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Analyzing power in elastic scattering of 6He from a polarized proton target at 71 MeV/nucleon
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The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized
protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low
magnetic field and at high temperature. Two approaches based on local one-body potentials were applied to
investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed
that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the
global systematics of stable nuclei. A semimicroscopic analysis with an α+n+n cluster folding model suggests
that the interaction between a proton and the α core is essentially important in describing the p+6He elastic
scattering. The data are also compared with fully microscopic analyses using nonlocal optical potentials based
on nucleon-nucleon g matrices.
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I. INTRODUCTION

Spin-orbit coupling in atomic nuclei is an essential feature
in understanding any reaction and nuclear structure related
to it. One of the direct manifestations of that spin-orbit
coupling in nuclear reactions is the polarization phenomenon
in nucleon elastic scattering [1–3]. Characteristics of the
spin-orbit coupling between a nucleon and stable nuclei
have been well established by analyses of measured vec-
tor analyzing powers in the elastic scattering of polarized
nucleons on various targets over a wide range of incident
energies [4–7].

On the other hand, the spin-orbit coupling of a nucleon
with unstable nuclei might be considerably different from that
with the stable nuclei. Some neutron-rich nuclei with small
binding energies are known to have very extended neutron
distributions [8]. Since the spin-orbit coupling is essentially a
surface effect, it is natural to expect that the diffused density
distribution of a neutron-rich nucleus may significantly affect
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the radial shape and depth of the spin-orbit potential. The
purpose of this work is to investigate the characteristics of
the spin-orbit potential between a proton and 6He, a typical
neutron-rich nucleus.

Experimental determination of the spin-orbit potential is
strongly owed to measurements and analyses of the vector
analyzing powers. However, until recently, analyzing power
data were not obtained in the scattering which involves
unstable nuclei. This was mainly due to the lack of a
polarized proton target that is applicable to radioactive ion
(RI) beam experiments. RI-beam experiments induced by
light ions are usually carried out under inverse-kinematics
conditions, where energies of recoil protons can be as low as
10 MeV. Conventional polarized proton targets [9,10], based
on the dynamic nuclear polarization method, require a high
magnetic field and low temperature such as 2.5 T and 0.5 K,
respectively. It is impossible to detect the low-energy recoil
protons with sufficient angular resolution under these extreme
conditions. For the application in RI-beam experiments, we
have constructed a solid polarized proton target which can
be operated under low magnetic field of 0.1 T and at high
temperature of 100 K [11–15]. The electron polarization
in photo-excited aromatic molecules is used to polarize the
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protons [16,17]. A high proton polarization of about 20% can
be achieved in the relatively “relaxed” operating conditions
described above, since the magnitude of the electron polariza-
tion is almost independent of the magnetic field strength and
temperature.

We have measured the vector analyzing power for the
p+6He elastic scattering at 71 MeV/nucleon [18] using the
solid polarized proton target, newly constructed for RI-beam
experiments. 6He is suitable for the present study since it has a
spatially extended distribution due to a small binding energy.
In addition, from an experimental viewpoint, the p+6He
elastic scattering measurement is relatively easy to perform,
since 6He does not have a bound excited state. This allows
us to identify the elastic-scattering event only by detecting
6He and a proton in coincidence. The analyzing powers thus
measured are the first data set that can be used for quantitative
evaluation of the spin-orbit interaction between a proton and
an unstable 6He nucleus. The essence of these measurements
has been published in Ref. [18] together with two kinds of
theoretical analyses by folding models: one assumes a fully
antisymmetrized large-basis shell model for 6He with the
g-matrix interaction and the other an α+n+n cluster model
for 6He with a p-n effective interaction and a realistic p-α
static potential.

