
PHYSICAL REVIEW C 84, 024608 (2011)

Breakdown of partial conservation of axial current in diffractive neutrino interactions
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We test the hypothesis of partially conserved axial current in high-energy diffractive neutrino production of
pions. Since the pion pole contribution to the Adler relation (AR) is forbidden by conservation of the lepton
current, the heavier states, like the a1 pole, ρ-π cut, etc., control the lifetime of the hadronic fluctuations of
the neutrino. We evaluate the deviation from the AR in diffractive neutrino production of pions on proton and
nuclear targets. At high energies, when all the relevant time scales considerably exceed the size of the target, the
AR explicitly breaks down on an absorptive target, such as a heavy nucleus. In this regime, close to the black
disk limit, the off-diagonal diffractive amplitudes vanish, while the diagonal one, π → π , which enters the AR,
maximizes and saturates the unitarity bound. At lower energies, in the regime of short lifetime of heavy hadronic
fluctuations the AR is restored, i.e., it is not altered by the nuclear effects.
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I. INTRODUCTION

In the chiral limit of massless quarks, isovector components
of both vector and axial quark currents are conserved. Though
the hadrons acquire masses via the mechanism of spontaneous
symmetry breaking, hadronic currents are still conserved.
While it is rather straightforward for the vector current,
conservation of the axial current looks nontrivial and is
possible only due to the presence of a pseudoscalar term in the
current, which has to be singular at Q2 = 0 [1]. This singularity
is associated with massless Goldstone particles [2] or pions,
which appear due to spontaneous chiral symmetry breaking.

Beyond the chiral limit, the pions acquire a small mass and
the axial current conservation is not exact, so one can consider
a partial conservation of the axial current (PCAC),

∂μJA
μ = m2

π fπ φπ , (1)

where mπ and fπ ≈ 0.93mπ are the pion mass and decay
coupling, and φπ is the pion field.

A beautiful manifestation of PCAC is the Goldberger-
Treiman relation [3], which bridges weak and strong interac-
tion. It miraculously connects the pion decay constant with
the pion-nucleon coupling, which seem to have very little
in common. Indeed, the former depends on the pion wave
function, while the latter is controlled by the wave function
of the nucleon. Nevertheless, data on β decay and muon
capture confirm this relation between very different physical
quantities. Since this astonishing relation between the pion
pole (suppressed in β decay due to conservation of the lepton
current) and heavier states had no natural explanation, except
PCAC, it was called the Goldberger-Treiman conspiracy [4]
(see more below).

Another intensive source of axial current is high-energy
neutrino interactions. In this case PCAC leads to the Adler
relation (AR) between the cross sections of processes initiated
by neutrinos and pions [5],

d2σ (νp → lX)

dQ2 dν

∣∣∣∣
Q2=0

= ξ 2(E, ν)σ (πp → X). (2)

Here the kinematic factor is

ξ 2(E, ν) = G2

2π2
f 2

π

E − ν

Eν
; (3)

E is the neutrino energy; G = 1.166 × 10−5 GeV−2 is the
electroweak Fermi coupling; Q2 = −q2

μ, where qμ = kμ − k′
μ

and ν = E − E′ are the four-momentum and energy transfer
in the ν → l transition (the same notation as for neutrinos
should not cause confusion). For the sake of concreteness the
target is the proton, but it may be any hadron or a nucleus.

A high-energy neutrino exposes hadronic properties in-
teracting via its hadronic fluctuations [6]. Similar to the
Goldberger-Treiman relation, the AR (2) should not be
interpreted as pion pole dominance. Neutrino cannot fluctuate
to a pion, ν →/ πl, because the pion pole in the dispersion
relation in Q2 for the axial current does not contribute to the
interaction of the neutrino at high energies [4,7–9]. Indeed, the
axial current JA

μ (Q2) can be presented as

JA
μ (Q2) = qμ fπ

Q2 + m2
π

T (πp → X)

+ fa1

Q2 + m2
a1

Tμ(a1p → X) + · · · . (4)

Here the second and following terms represent the contribu-
tions of the a1 meson and (implicitly) other heavier axial-vector
states.

The first term in (4), corresponding to the pion pole,
contains the factor qμ, which then terminates its contribution to
the cross section, Eq. (2). Indeed, the amplitude of the reaction
is

A(νp → lX) ∝ LμJA
μ , (5)

where Lμ = l̄(k′)γμ(1 + γ5)ν(k) is the lepton current, which is
transverse, i.e., qμLμ = 0 (for simplicity hereafter we entirely
neglect the lepton mass). Therefore, the pion term in (4) does
not contribute to the amplitude Eq. (5), and this is true at
any Q2.
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Thus, although it is tempting to interpret the AR Eq. (2) as
a manifestation of the pion pole dominance, this is not correct.
PCAC connects the contribution of heavy axial states [the
second line in Eq. (4)] with the nonexistent pion contribution
at Q2 = 0 [4,7–9]. Such a fine tuning, which is very similar
to the Goldberger-Treiman conspiracy, looks miraculous, and
the PCAC hypothesis for neutrino interactions should be tested
thoroughly.

