms radii of the
global proton and neutron density distributions for the HF
and the relativistic models. In the phenomenological WS
approach the parameters of the WS well are determined to
reproduce the experimental separation energy and the width of

TABLE I. Proton separation energies (Sp) and rms radii of the
1p1/2 bound-state wave functions (rrms) and of the global proton (rP

rms)
and neutron (rN

rms) density distributions, obtained with the different
MF models for all the oxygen isotopes we have considered.

Nucleus Sp (MeV) rrms (fm) rP
rms (fm) rN

rms (fm)
1p1/2 1p1/2

16O WS −12.127 2.94
HF −11.906 2.83 2.63 2.61

REL −12.294 2.97 2.63 2.60
22O WS −23.26 2.77

HF −23.60 2.83 2.68 2.97
REL −23.59 2.76 2.59 3.01

24O WS −26.60 2.77
HF −25.60 2.89 2.70 3.12

REL −23.97 2.83 2.62 3.28
28O WS −31.04 2.80

HF −31.04 2.96 2.82 3.42
REL −28.65 2.95 2.69 3.58

the experimental (e, e ′p) distribution and can give information
only on the wave function of the considered proton. The
behavior of the neutron rms radii is rather obvious and
increases with increasing number of neutrons. In the HF model
the neutron radii are slightly smaller than in the relativistic
model, except for 16O and 40Ca, where they are practically the
same. The behavior of the proton rms radii is less obvious. The
proton number is the same in each isotope chain, but in the HF
case we observe a small increase of the proton rms radius with
increasing number of neutrons. In contrast, in the relativistic
case there is a slight decrease of the radius from 16O to 22O and
from 40Ca to 48Ca, then for nuclei with larger neutron excess
the radius increases. In general in the HF approach the proton
radii are a bit larger than in the relativistic approach.

The modifications of the proton radii due to the presence of
neutrons are related to the proton-neutron interaction, which is
responsible also for the value of the proton-neutron symmetry
energy in nuclear matter. In HF calculation we obtain a value of
29.45 MeV while that of the relativistic calculation is 35 MeV.
These values should be compared with an empirical value of
32 ± 3 MeV.

The experimental data of the (e, e ′p) reaction are separated
into different peaks corresponding to specific values of the
missing energy Em = ω − T ′ − TB = Sp + Ex, where T ′ and
TB are the kinetic energies of the outgoing nucleon and of
the residual nucleus, respectively, Sp is the nucleon separation
energy, and Ex is the excitation energy of the residual nucleus.
For each peak, the data are usually presented in terms of the
reduced cross section as a function of the missing momentum
pm = | pm|, which is the magnitude of the recoil momentum
of the residual nucleus [3,6,7]. The reduced cross section is
the cross section divided by a kinematical factor and by the
elementary off-shell electron-proton scattering cross section.
For the latter cross section, the cc1 prescription of Ref. [63] is
usually adopted. In the reduced cross section the complicated
dependence of the cross section on the kinematic variables is
reduced to a twofold function of Em and pm.

If we neglect FSI the wave function of the emitted proton
is a plane wave. In this plane-wave impulse approximation
(PWIA), the missing momentum pm corresponds, apart for a
minus sign, to the initial momentum of the emitted nucleon in
the nucleus. In the PWIA the cross section is factorized into
the product of a kinematical factor, the elementary off-shell
electron-proton scattering cross section, and the hole spectral
function. Thus, in the PWIA the reduced cross section is the
squared Fourier transform of the hole wave function, and it can
be interpreted as the momentum distribution of the emitted
proton when it was inside the nucleus. This factorization is
destroyed in the DWIA by FSI. However, even in the DWIA,
the reduced cross section is an interesting quantity that can
be regarded as the nucleon momentum distribution modified
by FSI.

The theoretical approaches outlined above have been used
to calculate (e, e ′p) reduced cross sections in the parallel
and perpendicular kinematics selected in the experiments.
In the so-called parallel kinematics [3], the momentum of
the outgoing proton p′ is kept fixed and taken parallel, or
antiparallel, to the direction of the momentum transfer q.
Different values of the missing momentum pm are obtained by
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TABLE II. The same as in Table I for the 1d3/2 and 2s1/2 proton states for all the calcium isotopes we have considered.

