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Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions
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We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by
the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our
studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive
force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV.
Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter,
it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the
precompound nucleons’ emission and the incompressibility of nuclear matter to calculate the nuclear potential
in fusion reactions within a static formalism such as the double-folding (DF) model.
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I. INTRODUCTION

An appealing topic in nuclear physics is the equation state of
nuclear matter which has many remarkable applications in the
fusion process, the interaction of heavy ions, and astrophysics.
Recent investigations of heavy-ion interactions have shown
that the effects of nuclear-matter incompressibility lead to an
additional repulsive force during the fusion process [1]. In the
calculation of nuclear potential via the double-folding model
this additional repulsive force can be simulated by adding
a zero-range force to the nucleon-nucleon (NN) interaction
of the M3Y type [1–3]. It has also been shown that this
modification can explain the steep-fall effect in the fusion
reaction [4–9]. Furthermore, our recent investigations using a
BDM3Y nucleon-nucleon interaction has revealed that these
modifications alter the width and height of the fusion barrier
and therefore affect the calculation of the fusion cross section
even in places where the energy range is higher than the height
of the fusion barrier [10].

The constant parameters of this repulsive force are com-
monly calculated by using the Thomas-Fermi equation of
state (EOS) for cold nuclear matter [11]. Considering the Q

value and the energy of the incident nucleus in some of fusion
reactions, the temperature of the compound nuclei produced
can increase up to about 2 MeV (see, for example, Table IV).
Since the nucleus loses its layered structure at temperatures
above 2 MeV, it would be difficult to obtain an equation of
state for the nucleus at these energies. Therefore, we have
employed the equation of state of hot polarized nuclear matter
(HPNM) to obtain the constant parameters of this repulsive
force. In fact, the compound nucleus is assumed to be a finite
piece of nuclear matter. The use of a hot equation of state is
not new. This has been used in G-matrix calculations where
the Pauli operator was extended for a hot G matrix, and it
was used for collective flow and multifragmentation [12,13].
The entropy production and thermalization in medium-energy
heavy-ion collisions was also discussed in Ref. [14].

In dynamical formalisms, contrary to a static formalism
such as the DF model, one does not need to simulate the effect
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of nuclear-matter incompressibility by an additional NN force
in the calculation of internuclear potential. This contradiction
may arise from the sudden approximation that is not being
used in the dynamical approaches. The other reason could be
due the type of the NN forces. In the dynamical formalisms
one usually uses the density-dependent NN force such as the
Skyrme force to calculate the internuclear potential. In general,
one of the main advantages of the dynamical formalism over
the static one is that it is possible to simultaneously employ the
modifying effects due to the nuclear-matter incompressibility
and the escape of the nucleons during the fusion process
in the calculation of the nuclear potential and fusion cross
sections. Therefore, our next aim in this work is to present a
mechanism within the framework of the static formalisms such
as the DF model to simultaneously incorporate both of these
modifications in the calculation of internuclear potential.

In Sec. II we discuss the following concepts: The EOS
of HPNM, the model employed in calculating the ion-ion
potential, and, finally, the effect of the nucleus temperature
produced in the heavy-ion reaction on the study of the constants
of additional repulsive force due to the effects of nuclear-matter
incompressibility. Section IV is devoted to some concluding
remarks.

II. CALCULATIONS

In nuclear fusion processes, when two nuclei completely
overlap, the nuclear-matter density is twice that of the
saturation density, ρ ≈ 2ρ0 (see Fig. 1). According to the
nuclear equation of state, where the energy per nucleon is
proportional to density, increasing the density in the overlap
region of two interaction nuclei leads to an increase �U in the
energy of the compound system,

�U ≈ 2AP [E(2ρo) − E(ρo)], (1)

where AP is the mass number of the projectile nucleus,
E(ρo) is the energy per nucleon, and ρo is the saturation
density of nuclear matter and is about 0.16 fm−3. In most
studies the equation state of cold nuclear matter has been used
in the calculation of E(ρ). In this paper we are going to
calculate the variation of the energy, �U , due to the density
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FIG. 1. Process of density-distribution overlap of the interaction
nuclei for the 40Ar + 40Ca reaction in (a) ρ ≈ ρ0, (b) ρ0 < ρ < 2ρ0,
and (c) ρ ≈ 2ρ0, where ρ and ρ0 are density in the overlapping region
and the saturation density, respectively. The total density distribution
is shown by the dotted curve.