A simple way to see in data whether light or heavy states
dominate the dispersion relation for the axial current is to
measure the Q2 dependence of the neutrino cross section at
small Q2. Extrapolating the cross section Eq. (2) with the
parametrization (Q2 + M2

eff)
−2, one can find the position Q2 =

−M2
eff of the essential singularity in the dispersion relation (4).

It is easy to disentangle the effective masses that are as small
as the pion mass and heavy singularities, like the ρ-π cut, a1

meson, etc. Data clearly prefer the latter, Meff ∼> 1 GeV [9].

II. DIFFRACTIVE NEUTRINO PRODUCTION OF PIONS

This reaction offers probably the most stringent test of
PCAC in neutrino interactions. Indeed, the analysis performed
by Piketty and Stodolsky [8] revealed a potential problem
related to the above dispersion representation for the AR. They
made use of the relation between the pion pole and heavy-state
contribution in Eq. (4) imposed by PCAC, complemented
with few assumptions. That is, the assumed dominance of the
axial-vector a1 meson neglected the higher terms implicitly
contributing in (4). It also assumed a smooth Q2 dependence of
the hadronic amplitudes in (4) and related the lepton coupling
fa1 to that for the ρ meson, relying on the Weinberg sum
rules [10]. Eventually, they arrived at a relation between the
elastic and diffractive pion-nucleon cross sections, σ (πp →
a1p) ≈ σ (πp → πp). This relation strongly contradicts data:
diffractive production of a1 mesons is more than an order of
magnitude suppressed compared with the elastic cross section.

This puzzle was solved by the authors of [9,11] by pointing
out its shaky point, namely, the a1 pole cannot dominate in the
axial current, since it is quite a weak singularity compared to
the ρ pole in the vector current. In fact, the main contribution
to the expansion Eq. (4) comes from the ρ-π cut, related to
diffractive pion excitations. The invariant mass distribution
for diffractive π → 3π excitations peaks at M3π ≈ 1.3 GeV
and is well explained by the so-called Deck mechanism [12]
of diffractive excitation π → ρπ . The interpretation of the
observed peak has been a long-standing controversy, until
a phase-shift amplitude analysis (see references in [13])
eventually revealed the presence of the very weak a1 resonance
having a similar mass. Moreover, it was found in [11] that even
the contribution of the ρ-π cut in the dispersion relation for the
diffractive amplitude has a Q2 dependence similar to that of
the a1 pole. Summing up all diffractive excitations (excluding
large invariant masses corresponding to the triple-Pomeron
term), one concludes that the magnitudes of single-diffractive
and elastic pion-proton cross section are indeed similar. This
helps to resolve the Piketty-Stodolsky puzzle.

Based on these observations, in what follows we employ the
simple two-channel model, replacing all heavy singularities

contributing to the AR, by one effective pole a representing
a1, ρ − π , etc. We assume that

σ
πp

sd (πp → ap) = σ
πp

el , (6)

and this allows the AR to hold. Notice that in applying the
AR to neutrino production of the effective state a, ν + p →
l + a + p, we should also conclude that

σ
ap
tot = σ

πp
tot . (7)

We also assume the same impact parameter dependences of the
elastic π → π and a → a and diffractive π → a amplitudes.

At this point we do not pursue a high accuracy of
the dispersion approach, which needs much more model-
dependent information about many singularities contributing
to the AR. Our objective here is to highlight the importance of
absorptive corrections that affect differently the diagonal and
off-diagonal terms in the hadronic current (4), which results
in an unavoidable breakdown of the AR. The proposed simple
model, which may not be accurate numerically, provides an
excellent playground for study of the effects of absorptive
corrections, keeping the physics transparent, and also allows
estimation of the magnitude of the absorptive corrections.

III. DIAGONAL VS OFF-DIAGONAL DIFFRACTION

The relation (6) between off-diagonal and diagonal diffrac-
tive cross sections cannot be universal and independent of
energy and target. This can be understood within the general
quantum-mechanical interpretation of diffraction [14–19]. A
hadron has a composite structure, and its light-cone wave
function consists of different hadronic components, the Fock
states, which interact with the target differently, leading to a
modification of their weights. Such a modified wave packet is
no longer orthogonal to other hadrons, which makes possible
production of new hadrons.

It turns out that the off-diagonal diffractive amplitudes can
be expressed in terms of the diagonal ones. Let us consider
two different sets of states, one consisting of the mass matrix
eigenstates, |h〉, and the other of the states |α〉, which are
eigenstates of the interaction Hamiltonian, i.e., satisfy the
condition f̂el|α〉 = fα |α〉, where f̂el is the elastic amplitude
operator.

Both sets of states are assumed to be complete, so one
of them can be expanded over the full basis of states in the
alternative representation,

|h〉 =
∑
α=1

Ch
α |α〉. (8)

Because of the completeness and orthogonality of each set of
these states, the coefficients Ch

α in (8) satisfy the relations

〈h′|h〉 =
∑
α=1

(
Ch′

α

)∗
Ch

α = δhh′ ,

(9)
〈β|α〉 =

∑
h′

(
Ch′

β

)∗
Ch′

α = δαβ.