Nucleus Sp (MeV) rrms (fm) Sp (MeV) rrms (fm) rP
rms (fm) rN

rms (fm)
1d3/2 1d3/2 2s1/2 2s1/2

40Ca WS −8.328 3.69 −10.85 3.72
HF −8.753 3.58 −9.92 3.59 3.37 3.33

REL −8.704 3.73 −9.20 3.87 3.38 3.33
48Ca WS −15.907 3.54 −15.807 3.58

HF −16.542 3.63 −16.18 3.55 3.41 3.55
REL −15.606 3.60 −13.815 3.64 3.37 3.59

52Ca WS −17.80 3.54 −20.0 3.58
HF −18.83 3.67 −19.98 3.55 3.46 3.70

REL −16.75 3.68 −16.494 3.72 3.41 3.85
60Ca WS −25.200 3.53 −24.96 3.53

HF −25.200 3.83 −24.96 3.64 3.59 3.98
REL −20.744 3.75 −20.288 3.76 3.51 4.15

varying the electron scattering angle and, as a consequence,
q. In the so-called perpendicular, or (q, ω) constant, kine-
matics, the momentum transfer q and the outgoing proton
momentum p′ are kept constant and the value of the missing
momentum pm is changed by varying the angle of the outgoing
proton.

III. RESULTS

In this section we present the results of our calculations of
the exclusive (e, e ′p) cross sections for a set of oxygen and
calcium isotopes. We compare the results obtained by using
the different nuclear structure models described in the previous
section. First we show the performances of the various models
in the description of the existing experimental data in 40Ca,
48Ca, and 16O nuclei. Then we present the results obtained for
the other isotopes.

Measurements for the 40Ca(e, e ′p) reaction were carried
out at NIKHEF in both parallel and (q, ω) constant kinematics
[39]. The comparison with the experimental reduced cross
sections in both kinematics is displayed in Fig. 1. We have
considered the transitions to the 3/2+ ground state of the
39K nucleus, corresponding to the knockout of the proton
from the 1d3/2 s.p. level, and to the 1/2+ excited state of
the 39K nucleus at Ex = 2.522 MeV, obtained by knocking
out a proton from the 2s1/2 s.p. level. In Fig. 1, as well as in
the subsequent figures, positive (negative) values of pm refer
to situations where in (q, ω) constant kinematics the angle
between the outgoing proton momentum p′ and the incident
electron p0 is larger (smaller) than the angle between q and
p0. In parallel kinematics positive and negative values of pm

indicate, respectively, the |q| < | p′| and |q| > | p′| cases.
All the theoretical results shown in the figure provide

a good description of the experimental data. As in the
original data analysis [39], for the WS wave functions the
radius of the potential was chosen to reproduce the width
of the experimental distribution. On the other hand, no free
parameters are used in the nonrelativistic HF and in the
relativistic Dirac-Hartree wave functions, which are able to
give an equivalently good description of the data.

In order to reproduce the magnitude of the experimental
data, a reduction factor has been applied in Fig. 1 to all the
theoretical results. These factors, listed in Table III, have been
determined by a fit of the calculated reduced cross sections to
the data over the whole missing-momentum range considered

FIG. 1. Reduced cross sections of the 40Ca (e, e ′p) reaction as a
function of the missing momentum pm for the transitions to the 3/2+

ground state and to the 1/2+ excited state at 2.522 MeV of 39K. In
panel (a) we show the results obtained in (q, ω) constant kinematics,
with incident electron energy E0 = 483.2 MeV, electron scattering
angle ϑ = 61.52◦, and q = 450 MeV/c. In panel (b) we show
the results obtained in parallel kinematics, with E0 = 483.2 MeV.
The outgoing proton energy is T ′ = 100 MeV in both kinematics.
The experimental data are taken from Ref. [39]. The solid lines give
the DWIA-WS results, the dotted lines the DWIA-HF results, and
the dashed lines the RDWIA results. The meaning of the negative
values of pm is explained in the text. The theoretical results have
been multiplied by the reduction factors presented in Table III.
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TABLE III. Reduction factors applied to the calculated reduced
cross sections. We have indicated the spin and parity of the state of
the residual nucleus. The symbols ‖ and ⊥ indicate the parallel and
perpendicular or (q, ω) constant kinematics, respectively.