overlap of the two interacting systems, taking into account the
effect of the temperature variation of the compound nucleus.
As noticed earlier, the process of increasing density in the
complete overlap of two nuclei is accompanied by an increase
in the energy and, consequently, in the temperature of the
compound nucleus. It is rather difficult to find an exact nuclear
equation of state for the nuclei when the energy of the nuclei
exceeds the Fermi energy so, in order to calculate the energy
per nucleon of the two fully overlapped nuclei, we have used

the HPNM equation of state with the approximation that the
compound nucleus is taken to be as a part of nuclear matter.
We have calculated the variation of energy, �U , by using

�U ≈ 2AP [EHPNM(2ρo, T ) − ECNM(ρo)], (2)

where ECNM(ρo) is energy per nucleon of cold nuclear matter
before the interaction nuclei overlap. In order to calculate
this energy we have used the Thomas-Fermi model [11,15].
EHPNM(2ρ0, T ) is the energy per nucleon of HPNM when
the two nuclei complete overlap: ρ ≈ 2ρ0 (see Fig. 1). This
energy is considered as a function of temperature of the
compound nucleus. On the other hand, in order to calculate the
temperature of the compound nucleus in Eq. (2) as a function
of the center-of-mass energy of the projectile nucleus, Ec.m.,
the following relation has been used:

E∗ = Ec.m. + Qin = 1

a
AT 2 − T , (3)

where E∗, A, and T (in MeV) are the excitation energy, mass
number, and temperature of compound nucleus, respectively.
Qin is the entrance-channel Q value and a = 9 or 10 for
intermediate mass or superheavy systems, respectively. In the
following subsections, we will discuss the HPNM equation of
state and how to calculate internuclear potential.

A. HPNM equation of state

In most studies, in order to solve the nuclear equation
of state at zero temperature (T = 0), the Thomas-Fermi
model has been used. In this work, to insert the temperature
effects in the EOS, we have employed the Seyler-Blanchard
(SB) potential model which has been generalized by using
the modified density-dependent terms [16]. This modified
potential, which uses the Thomas-Fermi (TF) approximation,
reproduced successfully the nuclear-matter potential. The
modified SB potential of the present work gives a soft equation
of state.

In general, the polarized nuclear matter is composed of
the spin-up (spin-down) protons and spin-up (spin-down)
neutrons. Thus,

A = N ↑ +N ↓ +P ↑ +P ↓ (4)

is the total number of nucleons. In this relation, N ↑ (N ↓) and
P ↑ (P ↓) are the numbers of spin-up (spin-down) neutrons
and protons, respectively. The corresponding densities are ρn↑,
ρn↓, ρp↑, and ρp↓. Therefore, in this formalism the total density
of nuclear matter ρ is given by

ρ = ρn + ρp = ρn↑ + ρn↓ + ρp↑ + ρp↓. (5)

The useful parameters to analyze the HPNM equation of
state in the framework of the SB model are defined in the
following formalism: The neutron excess parameter

X = (ρn − ρp)/ρ, (6)

the neutron spin-up excess parameter

αn = (ρn↑ − ρn↓)/ρ, (7)
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TABLE I. The radius (R0) and diffuseness (a0) parameters of
projectile and target nuclei. For 40Ar, these parameters were taken
from the 2PF distribution [33] and, for 40Ca, they were taken from the
3PF distribution, for which the parameter w was taken to be zero [34].
In this table, the value of the quadrupole (β2) and hexadecapole (β4)
deformation parameters are shown. Values of these parameters are
determined by an HFB calculation [35].

