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Shear viscosity to entropy density ratio in the Boltzmann-Uehling-Uhlenbeck model
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The ratio of shear viscosity (η) to entropy density (s) for an equilibrated system is investigated in intermediate-
energy heavy-ion collisions below 100A MeV within the framework of the Boltzmann-Uehling-Uhlenbeck
model. After the collision system almost reaches a local equilibration, the temperature, pressure and energy
density are obtained from the phase-space information and η/s is calculated using the Green-Kubo formulas.
The results show that η/s decreases with incident energy and tends toward a smaller value around 0.5, which is
not so drastically different from the BNL Relativistic Heavy Ion Collider results in the present model.
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I. INTRODUCTION

Studying the behavior of nuclear matter under extreme
conditions is one of the most important problems in heavy-ion
collisions. Due to the van der Waals nature of the nucleon-
nucleon interaction, it is expected that multifragmentation
may exhibit features of liquid-gas phase transition (LGPT)
in intermediate-energy heavy-ion collisions [1,2]. Evidence of
this has been provided from various observables, such as the
nuclear caloric curve, fluctuation, fragment mass distribution,
moment analysis, etc. [3–10]. Recent progress on nuclear
liquid-gas phase transition has been reviewed, especially for
the signals of LGPT in theory and experiment [11,12].

Empirical observation of the temperature or incident energy
dependence of the shear viscosity to entropy density ratio
(η/s) for H2O, He, and Ne2 reveals a minimum in the vicinity
of the critical point for phase transition [13]. Furthermore, a
lower bound of η/s > 1/4π obtained by Kovtun-Son-Starinets
(KSS) in certain gauge theories is speculated to be valid
for several substances in nature [14,15]. In ultrarelativistic
heavy-ion collisions [16–21], people have used the shear
viscosity to entropy density ratio to study the quark-gluon
plasma phase and get the minimum value of η/s, so it is very
interesting to study shear viscosity or η/s in intermediate-
energy heavy-ion collisions [22–26]. Unlike the studies on
η/s at relativistic energies, there have been very limited
investigations in intermediate-energy heavy-ion collisions.

In this work, we study the thermodynamic and transport
properties of nuclear reactions and try to see how the η/s

evolves with the beam energy or temperature in a transport
model. We study the equilibration of a nuclear system within a
finite volume using the Boltzmann-Uehling-Uhlenbeck (BUU)
model. To make the system contain enough number of nucle-
ons in the fixed spherical volume, we choose the Au + Au sys-
tem in a head-on collision (b = 0 fm). The system evolves with
time, sufficiently long enough that it is in the freeze-out stage.

In the final stage of the central collisions, the system
can be viewed as locally equilibrated. The equilibrium in
intermediate-energy heavy-ion collisions can be judged by
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using the temperature and other dynamical variables [27].
After the system is in equilibrium, we calculate the thermo-
dynamic parameters (pressure, energy density, and entropy
density) from phase-space information of the system. The
shear viscosity coefficient is calculated from stress tensor
fluctuations around the equilibrium state using the Green-Kubo
formula [25,28]. Finally, we compare η/s at different incident
energies with different nuclear equations of state and discuss
the results.

The rest of the paper is organized as follows: In Sec. II, we
describe the situation of system equilibrium. In Sec. III, we
calculate the viscosity coefficient and entropy density. Finally,
a brief summary and outlook is made in Sec. IV.

II. EQUILIBRATION OF FINITE NUCLEON SYSTEM

We calculate the shear viscosity to entropy density ratio
η/s of an equilibrated nuclear system in intermediate-energy
heavy-ion collisions using the BUU model, which is a one-
body microscopic transport model based upon the Boltzmann
equation [29,30].