DWIA-WS DWIA-HF RDWIA

(3/2+;39K) ‖ 0.65 0.64 0.69 Fig. 1
(3/2+;39K) ⊥ 0.49 0.51 0.49 Fig. 1
(1/2+;39K) ‖ 0.52 0.57 0.51 Fig. 1
(1/2+;39K) ⊥ 0.55 0.62 0.51 Fig. 1
(3/2+;47K) ‖ 0.56 0.55 0.52 Fig. 2
(1/2+;47K) ‖ 0.54 0.58 0.55 Fig. 2
(1/2−;15N) ‖ 0.64 0.89 0.70 Fig. 3

in the experiment. The reduction factors applied to the DWIA-
WS results are identical to those obtained in the data analysis
of Ref. [39], where the same optical potential and WS wave
functions were used.

In RDWIA calculations the cc2 expression for the current
operator [63] has been used. Different expressions can give an
equivalently good agreement with the shape of the experimen-
tal momentum distribution, but somewhat different reduction
factors must be applied to reproduce the magnitude of the
experimental reduced cross sections [15,27]. We checked that
the reduction factors are about 10% smaller when the cc1
current is used and about 10% larger with the cc3 current.

In all the calculations the reduction factors obtained for the
transition to the 3/2+ ground state in perpendicular kinematics
are about 20%–25% lower than those obtained in parallel
kinematics. The source of this difference is not clear. It may
have an experimental motivation, or it may be due to effects
that give different contributions in different kinematics and that
are not adequately considered in the model. In any case, the
difference reflects the uncertainties in the identification of
the spectroscopic factor as a simple reduction factor of the
theoretical results with respect to the experimental data.

Measurements for the 48Ca(e, e ′p) reaction were carried
out at NIKHEF in parallel kinematics [39]. Thus, for calcium
isotopes, we have the opportunity to test the evolution of
our theoretical input against the change of neutron number
in comparison with the experimental data. The comparison
between our DWIA and RDWIA results and the 48Ca(e, e ′p)
data is shown in Fig. 2 for the transitions to the 1/2+ ground
state and to the first 3/2+ excited state at Ex = 0.36 MeV
of 47K.

As in the case of 40Ca, all the theoretical results give a very
good description of the shape of the experimental momentum
distribution. Also in this case, reduction factors have been
applied to all the calculated reduced cross sections presented
in the figure. These factors are listed in Table III. For the
DWIA-WS results the reduction factors are identical to those
obtained in the data analysis of Ref. [40]. We notice that for all
our model calculations the reduction factors obtained for the
1d3/2 state of 48Ca are consistently lower than those obtained
for the 1d3/2 state of 40Ca in the same parallel kinematics.

In Fig. 3 we compare our results with the 16O(e, e ′p)
data measured at NIKHEF in parallel kinematics [41] for the
transition to the 1/2− ground state of 15N, which is obtained

FIG. 2. Reduced cross section of the 48Ca (e, e ′p) reaction as a
function of pm for the transitions to the 1/2+ ground state and to the
3/2+ excited state at 0.36 MeV of 47K in parallel kinematics, with
E0 = 440 MeV and T ′ = 100 MeV. The line convention is the same
as in Fig. 1. The experimental data are from Ref. [39]. The values of
the reduction factors multiplying the theoretical results are given in
Table III.

by knocking out a proton from the 1p1/2 s.p. level. Also in
this case, the results of our calculations are multiplied by the
reduction factors given in Table III. The DWIA-WS reduced
cross section gives a good description of the data. As in the
calcium cases, the value of the reduction factor is the same
obtained in the data analysis of Ref. [41], where the same
bound-state wave function and optical potential were used.