024608-2



BREAKDOWN OF PARTIAL CONSERVATION OF AXIAL . . . PHYSICAL REVIEW C 84, 024608 (2011)

The elastic and single-diffraction amplitudes can therefore be
expressed via the eigenamplitudes as

f h→h
el =

∑
α=1

∣∣Ch
α

∣∣2
fα,

(10)
f h→h′

sd =
∑
α=1

(
Ch′

α

)∗
Ch

α fα.

These relations show that diagonal and off-diagonal diffractive
amplitudes are affected by the unitarity (or absorption)
corrections quite differently. For instance, in the black disk
limit, which is expected to be reached in the Froissart regime
at very high energies (or in central collisions with a heavy
nucleus), all the partial eigenamplitudes reach the unitarity
bound, Im fα = 1. Then, according to the completeness and
orthogonality conditions Eqs. (10), the diffractive amplitudes
in the black disk limit read

f h→h
el ⇒

∑
α=1

∣∣Ch
α

∣∣2 = 1,

(11)
f h→h′

sd ⇒
∑
α=1

(
Ch′

α

)∗
Ch

α = 0.

Off-diagonal diffraction is impossible within a black disk
and can only happen on its periphery, b ∼ R. Since in the
Froissart regime the interaction radius rises with energy as
R ∝ ln(s), the elastic and diffractive cross sections, which
are the amplitudes squared integrated over impact parameter,
acquire a different energy dependence,

σel ∝ ln2(s),
(12)

σsd ∝ ln(s),

i.e., σsd/σel ∝ 1/ ln(s), apparently breaking relation (6). Sim-
ilarly, off-diagonal diffraction on a heavy nucleus is also
suppressed,

σA
sd

σA
el

∝ A−1/3. (13)

Thus, we conclude that the relation (6), which follows from
AR, can be strongly broken either at high energies or on nuclear
targets.

IV. ABSORPTIVE CORRECTIONS TO THE ADLER
RELATION ON THE PROTON

As was argued above, the absorptive corrections break down
the validity of Eq. (6). In order to estimate the magnitude of
deviation from the AR on a proton target, we rely on the simple
Regge model proposed in Sec. II, with two channels in the
axial current, the pion pole and the effective axial-vector pole
a representing the a1 pole and other singularities producing
the bump at M ≈ 1.3 GeV in the invariant mass distribution
of the 3π diffractive excitation of a pion. As a starting point,
we assume that in the single-Pomeron approximation the AR
holds, i.e., the diffractive and elastic amplitudes are equal and
Eq. (6) holds. Now we introduce absorptive corrections related
to the multiple-Pomeron exchanges in the initial and final states
and see how much the relation (6) is broken for the output

amplitudes. This can be considered as an estimate for the
magnitude of deviation from the AR on a proton.

We rely on the same two-channel model for multi-Pomeron
corrections. The unitarized elastic cross section reads

σ
πp

el =
∫

d2b
[
1 − e−Imf

πp

el (b)
]2

. (14)

Although this expression looks like the conventional single-
channel Glauber model, it remains unchanged within the two-
channel model under consideration. For the sake of simplicity
we neglect the real part of the amplitude.

Similarly, the cross section of the diffractive excitation
πp → ap, corrected for absorption, reads

σ
πp

sd =
∫

d2b
∣∣f πp

sd (b)
∣∣2

[
e−Imf

πp

el (b) − e−Imf
ap

el (b)

Imf
ap

el (b) − Imf
πp

el (b)

]2

≈
∫

d2b
[
Imf

πp

el (b)
]2

e−2Imf
πp

el (b). (15)

In the last step here we used the relation (7).
We see that the unitarity corrections to the elastic cross

section, Eq. (14), and the absorptive corrections to diffraction,
Eq. (15), act in opposite directions: they enhance the diagonal
but suppress the off-diagonal diffractive processes.

To estimate the magnitude of the difference between the
cross sections (14) and (15) we employ the conventional
Gaussian form of the impact parameter dependence for the
input single-Pomeron elastic partial amplitude,

Im f
πp

el (b) = σ
πp
tot

4π B
πp

el

exp

(
− b2

2B
πp

el

)
. (16)

Then we can evaluate the correction factor KAR = σ
πp

sd /σ
πp

el ,
which should be applied to the right-hand side of Eq. (2).
We used (14), (15), and (16) with σ

πp
tot = 13.6 mb ×

s0.08 + 19.24 mb × s−0.458, B
πp

el = B0 + 2α′
IP ln s, where s is

in GeV2, B0 = 6 GeV−2, α′
IP = 0.25 GeV−2. The results are

depicted in Fig. 1 as function of ν. We see that the absorptive
corrections cause a deviation from the AR of about 30%, which
is not a dramatic effect. This is because the π -p elastic am-
plitude is still far from the unitarity bound. However, at much
higher energies (still unreachable in neutrino experiments) the
correction factor is expected to drop significantly.

V. COHERENT NEUTRINO PRODUCTION OF PIONS
ON NUCLEI

According to the conventional terminology, coherent pro-
duction on nuclei is a process which leaves the nucleus
intact. Correspondingly, in an incoherent process the nucleus
is supposed to break up to fragments.

In what follows we assume the validity of the AR for a
nucleon target (unless specified), in order to identify the net
nuclear effects for the AR. This section is devoted to coherent
diffractive pion production. The production amplitudes on
different nucleons interfere, and the interference is enhanced
by the condition that the nucleus remains in the ground
state. Such effects of coherence can lead to substantial
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deviations from the AR and from simplified expectations, as
is demonstrated below.