The BUU equation reads [31]

∂f

∂t
+ v · ∇rf − ∇rU · ∇pf

= 4

(2π )3

∫
d3p2d

3p3d�
dσNN

d�
V12[f3f4(1 − f )(1 − f2)

− ff2(1 − f3)(1 − f4)]δ3(p + p2 − p3 − p4). (1)

It is solved with the method of Bertsch and Das Gupta
[32]. In Eq. (1), dσNN

d�
and V12 are the in-medium nucleon-

nucleon cross section and the relative velocity for the colliding
nucleons, respectively, and U is the mean-field potential
including the isospin-dependent term

U (ρ, τz) = a

(
ρ

ρ0

)
+ b

(
ρ

ρ0

)σ

+ Csym
(ρn − ρp)

ρ0
τz, (2)

where ρ0 is the normal nuclear matter density; ρ, ρn, and ρp are
the nucleon, neutron, and proton densities, respectively; and
τz equals 1 or −1 for neutrons and protons, respectively. The
coefficients a, b, and σ are parameters for the nuclear equation
of state (EOS). Two sets of mean-field parameters are used in
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FIG. 1. Rp (a), temperature (b), and entropy density per nucleon
(c) as a function of time (after 24 fm/c) for the head-on Au + Au
collision within a 5-fm-radius sphere at 50A MeV.

this work, namely, the soft EOS with the compressibility K of
200 MeV (a = −356 MeV, b = 303 MeV, σ = 7/6) and the
hard EOS with K of 380 MeV (a = −124 MeV, b = 70.5 MeV,
σ = 2). Csym is the symmetry energy strength due to the density
difference of neutrons and protons in nuclear medium; here
Csym = 32 MeV is used.

In this work, we focus on the thermodynamic and transport
properties of a nuclear system. For this purpose, we investigate
the process of the head-on Au + Au collision in a spherical
volume with the radius of 5 fm. In the following calculation,
we show the results with the hard EOS except in the case we
mentioned.

First we check the evolution of the equilibration situation
and temperature. The anisotropy ratio, which is a measure of
the degree of equilibration reached in a heavy-ion reaction, is
defined as

Rp = 2

π

R‖
R⊥

, (3)

where R‖ = 〈
√

p2
x + p2

y〉 and R⊥ = 〈√p2
z 〉 are calculated by

the momentum of nucleons in the given sphere. As an example,
the time evolutions of Rp for Au + Au systems within a 5-fm-
radius sphere at 50A MeV are shown in Fig. 1(a). When Rp

approaches 1 at around 100 fm/c, the nuclear system is under
equilibrium.

The time evolution of the temperature is also used to judge
the state of equilibration. The temperature of the system can
be derived from the momentum fluctuations of particles in
the center-of-mass frame of the fragmenting source [33]. The
variance σ 2 is obtained from the Qz distribution through

σ 2 = 〈
Q2

z

〉 − 〈Qz〉2, (4)

where Qz is the quadruple moment, which is defined by Qz =
2p2

z − p2
x − p2

y , and px , py , and pz are three components of
momentum vector extracted from the phase space of the BUU
model. If the mean equals zero, the second term vanishes. Q2

z

is described by

〈
Q2

z

〉 =
∫

d3p
(
2p2

z − p2
x − p2

y

)2
f (p). (5)

Assuming a Maxwellian distribution for the momentum
distribution, i.e.,

f (p) = 1

(2πmT )3/2
e− p2

x+p2
y+p2

z

2mT , (6)

we can obtain 〈
Q2

z

〉 = 4m2A2T 2 (7)

after the Gaussian integral, where m is the mass of a
nucleon and A is the mass number of the fragment. For
a nucleonic system, we have A = 1 and can calculate the
evolution of the temperature using this equation. Figure 1(b)
shows the temperature’s evolution after 25 fm/c. It is seen
that temperature reaches a maximum around 50 fm/c when
the system is in the most compressible stage and then it
starts to cool down when the system expands; later on the
system tends toward thermodynamic equilibrium. For an
equilibrated system, the kinetic energy distributions approach
the Boltzmann distribution as time increases [34]. After the
expansion process, the system will approach an equilibrate
state, so we can then investigate the viscosity coefficient and
entropy density in the system.

Except for temperature, other thermodynamic variables
can be calculated during heavy-ion collisions. Energy density
inside a volume with the 5-fm radius can be defined as

ε = 1

V

∑
ri<r0

Ei, (8)

where Ei is
√

p2
i + m2

i , ri is the position of the ith nucleon in
the center of mass, and r0 is the selected radius (here we set
r0 = 5 fm), and pressure can be defined as

P = 1

3V

∑
ri<r0

p2
i

Ei

. (9)