FIG. 3. Reduced cross section of the 16O (e, e ′p) reaction as a
function of pm for the transition to the 1/2− ground state of 15N in
parallel kinematics with E0 = 520.6 MeV and T ′ = 90 MeV. The
experimental data are from Ref. [41]. The values of the reduction
factors multiplying the theoretical results are given in Table III.
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Also the RDWIA calculation gives a good description of
the data. This is the same result presented in [23], and also
the same reduction factor has been applied. The situation is
slightly different for the DWIA result obtained with the HF
wave function. In this case, the description of the shape of
the experimental momentum distribution is slightly worse.
We observe that the width of the HF distribution is larger
than that shown by the data and well reproduced by the
other calculations. This indicates that the rms radius of the
1p1/2 HF wave function is smaller than those of the WS
and relativistic wave functions (see Table I). We observe in
Table III that the reduction factor 0.89, which has been applied
to the DWIA-HF result to reproduce the magnitude of the
experimental data in the maximum region, is remarkably larger
than those applied to the DWIA-WS and RDWIA results. We
notice that this large value has been obtained by fitting the
maximum of the experimental reduced cross section, and not
through a best fit to the whole momentum distribution like with
DWIA-WS and RDWIA. Moreover, a poor description of the
experimental shape does not permit a reliable determination
of the spectroscopic factor.

Our nuclear models have been used to calculate (e, e ′p)
cross sections for other oxygen and calcium isotopes. We
intend to investigate how the characteristics of the s.p. proton
wave functions, describing the initial hole state, evolve as a
function of neutron number and how this evolution affects the
(e, e ′p) cross sections.

Once the effective interaction is chosen, the HF and the
relativistic Dirac-Hartree approaches are parameter free, and
they automatically provide s.p. energies and wave functions for
each nucleus. The situation is different in the phenomenologi-
cal approach, where the parameters of the WS wells change for
each nucleus. We changed the radius of the well by using the
empirical R = ro A1/3 rule. Moreover, the depths of the wells
are determined to obtain the experimental separation energies
taken from the compilation of Refs. [64–66].

We first discuss the results obtained for the calcium
isotopes. We have considered the 40,48,52,60Ca isotopes, since
they are spherical nuclei where the s.p. levels are fully occupied
and the pairing effects are negligible. For all these isotopes we
have considered proton knock-out emission from the 1d3/2

and 2s1/2 states. Our results are shown in Fig. 4 for parallel
kinematics and in Fig. 5 for (q, ω) constant kinematics. The

FIG. 4. Reduced cross section of the (e, e ′p) reaction for 1d3/2 (left panels) and 2s1/2 (right panels) knockout from 40Ca (solid lines), 48Ca
(dashed lines), 52Ca (dotted lines), and 60Ca (dot-dashed lines), as a function of pm. The results of the DWIA-WS calculations are presented
in panels (a) and (b), and those of the DWIA-HF calculations in panels (c) and (d). The RDWIA results are shown in panels (e) and (f). The
calculations are done in parallel kinematics with E0 = 440 MeV and T ′ = 100 MeV.
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FIG. 5. The same as in Fig. 4 but in perpendicular kinematics with E0 = 483.2 MeV, ϑ = 61.52◦, and q = 450 MeV/c.

values of all the kinematic variables are the same as in Figs. 1
and 2. The only difference is that, since the separation energy
of the proton increases with increasing number of neutrons, we
changed, for the different isotopes, the energy of the outgoing
electron, and consequently the energy transfer, in order to keep
constant, via energy conservation, the energy of the outgoing
proton. We have verified that these differences in the kinematic
variables do not produce significant effects on the final results.

In Figs. 4 and 5 we compare the reduced cross sections
calculated for the various isotopes obtained by using the three
different nuclear models: DWIA-WS, DWIA-HF, and RD-
WIA. The comparison illustrates how these models describe
the effects produced by the asymmetry between the number of
neutrons and protons. No reduction factors have been applied
to the curves presented in these figures.