A. Important time scales

There are several length scales characterizing the coherence
effects in diffractive neutrino scattering on nuclei. The first
length scale is controlled by the longitudinal momentum
transfer qπ

L in diffractive production of a pion by an axial
current of energy ν and virtuality Q2,

lπc = 1

qπ
L

= 2 ν

Q2 + m2
π

. (17)

Within this distance the pion production amplitudes νN →
lπN on different nucleons interfere and shadow each other. If
the axial current virtuality is small, Q2 ∼ m2

π , the coherence
length lπc is rather long even at low energies. It reaches the size
of a heavy nucleus at energies as low as several hundreds of
MeV. Such an early onset of coherence is a peculiar feature
of the axial current. It would be impossible for the vector
current; even for real photoproduction of ρ mesons the onset
of shadowing is delayed up to energies of several GeV. Notice
that, in addition to diffractive neutrino production of pions,
the early onset of shadowing also occurs for the total neutrino-
nucleus cross section [20–22] at low Q2.

Another, much shorter length scale corresponds to diffrac-
tive transitions between the axial current and heavy states,
which are represented by the effective axial-vector meson a in
our model,

lac = 1

qa
L

= 2 ν

Q2 + m2
a

. (18)

This coherence length controls neutrino diffractive dissocia-
tion to heavy hadronic states, and also the energy dependence
of absorptive corrections to the cross section of neutrino
production of pions on nuclei (see below). At small Q2 ∼< m2

π

it is two orders of magnitude shorter than lπc .
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R
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FIG. 1. (Color online) The absorptive correction factor for the
Adler relation for diffractive neutrino production of pions on protons.

B. The amplitude

The process of coherent neutrino production of pions on
nuclei, νA → lπA, is possible only if lπc ∼> RA, otherwise
the nuclear form factor suppresses the cross section [11].
Even if lπc is long, the second length scale lac might still be
short. Correspondingly there are few energy regimes where the
coherent length scales vary from very short up to much longer
values than the nuclear radius. Thus the imaginary part of the
partial amplitude of coherent production of a pion contains
two terms,

MνA→lπA(ν,Q2, b) = M1(ν,Q2, b) − M2(ν,Q2, b), (19)

where

M1(ν,Q2, b)

= MνN→lπN (ν,Q2)
∫ ∞

−∞
dz eiqπ

L zρA(z, b) e−(1/2)σπN
tot TA(b,z),

(20)

M2(ν,Q2, b)=MνN→laN (ν,Q2)MaN→πN (ν)
∫ ∞

−∞
dz ei(qπ

L −qa
L)z

× ρA(z, b) e−(1/2)σπN
tot TA(b,z)

∫ z

−∞
dz1e

iqa
Lz1

× ρA(z1, b) e−(1/2)σaN
tot [TA(b,z1)−TA(b,z)]. (21)

Here the first term M1 is the amplitude of pion production at
the point with longitudinal coordinate z and impact parameter
b, integrated over z weighted by the nuclear density ρA [11].
The z-dependent nuclear thickness function is defined as

TA(b, z) =
∫ ∞

z

dz′ ρA(b, z′), (22)

and we denote TA(b) ≡ TA(b, z → −∞).
The second term M2 corresponds to diffractive production

of the heavy state a preceding the pion production. This is the
first-order Gribov inelastic shadowing correction [23] to the
coherent pion production amplitude.

As long as the amplitude Eq. (19) is known, we can calculate
the cross section of coherent pion production,

dσ (νA → lπA)

dQ2 dν d2pT

=
∣∣∣∣
∫

d2b

2π
ei pT ·bMνA→lπA(ν,Q2, b)

∣∣∣∣
2

,

(23)

where pT is the transverse momentum transfer to the target,
and we neglect the real part of the amplitude.

The cross section on a nucleon target according to (16) has
the form

dσ (νN → lπN )

dQ2 dν d2pT

= e−B
πp

el p2
T

(2π )2

∣∣MνN→lπN (ν,Q2)
∣∣2

. (24)

C. Characteristic regimes in the energy dependence

In the general expressions Eq. (19)–(21) one can identify
several characteristic regimes, which are controlled by the
interplaying coherence scales lπc and lac .
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1. lπ
c � RA

In this regime the AR on a nucleus trivially breaks down,
as one can see from Eq. (20). The cross section is falling
with decreasing lπc and vanishes at lπc � RA, as calculated
in [11]. The reason is obvious: the AR relation is supposed
to hold at the pion pole at Q2 = −m2

π , and the extrapolation
to Q2 = 0 leads to a strong variation of the amplitude, if the
longitudinal momentum transfer lπc is comparable with RA, or
shorter.

Notice that one should be cautious applying Eq. (20) at
low energies where the neglected contribution of s-channel
resonances and/or reggeons is important [24,25]. Also the
neglected real part of the amplitude becomes large. Therefore,
our calculations for this energy regime of lπc � RA only
present an estimate of the effects related to the nuclear form
factor [11].