After we get the energy density, pressure, and temperature,
entropy density can be calculated by the Gibbs formula

s = ε + P − μnρ

T
, (10)

where μn is the nucleon chemical potential and ρ is nucleon
density of system within the given sphere. In principal, once we
have the temperature T and f (p), we can fit to a Fermi-Dirac
function to extract the chemical potential. However, we can
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FIG. 2. Energy density per nucleon (a) and pressure per nucleon
(b) as a function of temperature for the head-on Au + Au collision
within a 5-fm-radius sphere at 50A MeV.

assume, for simplicity, zero nucleon chemical potential, or μn

can be taken around 20 MeV in the present calculation [35].
In the following calculations of entropy and η/s, we only
show the results with μn = 20 MeV. But we have also checked
the results with zero chemical potential; this will increase the
entropy about 8% and then lead to the decreasing of η/s about
8%. However, this does not change our conclusions of this
work. Figure 1(c) shows the entropy density per nucleon (s/A)
evolves with time after 25 fm/c. It seems the entropy density
per nucleon reaches a minimum when the system is in the
most compressed stage and rises up in the expansion phase;
it finally reaches an asymptotic value. From the viewpoint of
phase space, the number of occupied states is most limited
in the high density phase. In the high density phase, Fermi
blocking forces some of the nucleons into higher momentum
states but still in a spatially confined region, which makes
the entropy density the minimum. When the system expands,
the Fermi blocking is reduced, the system cools, but more
coordinate volume is occupied. Therefore it is possible that
this leads to a non-isentropic expansion until the system is in
the freeze-out stage.

Energy density and temperature can be calculated at
different times when the reaction is going on. Figure 2(a)
shows energy density per nucleon versus temperature for the
studied system after 25 fm/c. Similarly, pressure per nucleon
increases with temperature are shown in Fig. 2(b). From
the figure, we can see that both energy density and pressure

increase with temperature. In a given volume, the increasing
of temperature reflects a stronger thermal motion of nucleons;
therefore the kinetic energy will contribute more to energy
density and pressure.

III. VISCOSITY COEFFICIENT AND ENTROPY DENSITY

Now let’s move on to the investigation of transport
coefficients of the Au + Au system in a given volume by the
BUU model. Viscosity is one of the transport coefficients that
characterize the dynamical fluctuation of dissipative fluxes
in a medium. Transport coefficients can be measured, as
in the case of condensed matter applications. Also, they
should be, in principle, calculable from the first principle.
Monte-Carlo simulation for transport coefficients is a powerful
tool when studying transport coefficients using Green-Kubo
relations [36,37]. In high-energy heavy-ion collisions, the
calculation of transport coefficients of shear viscosity for a
binary mixture [38] and the calculation of coefficients of a
hadrons gas have been studied [34,39]. The situation of nuclear
gas in intermediate-energy heavy-ion collisions is similar to
that of hadron gas. To study the extended irreversible dynamic
processes, we use the Kubo fluctuation theory to extract
transport coefficients [28]. The formula relates linear transport
coefficients to near-equilibrium correlations of dissipative
fluxes and treats dissipative fluxes as perturbations to local
thermal equilibrium. The Green-Kubo formula for shear
viscosity is defined by

η = 1

T

∫
d3r

∫ ∞

0
dt〈πij (0, 0)πij (	r, t)〉, (11)

where T is the equilibrium temperature of the system, t is the
postequilibration time (the above formula defines t = 0 as the
time the system equilibrates and is determined by equilibrium
time), and 〈πij (0, 0)πij (	r, t)〉 is the shear component of the
energy momentum tensor. The expression for the energy
momentum tensor is defined by πij = Tij − 1

3δijT
i
i , and the

momentum tensor reads [34]

Tij (r, t) =
∫

d3p
pipj

p0
f (x, p, t), (12)

where f (x, p, t) is the phase-space density of the particles in
the system. To compute an integral, we assume that nucleons
are uniformly distributed in the space. Meanwhile, the isolated
spherical volume with the radius of 5 fm is fixed, so the
viscosity becomes

η = V

T
〈πij (0)2〉τπ , (13)

where τπ is calculated by

〈πij (0)πij (t)〉 ∝ exp

(
− 1

τπ

)
. (14)

As shown in Fig. 3(a), 〈πij (0, 0)πij (	r, t)〉 is plotted as a func-
tion of time for Au + Au at 50A MeV. The correlation function
is damped exponentially with time and can be fitted by Eq. (14)
to extract the inverse slope correspondence as the relaxation
time. Figure 3(b) summarizes the relaxation time decrease as
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FIG. 3. (a) 〈πij (0, 0)πij (	r, t)〉 evolves with time for the head-on
Au + Au collision in a given 5-fm-radius volume at 50A MeV; (b)
Relaxation time as a function of incident energy for the head-on
Au + Au collision in a given 5-fm-radius volume.

the incident energy increases, indicating that the system can
approach equilibration faster at higher incident energy.