It is interesting to remark that the evolution of the cross
section with respect to the change of neutron number is the
same in all the panels of both figures. We observe that the 40Ca
lines are always above the other ones, and the size of the curves
decreases with increasing number of neutrons. This behavior
is clearer in the DWIA-WS results [panels (a) and (b) of both
figures] and becomes less evident in the other cases, especially
in the RDWIA ones.

For a better understanding of these results it is interesting
to consider the s.p. hole wave functions obtained in the three

models. We show in Fig. 6 the squared moduli of the radial
part of the s.p wave function for the 1d3/2 and 2s1/2 states of
the various calcium isotopes. The relativistic wave functions
shown in the figure are obtained by summing the squared radial
part of the upper and lower components of the Dirac spinor.
All the curves shown in the figure are normalized to one.

The behavior of the WS wave functions shown in panels (a)
and (b) can be understood by considering that the depth of the
WS well becomes deeper with increasing neutron number. This
deepening occurs because by increasing the neutron number
the proton experiences more binding, its separation energy
increases, and the depth of the WS well, which is determined
to reproduce the experimental separation energy, increases.
A deeper WS well produces narrower wave functions, as the
curves of the upper panels of Fig. 6 show.

The HF wave functions have a different behavior, as shown
in panels (c) and (d). In this case, the narrower wave functions
are those obtained for the isotopes with smaller neutron
numbers. The behavior of the relativistic wave functions is
somewhat different and does not have a defined trend as in
the previous cases. It is, in any case, more similar to that of
the HF than to that of the WS wave functions. We point out
that the values of the separation energies, and their trend as a
function of neutron number, are similar in all three types of
calculation.
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FIG. 6. Squared moduli of the radial part of the 1d3/2 (left panels) and 2s1/2 (right panels) s.p. wave functions for 40Ca (solid lines), 48Ca
(dashed lines), 52Ca (dotted lines), and 60Ca (dot-dashed lines). In panels (a) and (b) we show the WS wave functions, in panels (c) and (d) the
HF wave functions, and in panels (e) and (f) the relativistic wave functions obtained in the Dirac-Hartree approach. The normalization of the
curves is

∫
dr r2 |φ|2 = 1.

These differences in the wave functions are responsible for
only a part of the differences in the reduced cross sections
of Figs. 4 and 5, which show a different trend as a function
of neutron number. While in the PWIA the reduced cross
section contains only information on the bound-state wave
function, in the DWIA this information is modified by the
contribution of the other ingredients of the model, such as FSI
and the electron-nucleon interaction. All these contributions
are intertwined in the calculated cross section and, in general,
they cannot be easily disentangled.

In order to understand the source of the difference between
the behavior of the wave functions and of the cross sections
with respect to the increase of neutron number, we have
performed PWIA calculations. In this case, FSI are switched
off and the (e, e ′p) cross section is directly proportional to
the squared modulus of the Fourier transform of the hole s.p.
wave function. We have checked that the trend of our PWIA
results agrees with the trend of the wave functions shown in
Fig. 6: the WS wave functions produce PWIA-reduced cross
sections higher for 40Ca than for the other nuclei, while the
situation is reversed with the HF wave functions. As a next
step, we have done DWIA calculations by using the same
parameters of the optical potential for all the isotopes. The

results are different from those obtained in the PWIA, but the
trends, with respect to the change of the neutron number, are
preserved. Only when we include the A dependence of the
optical potential the trends of the cross sections are changed
and also the DWIA-HF results produce 40Ca (e, e ′p) reduced
cross sections larger than those obtained for the other isotopes.

The dependence of the wave functions on the proton to
neutron asymmetry is responsible for a large part of the
differences in the reduced cross sections, but an important and
crucial contribution is given by FSI, which are described in
the calculations by phenomenological optical potentials. The
differences between the results in parallel and (q, ω) constant
kinematics in Figs. 4 and 5 are basically due to the different
effects of the distortion produced by the optical potential.
These effects strongly depend on kinematics and are larger
in parallel than in (q, ω) constant kinematics [2,3,5].