2. lπ
c � RA, l a

c � RA

Equations (20) and (21) are significantly simplified in this
regime of very long lπc and very short lifetime lac of the π → a

fluctuations compared to the nuclear radius RA. In this case
the amplitude M2(ν,Q2, b), Eq. (21), is strongly suppressed by
the oscillating exponential and can be neglected. At the same
time, lπc � RA; therefore the nonvanishing term in (19), the
amplitude M1(ν,Q2, b), can also be simplified by integrating

over z in Eq. (20) analytically,

M1(ν,Q2, b) = 2MνN→lπN (ν,Q2)

σπN
tot

[
1 − e−(1/2)σπN

tot TA(b)
]
.

(25)

At this point we concentrate on nuclear effects leading to
breakdown of the AR; therefore hereafter we assume that the
amplitude of pion neutrino production on a nucleon satisfies
the AR Eq. (2),

MνN→lπN (ν,Q2 = 0) = ξ (E, ν) 1
2σπN

tot (ν), (26)

where we employ the optical theorem, neglecting the real part
of the diffractive amplitude. The amplitudes are normalized as
dσ/dQ2dν = |MνN→lπN (ν,Q2)|2. Applying (22) to (20) we
get the relation

M1(ν,Q2 = 0, b) = ξ (E, ν)
[
1 − e−(1/2)σπN

tot TA(b)
]
, (27)

which is exactly the AR for the partial amplitude of neutrino
production of pions. We conclude that if the AR is correct for
a pion production on a nucleon, it should also be correct for a
nuclear target, provided that lπc � RA, but lac � RA.

3. l a
c � RA

In this regime all the phase shifts in Eq. (19) can be
neglected and the integration over z and z1 can be performed
analytically,

M2(ν,Q2, b)
∣∣
lac �1 = MνN→aN (ν,Q2) MaN→πN (ν)

4

σaN
tot

{
1

σπN
tot

[
1 − e−(1/2)σπN

tot TA(b)
] − e−(1/2)σaN

tot TA(b) − e−(1/2)σπN
tot TA(b)

σπN
tot − σaN

tot

}

= MνN→aN (ν,Q2) MaN→πN (ν)
4(

σaN
tot

)2

{
1−

[
1+ 1

2
σπN

tot TA(b)

]
e−(1/2)σπN

tot TA(b)

}
.

(28)

The first term in (19), the amplitude M1, was already calculated
in this limit (lac � RA) in (25). In both expressions the
neutrino-production amplitudes MνN→hN (ν,Q2) are related to
the hadronic ones, a + N → h + N , by the AR. In addition,
based on the assumed dominance in the axial current of the
effective pole a, we can extrapolate these relations to nonzero
Q2 with the pole propagator (Q2 + m2

a)−1. Thus, we get new
relations,

MνN→laN (ν,Q2) = ξ (ν) m2
a

Q2 + m2
a

MaN→aN , (29)

MνN→lπN (ν,Q2) = ξ (ν) m2
a

Q2 + m2
a

MaN→πN . (30)

We rely on these relations in what follows.

Eventually, summing the amplitudes Eqs. (25) and (28), we
arrive at

MνA→lπA(ν,Q2, b)

MνN→lπN (ν,Q2)

∣∣∣∣
lac �1

= TA(b) e−(1/2)σπN
tot TA(b). (31)

One can observe the striking difference in the A dependence
of the cross sections corresponding to the regimes of short
and long coherence length lac , Eqs. (25) and (31), respectively.
The AR holds in the former case and the nuclear cross section
behaves as A2/3 (for very heavy nuclei). However, in the latter
case the cross section is proprotional to A1/3, so the AR breaks
down. Notice that in this regime of lac � RA the calculations
[11] based on AR are not correct. Also, the results of [26] are
not correct at any energy, since they rely on a wrong model for
the pion-nucleus cross section (see discussion in [11]).
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D. Numerical results

Such a nontrivial behavior of nuclear effects as a function
of energy is confirmed by the results of numerical calculations
of the pT -integrated cross sections with Eqs. (19)–(21). The
ratio

Rcoh
A/N (ν,Q2) = dσ (νA → lπA)/dQ2 dν

Adσ (νN → lπN )/dQ2 dν

= 4πBπN
el

A

∫
d2b|MνA→lπA(ν,Q2, b)|2 (32)

is plotted in Fig. 2 for lead, aluminum, and carbon targets as a
function of ν at Q2 = 0.

For the sake of simplicity the calculations were performed
with a constant cross section σπN

tot = 25 mb.
We see that at low energies ν � 1 GeV the nuclear ratio

Rcoh
A/N , plotted by solid curves, rises with ν and saturates at

the level corresponding to the AR applied to nuclei, depicted
by dashed horizontal lines. Because the survival probability
of a pion propagating along a long path length in the nuclear
medium is low, the pion production points are pushed to the
back surface of the nucleus [compare with Eq. (25)]. Therefore,
the cross section depends on nuclear atomic number as ∼A2/3

and coincides with the prediction of AR in the saturated regime
of qπ

c � 1/RA.
The observed strong deviation from the AR prediction at

very low energies is a simple consequence of the suppression
of the coherent cross section caused by the nuclear form factor
due to finiteness of the momentum transfer, qπ

c ∼ 1/RA.
The energy dependence of the nuclear ratio forms a plateau

from several hundreds of MeV up to several GeV in the regime
described in Sec. V C2. It also agrees well with the prediction
of the AR shown by dashed lines in Fig. 2.