The main purpose of the present paper is to give more details
of the experiment and present an additional analysis of the ex-
perimental data using a one-body p-6He optical potential. The
analysis exhibits remarkable characteristics for the spin-orbit
part of that potential. Then it becomes important to investigate
if such a potential can be derived theoretically from any model
of 6He. As the first approach, we examined the α+n+n folding
potential in more detail, since important contributions of the
α cluster are suggested by the fact that the measured Ay for
6He is similar to that for 4He [18], when plotted versus the
momentum transfer of the scattering. To identify effects of the
clusterization, we also calculated the p-6He folding potential
for a 2p+4n noncluster model of 6He and compared the results
with those of the α+n+n cluster model. Hereafter, they are
referred to as the αnn cluster folding (CF) model and nucleon
folding (NF) one, respectively. In addition, the data are also
compared with fully microscopic calculations using nonlocal
optical potentials. In this model, nonlocality of the p-6He
interaction, a consequence of the Pauli principle leading to
nucleon exchange scattering amplitudes, is taken into account
explicitly. Three sets of single-particle wave functions, as well
as the required one-body density matrix elements determined
from a large-basis shell model for 6He, have been used in these
calculations.

The present paper is subdivided as follows. In Sec. II, details
of the experimental method are described. In Sec. III, the
method of the data reduction is presented. Section IV deals
with the phenomenological optical model analysis. Section V
is devoted to the details of the αnn cluster folding calculation
and the nucleon folding calculation. In Sec. VI, the data are
compared with the analysis by the nonlocal g-folding optical
potentials. Finally, a short summary of the obtained results is
given in Sec. VII.
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FIG. 1. (Color online) Experimental setup of the secondary target
and detectors.

II. EXPERIMENT

A. Experimental setup

The experiment was carried out at the RIKEN Accelerator
Research Facility (RARF). The 6He beam was produced
through the projectile fragmentation of a 12C beam with an
energy of 92 MeV/nucleon bombarding a primary target. As
that primary, we used a rotating 9Be target [19] to avoid
heat damage by the beam. A thickness of the target was
1480 mg/cm2. The 6He particles were separated by the
RIKEN projectile-fragment separator (RIPS) [20] based on
the magnetic rigidity and the energy loss of fragments. The
energy of the 6He beam was 70.6 ± 1.4 MeV/nucleon at
the center of the secondary target. The purity of the beam
was 95%.

The solid polarized proton target was placed at the final
focal plane of RIPS. Figure 1 illustrates the experimental setup
of the target and detectors. The most prominent advantage
of the target is its relaxed operating conditions, i.e., a low
magnetic field of 0.1 T and high temperature of 100 K. These
conditions allow us to detect recoil protons whose energies are
as low as 10 MeV. Details of the target will be described in the
following subsection.

A detector system consisted of two subsystems: one for
scattered particles and the other for recoil protons. Detection
of the recoil protons with energies as low as 10 MeV is
essential for the selection of the elastic-scattering events. The
scattering angles of protons were determined by single-wire
drift chambers (SWDCs). The SWDCs were placed 138.5 mm
away from the target on both left and right sides of the beam
axis as shown in Fig. 1. They covered an angular region of
39◦–71◦ (horizontal) and ±9.7◦ (vertical) in the laboratory
system. Their position resolution and detection efficiency
were found to be 2.6 mm (full width at half maximum,
FWHM) and 99.3%. For the measurement of the total energy
of protons, we used CsI(Tl) scintillation detectors. They
were placed just behind the SWDCs. Light output from the
CsI(Tl) crystal was detected by photo-multiplier tubes. The
front side of the CsI(Tl) scintillator was covered by a thin
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carbon-aramid film with a thickness of 12 μm. Material
thickness of the film, the SWDC, and air between the detectors
was 24 mg/cm2 in total. Energy loss of 10 MeV protons in these
materials is 1.2 MeV, which does not prevent the detection.

A multi-wire drift chamber (MWDC) was used to recon-
struct the trajectories of scattered particles. Scattering position
on the secondary target was determined from the reconstructed
trajectory. The MWDC was placed at 880 mm downstream
of the target. It has a sensitive area of 640 mm (horizontal)
× 160 mm (vertical) and covered an angular region of
±16◦ × ±4◦ in the laboratory system. The configuration of the
planes of the MWDC is X-Y-X′-Y′-X′-Y′-X-Y, where the X (Y)
plane has anode wires oriented along the vertical (horizontal)
axis. The planes with primes are displaced with respect to
the “unprimed” planes by half the cell size. The cell size is
20 × 20 mm for the X plane and 10 × 10 mm for the Y plane.
The material of the anode wire is gold-plated tungsten with
a diameter of 30 μm. Negative high voltages were applied
to the cathode and potential wires: −2.85 kV for the X (X′)
planes and −2.15 kV for the Y (Y′) planes. A gas mixture of
Ar (50%) and C2H6 (50%) was used. Position resolution and
detection efficiency of the MWDC were found to be 0.2 mm
(FWHM) and 99.8%. For identification of scattered particles,
we used a plastic scintillation detector array placed just behind
the MWDC. The first and second layers with thicknesses of 5
and 100 mm provided information of the energy loss and the
total energy of scattered particles. The total number of beam
particles was counted with a beam monitor placed between the
secondary target and the MWDC. A 50 mm high × 50 mm
wide × 10 mm deep plastic scintillator was used for the beam
monitor. A beam stopper made of a copper block was placed
just behind the beam monitor.