Using the above method, in Fig. 4 we present the value of
η/s as a function of incident energy after the studied system has
been in equilibrium. The two sets of nuclear equations of state
are used. The η/s value shows a rapid fall with the increasing
of incident energy up to E < 70A MeV and then drops slowly
to a value close 0.5 when E > 70A MeV. Because the BUU
equation is one-body theory, fragmentation that originates
from the fluctuation and correlation cannot be treated in the
present model. In this case, the phase transition behavior
cannot be predicted in the BUU model. The continuous drop of
the ratio of shear viscosity to entropy density does not show a
minimum at a certain beam energy, which indicates no obvious
phase change or critical behavior in the present model. This
is a shortcoming of the BUU model itself, especially when it
is applied to higher beam energy. Actually, when we calculate
the differential values of η/s versus the beam energy (see the
inset of Fig. 4), there seems to be a turning point around E ∼
65A MeV. This turning point could indicate a change in the
dynamical behavior of the system; in other words, other mech-
anisms may be needed to be taken into account in the model
especially at higher beam energies, e.g., multifragmentation
[40]. Alternatively, a lack of minimum η/s perhaps shows
that behavior with a local minimum of η/s at phase transition

η

π

η/
s

FIG. 4. (Color online) η/s as a function of beam energy for the
head-on Au + Au collision in a spherical volume with radius of 5 fm.
The inset shows the derivative of η/s versus beam energy.

temperature might not be universal [41]. In the present BUU
calculation, all calculated values of η/s are well above the
conjectured KSS lower bound of 1/4π [14,15]. Comparing
these values of η/s for our finite nuclei in the BUU model,
we see they are not drastically different either from the BNL
Relativistic Heavy Ion Collider (RHIC) results [17,42] or from
the results of the usual finite nuclei at low temperature from
the widths of giant vibrational states in nuclei [26]. As pointed
out in Ref. [26], it is possible that the strong fluidity is a char-
acteristic feature of the strong interaction of the many-body
nuclear systems in general and not just of the state created in
the relativistic collisions. Another interesting point from Fig. 4
is that η/s shows EOS sensitivity at lower beam energy: the
hard EOS displays larger η/s than the soft one; i.e., larger com-
pressibility of nuclear matter can lead to higher η/s values.

IV. SUMMARY

In summary, we studied thermodynamic variables as well
as viscosity and entropy density for heavy-ion collision after
the system tends toward equilibrium in intermediate-energy
heavy-ion collisions in the framework of the BUU model. The
Green-Kubo relation has been applied for nucleonic matter in
a central region with a moderate volume when the system has
been in the equilibrium stage for central heavy-ion collisions
of Au + Au. It is found that the ratio of shear viscosity to
entropy density η/s decreases very quickly before 70A MeV
and then drops slowly toward a smaller value of η/s around 0.5
at higher beam energy in the Au + Au system. The η/s values
are not drastically different either from the RHIC results or
from the results of the usual finite nuclei at low temperature.
However, no obvious minimum η/s value occurs within the
investigated energy range. This may reflect that no liquid-gas
phase transition behavior is displayed in the present model due
to the shortcoming of the model itself, which lacks dynamical
fluctuation and correlation. Relating the shortcoming, the

024607-4



SHEAR VISCOSITY TO ENTROPY DENSITY RATIO IN . . . PHYSICAL REVIEW C 84, 024607 (2011)

equilibrium temperature could be a little higher than other
models (QMD, SMM) which consider fragment formation [43]
and where the shear viscosity and entropy density might be
influenced by the cluster formation. Therefore, other models
that can incorporate a liquid-gas phase transition should be
checked for shear viscosity and entropy density. For instance, it
will be very interesting to use a quantum-molecular-dynamics-
type model to check if a minimum of η/s will occur around
the liquid-gas phase transition. Work along this direction is in
progress. Of course, experimental studies on shear viscosity
are more important to demonstrate the relation of η/s and the
liquid-gas transition point.
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