At energies ν ∼> 10 GeV the nuclear cross section consid-
erably drops and saturates at a new level exposing a significant
deviation from the expectations based on the AR, depicted by
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FIG. 2. (Color online) Solid curves: nuclear ratio Rcoh
A/N (ν, Q2) of

pT -integrated cross sections of coherent neutrino production of pions,
ν + A → l + π + A, calculated with Eq. (32) at Q2 = 0. Dashed
lines: the results of the Adler relation applied to nuclear targets, lead,
aluminum, and carbon, from top to bottom.
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FIG. 3. (Color online) As Fig. 2 for lead at Q2 = 0, 0.2, 0.5,
and 1 GeV2.

dashed curves. This happens due to the transition to the new
regime of full coherence explained in Sec. V C3.

It worth commenting that the height of the plateaus for
different nuclei shows that the A dependence of the cross
section in this regime is slightly steeper than linear. This
is different from the simple expectation of Rcoh

A/N ∝ A−1/3

corresponding to the black disk limit. This happens because
the cross section σπN

tot is rather small and the pion-nucleus
partial amplitude is still far from the unitarity bound. So the
pion-nucleus elastic cross section is considerably smaller than
πR2

A. This is why it rises as Aα with α > 1.
Thus, the cross section of diffractive coherent neutrino

production of pions on nuclei exposes a peculiar energy
dependence. It starts from zero at very small energies, then
rises and saturates at a large magnitude, and eventually drops
down to a value proportional to A1/3 at higher energies. The AR
relation is severely broken at the regimes of short lπc � RA and
long lac � RA, but is rather accurate within the intermediate
regime.

The specific energy dependence of nuclear effects presented
in Fig. 2 at Q2 = 0 drastically changes with rising Q2. Indeed,
the plateau in the energy dependence, which spans a wide
energy range, is related to the significant difference between
the length scales Eqs. (17) and (18), lπc � lac . This holds,
however, only for tiny values of Q2 � m2

π . With rising Q2

both scales contract down to the same order of magnitude,
and the plateau in the energy dependence of Rcoh

A/N shrinks
and becomes a peak. This is illustrated in Fig. 3 for neutrino
production of pions on lead for few values of Q2 = 0, 0.2, 0.5,
and 1 GeV2.

We do not extend our predictions to larger values of Q2

for several reasons. First of all, at large Q2 the effects of
color transparency make the nuclear medium more transparent
than we evaluated. These effects cannot be reproduced within
the two-channel model employed. In hadronic representation,
color transparency results from superposition of many singu-
larities in the dispersion relation with masses up to M2 ∼ Q2

[27,28]. In addition, one should take care of the correct
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(negative) signs of the off-diagonal diffractive amplitudes and
provide a fine tuning between different amplitudes, which
must essentially cancel each other at high Q2, in order
to end up with color transparency. This is a difficult task,
which can be solved much more effectively within the dipole
representation [27].

Another reason for not extending our calculation to larger
values of Q2 is the missed contributions of the transverse
component of the axial current and of the vector current. Both
vanish at Q2 → 0, but should be added and have growing
importance with rising Q2.

We presented numerical results for nuclear effects only
for pT -integrated cross sections, since their pT dependence is
rather simple and well known. The pT distribution of coherent
pion production forms a narrow peak at small pT , with a slope
of the order of 1

3R2
A, caused by the nuclear form factor. More

accurately, the pT dependence of the cross section is given by
Eq. (23). The large pT slope of the cross section is the signature
of the coherent process; this is usually used to disentangle it
from the incoherent background which has a much smaller
slope, as in production on a free nucleon.

VI. INCOHERENT PION PRODUCTION

As a result of momentum transfer in diffractive neutrino
production on a bound nucleon, the nucleus can be excited
or break up to fragments, ν + A → l + π + A∗. Although
pions diffractively produced at different impact parameters
do not interfere in this process, characterized by rather large
transverse momentum transfer, the amplitudes on bound nu-
cleons with the same impact parameter do interfere. Evaluation
of the cross section is more involved than in the case of
coherent production, but can be simplified by summing up all
nuclear final states and employing completeness. We perform
calculations within the two-channel model for the axial current
introduced earlier. The results are presented in the form of a
nuclear ratio defined as in the case of coherent production,
Eq. (32),

Rinc
A/N (ν,Q2) = dσ (νA → lπA∗)/dQ2 dν

Adσ (νN → lπN )/dQ2 dν
. (33)

A. Effects of coherence for incoherent production

As in the case of coherent production, one can identify
several contributions in the nuclear factor Rinc

A/N , characterized
via different mechanisms [29]:

Rinc
A/N = Rinc

1 + Rinc
2 − Rinc

3 . (34)

The three terms in the right-hand side of this equation
correspond to the following mechanisms of incoherent pion
production.