Nucleus R0 (fm) a0 (fm) β2 β4

40Ar 3.53 0.542 0.00 0.00
40Ca 3.766 0.544 0.00 0.00

the proton spin-up excess parameter,

αp = (ρp↑ − ρp↓)/ρ, (8)

and

Y = αn + αp, (9)

Z = αn − αp, (10)

are a measure of the asymmetric and polarization character-
istics of the HPNM. In this model the energy per nucleon at
temperature T and density ρ is defined as

E(ρ, T ) = E0(ρ, T = 0) + ET (ρ, T ), (11)

where E0(ρ, T = 0) is the energy per nucleon at zero temper-
ature and ET (ρ, T ) is the temperature-dependent part of the
energy per nucleon, which is given by [16]

ET (ρ, T ) = −T 2

6

(
2m∗

h̄2

)(
3π2

2

)1/3

ρ−2/3, (12)

where m∗ is the nucleon effective mass and is given by

m∗ = m

[
1 + m

h̄2

(
4a3ck3

f

3πb2

)]−1

, (13)

where m is the nucleon mass and kf is the Fermi momentum.
By using the adjustable parameters from Ref. [16], the value

FIG. 2. Variations of energy due to complete overlap of
two colliding nuclei in terms of the projectile nucleus en-
ergy. The temperature corresponding to each energy is also
shown.

FIG. 3. Variations of parameters used in calculation of repulsive
part of nuclear potential (a) arep and (b) Vrep in terms of the projectile-
nucleus energy of the reaction 40Ar + 40Ca.

of the nucleon effective mass is m∗/m = 0.974. We refer the
reader to Ref. [17], where the detailed method of calculation
is explained.

FIG. 4. Calculated total potentials for the system 40Ar + 40Ca.
The solid curve is the M3Y potential. The short-dashed and dotted
curves are based on the M3Y + repulsion potentials for Ec.m. = 80.5
MeV and Ec.m. = 136.5 MeV, respectively. The changes of interaction
potential in regions near to the barrier are also shown.
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TABLE II. Properties of the 2+ and 3− states in the projectile
(40Ar) and target (40Ca) nucleus [21,22].

Nucleus λπ Ex (MeV) B(Eλ)(e2bλ) βλ

40Ca 2+ 3.904 0.0099 0.123
40Ca 3− 3.737 0.0204 0.432
40Ar 2+ 1.460 0.0330 0.251
40Ar 3− 3.681 0.0087 0.314

III. ION-ION POTENTIAL

In this paper, to calculate internuclear potential, we have
employed the DF model. The interaction between two ions in
this model can be evaluated as the double-folding integral

V (r) =
∫

dr1

∫
dr2ρ1(r1)υ(r12)ρ2(r2), (14)

where r12 = r + r1 − r2 and r is the distance between the
centers of the two interacting nuclei. In our calculations the
density distribution functions of the target and projectile nuclei
are assumed to be of the form of the Fermi-Dirac distribution
function

ρi(r) = ρ0

1 + exp [(r − R0i) /a]
, (15)

where R0i = r0iA
1/3
i . Equation (14) has been calculated by

the simulation method we proposed earlier [18], using the
M3Y-Reid interaction with a zero-range exchange part. The
direct and exchange parts of this force are given by [19]

υdir(r12) = υ00(r12) + N1 − Z1

A1

N2 − Z2

A2
υ01(r12), (16)

υex(r12) =
(

Ĵ00(r12) + N1 − Z1

A1

N2 − Z2

A2
Ĵ01(r12)

)
δ(r12),

(17)

with the explicit form of the expressions for υ00, υ01, Ĵ00,
and Ĵ01 given, for example, in Ref. [20]. The DF model,
in comparison with the more realistic models of potential,
is not able to reproduce the potential values in the interior
regions. Modifying the effects of repulsive core has eliminated
this problem. In the study of heavy-ion fusion reactions, the
simulation of the effects of repulsive core on the calculation
of the nuclear potential has been done by adding a zero-range
interaction in the suggested form, υrep(s) = Vrepδ(s), to the
NN interaction. In this form, the parameter s is the distance
between the two interacting nucleons. Indeed, accounting

TABLE III. Parameters for WS potential determined by fitting to
M3Y + repulsion potentials. The fitting has been done in the region
of the fusion radii. The relative error of fitting the WS potential to the
M3Y + repulsion potentials in each energy is less that 10−7.