The s.p. bound states adopted in the present calculations are
normalized to unity and no reduction factor has been applied
to the results shown in Figs. 4 and 5. The comparison with
data in Figs. 1 and 2 gives, however, a significant quenching of
the measured cross sections with respect to the predictions of
the MF model. The quenching is different for the 40Ca(e, e ′p)
and 48Ca(e, e ′p) reactions and increases with neutron number.
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FIG. 7. Reduced cross section of the (e, e ′p) reaction for 1p1/2

proton knockout from 16O (solid lines), 22O (dashed lines), 24O (dotted
lines), and 28O (dot-dashed lines) as a function of pm. In panel (a) we
show the DWIA-WS results, in panel (b) the DWIA-HF results, and
in panel (c) the RDWIA results. The calculations have been done in
parallel kinematics, with E0 = 520.6 MeV and T ′ = 90 MeV.

A quenching depending on the number of neutrons can be
expected for all the isotopes and would give further differences
on the reduced cross sections than those shown in Figs. 4
and 5.

The behavior of the (e, e ′p) cross sections on nuclei with
increasing neutron number that we have just presented is not
specific to the calcium isotopes. An analogous behavior is
found also for the oxygen isotopes. In our calculations we
have considered the 16,22,24,28O nuclei. We show in Fig. 7 the
reduced cross sections of the (e, e ′p) reaction, calculated for
the emission of a 1p1/2 proton in these nuclei by using our
three models. The calculations have been done in the same
parallel kinematics as in Fig. 3, and we included the small
differences due to the different proton separation energies of
the different isotopes, as explained in the case of the calcium
isotopes.

The radial s.p wave functions squared are plotted in Fig. 8.
Also in this case, the different behavior of the WS and HF
radial wave functions with respect to the change in neutron
number is evident. This difference is not present in the results
of Fig. 3. We have repeated also for the oxygen isotopes the
investigation done for the calcium isotopes by doing PWIA
calculations and DWIA calculations with the same optical
potential for all the isotopes. We obtained results analogous to
those discussed for the calcium isotopes.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented and discussed (e, e ′p) cross
sections calculated for a set of calcium and oxygen isotopes
with the aim of studying their evolution with respect to the

FIG. 8. Squared moduli of the radial part of the 1p1/2 wave
functions for 16O (solid lines), 22O (dashed lines), 24O (dotted lines),
and 28O (dot-dashed lines). In panel (a) we show the WS wave
functions, in panel (b) the HF wave functions, and in panel (c) the
relativistic wave functions obtained in the Dirac-Hartree approach.
The normalization of the curves is

∫
dr r2 |φ|2 = 1.

change of neutron number. The calcium and oxygen isotopes
have been chosen since data are available for the doubly
magic 40Ca, 48Ca, and 16O nuclei. In the calcium and oxygen
isotope chains, we have considered only those nuclei with fully
occupied s.p. levels, since they are spherical and, moreover,
pairing effects are negligible.

The general framework that we have considered for the
description of the (e, e ′p) process is based on the one-
nucleon knockout picture [3,42] and is well established. The
nonrelativistic DWIA and relativistic RDWIA models used
for the calculations were widely and successfully applied to
the analysis of the available (e, e ′p) data over a wide range
of stable nuclei. The results obtained with three different
descriptions of the hole wave function of the knocked-out
proton, all of them based on the mean-field approximation,
have been compared. We have performed DWIA calculations
with phenomenological WS and HF wave functions. For 16O,
40Ca, and 48Ca nuclei the WS wave functions are the same
as used in the original analyses of the experimental data in
[39–41]. The wave functions used in the RDWIA are obtained
by solving Dirac-Hartree equations.

The three models are all able to give a good and similar
description of the shape of the experimental reduced cross
section on 16O,40Ca, and 48Ca target nuclei, with the only
exception being the HF result in 16O. In order to reproduce
the magnitude of the experimental data, a reduction factor has
been applied to all the calculated results.