(i) The incoming neutrino does not interact in the nucleus
up to the point with coordinates (b, z), where it diffractively
produces the pion, ν + N → l + π + N , which survives
propagating through the nucleus. The corresponding amplitude
squared, summed over the final state of the nucleus, and
integrated over coordinates of the bound nucleon has the

form

Rinc
1 = 1

A

∫
d2b

∫ ∞

−∞
dz ρA(b, z) e−σπN

in TA(b,z)

= 1

AσπN
in

∫
d2b

[
1 − e−σπN

in TA(b)]. (35)

(ii) Prior to the pion production the neutrino interacts with
another bound nucleon at the point (b, z1), and produces
diffractively an a meson, ν + N → l + a + N , which is the
effective state representing different products of diffractive
excitations of a pion, as introduced in Sec. II. Then the a

meson propagates further and produces a pion diffractively,
a + N → π + N (z > z1). The corresponding term in the
nuclear factor derived in [29] has the form

Rinc
2 = σπN

tot

2AσπN
el

(
σπN

in − σπN
el

) ∫
d2b

∫ ∞

−∞
dz1 ρA(b, z1)

×
∫ ∞

z1

dz2 ρA(b, z2) cos
[
qπ

c (z2 − z1)
]

× exp

[
−1

2

(
σπN

in − σπN
el

)
TA(b, z2)− 1

2
σπN

tot TA(b, z1)

]
.

(36)

Here we fixed σaN
tot = σπN

tot , as follows from the AR in
the two-channel model employed; z1 and z2 (36) are the
longitudinal coordinates of diffractive neutrino production of
the intermediate a meson in the two interfering amplitudes.
The final pion is produced diffractively, a + N → π + N , but
incoherently, i.e., on the same nucleon, with coordinates (b, z)
in both amplitudes.

(iii) In the first two terms of (34) we summed up
all final states of the nucleus including the ground state.
The latter corresponds to coherent pion production eval-
uated in the previous section, and should be subtracted.
Thus,

Rinc
3 =

(
σπN

tot

)2

4AσπN
el

∫
d2b

∣∣∣∣
∫ ∞

−∞
dz ρA(b, z) eiqπ

c ze−(1/2)σπN
tot TA(b,z)

∣∣∣∣
2

.

(37)

As in the case of coherent production, one can identify
three regimes of energy dependence of the incoherent cross
section.

1. lπ
c ∼< RA, l a

c � RA

In the low-energy limit of qπ
c � RA only the first term in

(34) survives and Rinc
A/N |qπ

c �RA
= Rinc

1 given by Eq. (35).
At higher energies, when qπ

c → 0, all integrations on longi-
tudinal coordinates in (35)–(37) can be performed analytically,

Rinc
A/N

∣∣
qπ

c →0 =
∫

d2b TA(b)e−σπN
in TA(b). (38)

This shows a considerable drop of the nuclear ratio from the
low-energy limit given by Eq. (35) toward the high-energy
limit. The interpolation between the two regimes is performed
with the full expression Eqs. (32).
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FIG. 4. (Color online) As Fig. 2 for incoherent pion production
ν + A → l + π + A∗.

The numerical results at Q2 = 0 for several nuclei depicted
in Fig. 4 indeed demonstrate a considerable drop with energy
of the nuclear ratio.

Notice that a similar behavior predicted in [29] for electro-
production of vector mesons was nicely confirmed later by the
HERMES experiment [30] (see also [31]).

At large values of Q2 the regime of short lπc propagates to
higher energies, as is demonstrated in Fig. 5.

So far we have assumed that lπc may be short or long, but
the second length scale lac is always short. In this case, as for
the coherent process in this regime, the AR is valid. Indeed,
Eq. (38) is equivalent to the Glauber formula for the nuclear
ratio in quasielastic pion scattering on a nucleus, i.e., is exactly
what follows from the AR.

2. l a
c � RA

At higher energies lac also becomes long, which leads to
breakdown of the AR in the coherent process (see the previous
section and Fig. 2). What happens in this case with incoherent
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FIG. 5. (Color online) As Fig. 5 for lead at Q2 = 0, 0.2, 0.5,
and 1 GeV2.

pion production? In the asymptotic regime of lac � RA the
answer is easy,

Rinc
A/N

∣∣
qa

c �RA
=

∫
d2b

e−σaN
in TA(b) − e−σπN

in TA(b)

σπN
in − σaN

in

. (39)

We have shown above, Eq. (7), that in the two-channel model
under consideration the AR leads to the equality σaN

in = σπN
in .

In this case Eq. (39) is equivalent to (38). Thus, we have arrived
at the remarkable conclusion that in the case of incoherent
neutrino production of pions on nuclear targets the AR is
always correct.

VII. SUMMARY

At high energies neutrinos show hadronic properties similar
to those of photons, since they also interact with a target
via hadronic fluctuations. Although it is tempting to interpret
the AR as pion dominance, the pion pole is excluded due
to conservation of the leptonic current (for neutral current;
otherwise it is suppressed by the lepton mass). In fact, the AR
imposes a mysterious relation between the pion interaction
with the target and the contribution of heavy axial states to the
neutrino interaction. The former corresponds to elastic pion
scattering in the process of diffractive neutrino production of
pions, while the latter is related to off-diagonal diffraction
of a pion, excluding elastic scattering. It is known that
these two processes are subject to absorptive corrections
which affect them quite differently, namely, they enhance
diagonal diffraction (elastic scattering) but suppress inelastic
diffraction. Therefore, the AR cannot be universal and target
independent.