Ec.m. (MeV) V0 r0 a

80.5 74.80 1.159 0.729
95 68.02 1.162 0.750
118 61.02 1.176 0.741
136.5 62.06 1.172 0.748

σ

FIG. 5. Fusion cross sections resulting from M3Y and
M3Y + repulsion potentials are compared to experimental data for
40Ar + 40Ca reaction [23].

for the effect of the nuclear-matter incompressibility in the
calculation of the nucleus-nucleus potential in the double-
folding model requires that a repulsive part, Vrep(r), be added
to the attractive part, Vatr(r), such that

VNN (r) = Vatr(r) + Vrep(r). (18)

The attractive part of the nuclear potential can be evaluated
as the double-folding integral by Eq. (14). The repulsive part
of the nuclear potential can be calculated using

Vrep(r) =
∫

dr1

∫
dr2ρ1(r1)Vrepδ(r12)ρ2(r2). (19)

In the calculation of this integral it is assumed that the
diffuseness parameter for the density distribution of target
and projectile nuclei is equal to arep. In order to calculate
the constants used in the simulation of the repulsive core (i.e.,
arep and Vrep), the following relation has been used:

�U = VNN (0), (20)

where VNN (0) is equal to the nucleus-nucleus potential
evaluated at r = 0; that is, at the completely overlapping nuclei
region. The values of the parameters arep and Vrep at each
energy are chosen such that the fusion cross sections obtained
from the M3Y + repulsion potential have the best agreement
with the experimental cross section.

TABLE IV. In this table the theoretical cross sections σtheor are
compared with experimental cross section σexpt. The quantities ±δσ

are the experimental errors for the cross section. The experimental
cross-section data are taken from Ref. [23]. T is the temperature of
the compound system for every energy in units of MeV.

Ec.m. (MeV) T (MeV) σtheor (mb) σexpt (mb) ±δσ χ a

80.5 3.074 02 1009.669 80 1008 82 0.165
95 3.333 17 1005.631 87 1005 81 0.062
118 3.706 99 897.095 20 897 61 0.010
136.5 3.981 42 831.075 69 824 56 0.858

aχ = 100[(σtheor − σexpt.)/σexpt] is the percent error in the calculation
of the cross section.
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FIG. 6. Total interaction potential using different versions of
proximity potential for (a) Bass 80 [25] and AW 95 [30] and (b) Prox
77 [24] and Prox 88 [25] are compared to M3Y and M3Y + repulsion
(for energy Emin = 80.5 MeV and Emax = 136.5 MeV) potentials for
40Ar + 40Ca.

In this work we examined the 40Ar + 40Ca reaction. The
three main reasons that we have chosen this reaction to
investigate our proposed formalism are the following: (a) The
projectile nucleus (40Ar) is asymmetric, so the compound
nucleus (80Sr) produced in this reaction is asymmetric with
respect to the number of the neutrons and protons. The radius,
diffuseness, and deformation parameters of the interaction
nuclei have been listed in Table I. (b) The target and projectile
nuclei are spherical and also are in their ground state (see
Table I). (c) The temperature of the compound nucleus in
this reaction increases to above 3 MeV. The variation in the
calculated values of �U in the range of the compound nucleus
temperature (i.e., 3.07 to 3.98 MeV) are noticeable. In Fig. 2
the calculated variation of energy, �U [using Eq. (2)], for
this reaction is plotted in terms of the projectile energy. When
considering temperature (or energy) effects in modeling the
repulsive core, the parameters used in the modeling (i.e. arep

and Vrep) are dependent on the energy of the projectile nucleus.
Changes in the parameters arep and Vrep in terms of projectile
energy in the center-of-mass system Ec.m. have been plotted in
Fig. 3.

Nuclear matter incompressibility effects cause the appear-
ance of shallow pockets in the inner part of the interaction

σ
σ

FIG. 7. Ratio of experimental [23] and calculated values of fusion
cross section resulting from total interaction potential for Bass 80,
AW 95, Prox 77, Prox 88, M3Y, and M3Y + repulsion potentials for
40Ar + 40Ca.

potential. With increasing energy (or temperature) in the sys-
tem, the effect of the repulsion force increases and leads to the
reduction of the potential depth. The total interaction potential
before and after applying nuclear-matter incompressibility
effects have been shown in Fig. 4. The solid curve is based on
the M3Y potential whereas the short-dashed and dotted curves
are based on the M3Y + repulsion potential in E = 80.5 MeV
(or T = 3.07 MeV) and E = 136.5 MeV (or T = 3.98 MeV),
respectively. This figure shows that the effects of increasing
�U on the inner part of the barrier and depth of the potential
are considerable.