In our study of the (e, e ′p) process in the two isotope
chains we have found that the general behavior of the
cross sections with respect to increasing number of neutrons
is analogous for all three models. Generally speaking, the
reduced cross sections are larger and narrower for the lighter
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isotopes, and they evolve by lowering and widening with
increasing neutron number.

The behavior of the hole s.p. wave functions for the three
models shows rather different trends: the WS wave functions
become narrower and have higher maxima with increasing
neutron number, the HF wave functions show the opposite
behavior, and the behavior of the relativistic wave functions is
not so well defined, but it is more similar to the behavior of
HF than to the WS wave functions.

The dependence of the wave functions on the proton
to neutron asymmetry is responsible for only a part of
the differences in the reduced cross sections. An important
and crucial contribution is also given by FSI, which are
described in the calculations by phenomenological optical
potentials. The optical potential is an important ingredient
of the model that affects both the size and the shape of the
cross section in a way that strongly depends on kinematics.
In particular, its imaginary part, which gives a reduction
of the nucleon flux and, consequently, of the calculated
cross section, can affect the values of the spectroscopic
factors obtained from the comparison between data and
theoretical results. In the present calculations we have used
phenomenological optical potentials that were usually adopted
in the previous DWIA and RDWIA analyses of (e, e ′p) data
on stable closed-shell nuclei. The dependence of the optical
potential on the asymmetry between the number of neutrons
and protons is an interesting problem that deserves careful
investigation.

We have used MF wave functions that do not include
correlations. The reduction factors found in comparison with
the experimental data can provide a measure of the effects not
included in the calculations and, under certain conditions, can
be identified with the spectroscopic factors. In the comparison
of our (e, e ′p) cross sections calculated for the various calcium
and oxygen isotopes, and shown in Figs. 4, 5, and 7, we did
not apply reduction factors, since data are available only for
the 16O, 40Ca, and 48Ca target nuclei.

From recent experimental and theoretical studies there are
indications that the spectroscopic factors and the effects of
correlations depend on the asymmetry between the number of
neutrons and protons. Recent experimental information on the

spectroscopic factors of drip-line isotopes has been obtained
by means of nucleon knockout using intermediate heavy-ion
beams [67–69]. These results also include neutron data and
suggest a strong dependence of the spectroscopic factors
on the proton-neutron ratio. In general, the quenching of
quasiparticle orbits, and hence correlations, becomes stronger
with increasing separation energy.

From the theoretical point of view, a dependence on nucleon
asymmetry has been found in [70] for the depletion of the
Fermi sea in asymmetric nuclear matter, with the minority
nucleonic species becoming more depleted, and the majority
one less. Results of Faddeev–random-phase approximation
calculations for the spectroscopic factors of 16–28O and 40–60Ca
isotopes [71] show that the spectroscopic factors become
smaller with increasing nucleon separation energy. From
recent work on the dispersive optical potential, which has
been applied to calcium isotopes with the aim of extracting
the asymmetry dependence of the self-energy, a clear signal
emerges, suggesting that the surface imaginary term of the
dispersive optical potential increases with the asymmetry for
protons [72–74]. Apart from the associated increased binding
that protons experience with increasing asymmetry, there is a
corresponding reduction of valence hole spectroscopic factors.

Therefore, we can expect a dependence of the spectroscopic
factors on the neutron number and this would give further
differences in the reduced cross sections than those shown in
Figs. 4, 5, and 7.

Measurements of the exclusive quasifree (e, e ′p) cross
section on nuclei with neutron excess would offer a unique
opportunity for studying the dependence of the properties
of bound protons and of nucleon-nucleon correlations on the
neutron to proton asymmetry. In this work models that have
proven their reliability in the comparison with (e, e ′p) data
on stable nuclei have been used to investigate the evolution
of the (e, e ′p) cross sections with increasing proton-neutron
asymmetry. Although the models and the theoretical ingre-
dients adopted in the calculations contain approximations,
our results can serve as a useful first reference for possible
future experiments. The comparison with data can confirm or
invalidate the predictions of our models and test the ability of
the established nuclear theory in the domain of exotic nuclei.
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