We checked the role of absorptive corrections for diffractive
neutrino production of pions on protons and nuclei. Assuming
that the AR holds on a proton target without absorptive
corrections, we estimated the magnitude of deviation from
AR at about 30% (see Fig. 1).

Much stronger effects were found on heavy nuclei. In
coherent production of pions, ν + A → l + π + A, the AR
holds with a good accuracy at energies ν ≈ 1–10 GeV.
However, it is severely broken at lower and higher energies
(see Fig. 2). Our numerical results at low energies in the regime
of lπc � RA are rather schematic, since we do not include
the contribution of resonances and the large real part of the
diffractive amplitudes.

For incoherent pion production, ν + A → l + π + A∗,
when the nucleus decays into fragments, we found a consid-
erable variation of nuclear effects with energy (see Fig. 4),
similar to photoproduction of vector mesons. Remarkably,
however, no deviations from the AR were detected, and it
holds at all energies.

While the two-channel model employed may be numer-
ically not very accurate, it allows a simplification of the
calculation of the absorptive corrections and estimatation of
the magnitude of deviations from the AR. In addition, explicit
involvement of heavier singularities in the dispersion relation
would lead to the appearance of many unknown parameters.
An alternative description, which allows us to include all of
them would be the light-cone color dipole representation [27].
The corresponding results will be presented elsewhere [32].
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[18] B. Z. Kopeliovich, A. Schäfer, and A. V. Tarasov, Phys. Rev. D

62, 054022 (2000).
[19] B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, Braz. J.

Phys. 37, 473 (2007).
[20] B. Z. Kopeliovich, Phys. Lett. B 227, 461 (1989).
[21] B. Z. Kopeliovich, Nucl. Phys. Proc. Suppl. 139, 219 (2005).
[22] B. Z. Kopeliovich, Zh. Eksp. Teor. Fiz. 97, 1418 (1990) [Sov.

Phys. JETP 70, 801 (1990)].
[23] V. N. Gribov, Zh. Eksp. Teor. Fiz. 56, 892 (1969) [Sov. Phys.

JETP 29, 483 (1969)].
[24] S. S. Gershtein, Yu. Y. Komachenko and M. Y. Khlopov, Yad.

Fiz. 32, 1600 (1980) [Sov. J. Nucl. Phys. 32, 861 (1980)].
[25] Yu. Y. Komachenko and M. Y. Khlopov, Yad. Fiz. 45, 467 (1987)

[Sov. J. Nucl. Phys. 45, 295 (1987)].
[26] D. Rein and L. M. Sehgal, Nucl. Phys. B 223, 29 (1983).
[27] B. Z. Kopeliovich, L. I. Lapidus, and A. B. Zamolodchikov,

Pis’ma Zh. Eksp. Teor. Fiz. 33, 612 (1981) [JETP Lett. 33, 595
(1981).

[28] B. K. Jennings and B. Z. Kopeliovich, Phys. Rev. Lett. 70, 3384
(1993).

[29] J. Hufner, B. Kopeliovich, and J. Nemchik, Phys. Lett. B 383,
362 (1996).

[30] K. Ackerstaff et al. (HERMES Collaboration), Phys. Rev. Lett.
82, 3025 (1999).

[31] B. Z. Kopeliovich, J. Nemchik, A. Schäfer, and A. V. Tarasov,
Phys. Rev. C 65, 035201 (2002).

[32] B. Z. Kopeliovich, I. Schmidt, and M. Siddikov (submitted to
Phys. Rev. D), arXiv:1107.2845 [hep-ph].

024608-9

http://dx.doi.org/10.1103/PhysRevLett.4.380
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRev.135.B963
http://dx.doi.org/10.1103/PhysRevD.20.619
http://dx.doi.org/10.1103/PhysRevD.20.619
http://dx.doi.org/10.1016/0550-3213(70)90082-9
http://dx.doi.org/10.1142/S0217751X93000631
http://dx.doi.org/10.1142/S0217751X93000631
http://dx.doi.org/10.1103/PhysRevLett.18.507
http://dx.doi.org/10.1103/PhysRevLett.13.169
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1007/BF02746068
http://dx.doi.org/10.1007/BF02746068
http://dx.doi.org/10.1103/PhysRev.120.1857
http://dx.doi.org/10.1103/PhysRevD.18.1696
http://dx.doi.org/10.1103/PhysRevD.62.054022
http://dx.doi.org/10.1103/PhysRevD.62.054022
http://dx.doi.org/10.1590/S0103-97332007000400002
http://dx.doi.org/10.1590/S0103-97332007000400002
http://dx.doi.org/10.1016/0370-2693(89)90962-3
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.222
http://dx.doi.org/10.1016/0550-3213(83)90090-1
http://dx.doi.org/10.1103/PhysRevLett.70.3384
http://dx.doi.org/10.1103/PhysRevLett.70.3384
http://dx.doi.org/10.1016/0370-2693(96)00762-9
http://dx.doi.org/10.1016/0370-2693(96)00762-9
http://dx.doi.org/10.1103/PhysRevLett.82.3025
http://dx.doi.org/10.1103/PhysRevLett.82.3025
http://dx.doi.org/10.1103/PhysRevC.65.035201
http://arXiv.org/abs/arXiv:1107.2845