The theoretical cross sections in each energy have been
derived using the CCFULL code. The CCFULL calculations are
based on coupling low-lying 2+ and 3− states in both target
and projectile nuclei with deformations parameters βN

λ = βC
λ .

The structure input used to describe the excitation of the
low-lying states 2+ and 3− in 40Ar and 40Ca is given in
Table II [21,22]. To calculate the fusion cross section using the
CCFULL code, a Woods-Saxon (WS) potential is fit to M3Y and
M3Y + repulsion potentials in the region of the fusion-barrier
radii. The parameters of the fit are given in Table III. The results
of our calculations and their comparison with the experimental
values are depicted in Fig. 5. This figure shows that considering
the effects of the repulsive core at each energy significantly
influences the fusion cross section and improves the agreement
with experimental data [23]. The calculated values of the
fusion cross sections are given in the Table IV.

In recent years many studies have been done using the
proximity potential model. Modifications of the surface energy
coefficient γ and nuclear radii R are two of the most important
purposes of the investigation of this model and lead to different
versions such as Prox 77 [24], Prox 88 [25], Prox 00 [26], and,
recently, Prox 00DP [27]. The comparison between different
versions of proximity potentials for symmetric and asymmetric
colliding nuclei is given in Refs. [28–31]. In present work,
in addition to using the DF model, we have calculated the
total interaction potential by using of static models such as
Bass 80 [25], AW 95 [32], and two versions of proximity
potential (i.e., Prox 77 and Prox 88, see Fig. 6). In Fig. 7
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the ratio of experimental and calculated values of the fusion
cross section for different versions of proximity potential
are plotted. This figure shows that our results for the fusion
cross section are in good agreement with experimental data
and with the results obtained from Prox. 77 and Prox. 88
potentials in energies Ec.m. = 80.5 MeV and Ec.m. = 95 MeV.
The discrepancy between our results for fusion cross section
and the results of Prox. 77 and Prox. 88 potentials in energies
Ec.m. = 118 MeV and Ec.m. = 136.5 MeV could be due to the
effect of temperature of the compound nucleus, which we have
considered in these calculations.

IV. CONCLUSIONS

In this paper we have investigated the effects of the
incompressibility of nuclear matter on the fusion cross sections
of heavy ions by adding a zero-range force to the nucleonic
interaction and employing Eq. (2). Our results involving the
40Ar + 40Ca reaction reveal that the variation of the energy due
to the complete overlapping of the two nuclei is considerable
for a given variation of the temperature of the compound
nucleus (see Fig. 2). The simulation of the effects of the
incompressibility of nuclear matter on the calculation of the
nuclear potential has been accomplished by including an

energy-dependent interaction instead of the commonly used
energy-independent interaction [2]. This is justified by the
variations of the parameters arep and Vrep with the energy of
the projectile nucleus, which is shown in Fig. 3. An increase
in the values of the parameters arep and Vrep, results from
raising �U to the range of the temperature of the compound
nucleus. Our overall conclusion is that the use of the HPNM
state equation and the simulation of the incompressibility of
nuclear matter by an energy-dependent force have enabled us
to simulate the incompressibility effects of nuclear matter for
the heavy-ion fusion reactions in such a manner that a good
agreement between the theoretical and experimental values
of the cross sections has been achieved (see Table IV). The
simulation of a repulsive core using an energy dependent force
could be due to the decrease in the roll of the mean-field
theory in compound nuclei when the excited temperature of
compound nucleus increases above 2 MeV.

Since our proposed formalism for the nuclear-potential
calculation depends on the temperature of the compound
nucleus, it could well be suited for simultaneously accounting
for the effects of the precompound neutron evaporation, which
affects the Q value of the reaction, the temperature of the
nucleus, and the incompressibility effects of nuclear matter on
the calculation of the nuclear potential.
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