B. Solid polarized proton target

The solid polarized proton target, used in the measurement,
can be operated in a low magnetic field of 0.1 T and
at a high temperature of 100 K. These relaxed operating
conditions allow us to detect low-energy recoil protons without
losing angular resolution. This capability is indispensable to
applying the target to scattering experiments carried out under
the inverse kinematics condition. The proton polarization
of about 20% has been achieved [15] under such relaxed
conditions by introducing a new polarizing method using
electron polarization in triplet states of photo-excited aromatic
molecules [16,17]. A single crystal of naphthalene (C10H8)
doped with a small amount of pentacene (C22H14) is used as the
target material. Protons in the crystal are polarized by repeating
a two-step process: production of electron polarization and
polarization transfer. In the first step, pentacene molecules
are optically excited to higher singlet states. A small fraction
of them decays to the first triplet state via the first excited
singlet state by the so-called intersystem crossing. Here,
electron population difference is spontaneously produced
among Zeeman sublevels of the triplet state [16]. In the second
step, the electron population difference between two Zeeman
sublevels, namely, electron polarization, is transferred to the
proton polarization by the cross-relaxation technique [17].

As the target material, we used a single crystal of naphtha-
lene doped with 0.005 mol% pentacene molecules. The crystal
was shaped into a thin disk whose diameter and thickness
are 14 and 1 mm (116 mg/cm2), respectively. The number
of hydrogens per unit area was (4.29 ± 0.13) × 1021/cm2.
To reduce the relaxation rate, the target crystal was cooled
down to 100 K in a cooling chamber with the flow of cold
nitrogen gas. The cooling chamber was installed in another
chamber as shown in Fig. 1. Heat influx to the cooling chamber
was reduced by the vacuum kept in the intervening space
between these two chambers. Each chamber has one window
(6 μm-thick Havar foil) on the upstream side for the incoming
RI beam, two glass windows for the laser irradiation, and
three windows (20 μm-thick Kapton foil) on the left, right,
and downstream sides for the detection of recoil and scattered
particles.

A static magnetic field was applied on the target crystal
by a C-type electromagnet to define the polarizing axis. The
gap and the diameter of the poles were 100 and 220 mm,
respectively. The strength of the magnetic field in the present
experiment was 91 mT, a value much higher than that of the
crystal field (≈2 mT). While the effects of the magnetic field
on the scattering angles of 6He particles and protons were
sufficiently small (about 0.07◦ and 0.2◦–0.8◦, respectively),
they were properly corrected in the data analysis.

The target crystal was irradiated by the light of two Ar-ion
lasers with a power of 25 W each in the multi-line mode.
Wavelengths of main components of the light were 514.5 nm
(10 W) and 488.5 nm (8 W). The laser light was pulsed
by a rotating optical chopper. Typically the pulse width and
repetition rate were 12–14 μs and 1 kHz. Microwave (MW)
irradiation and a magnetic field sweep are required in the
cross-relaxation method. For the MW irradiation, the target
crystal was installed in a resonator. To detect low-energy recoil
protons, we employed a thin cylindrical loop-gap resonator
(LGR [21]) made of 25-μm-thick Teflon film. Copper stripes
with a thickness of 4.4 μm were printed on both sides of
the film. The MW frequency was 3.40 GHz. The LGR was
surrounded by a cylindrical MW shield made of 12-μm-thick
aluminum foil. For the cross relaxation, the magnetic field
was swept from 88 to 94 mT at the rate of 0.36 mT/μs,
simultaneously with the MW irradiation, by applying a current
to a small coil placed in the vicinity of the target material.

Proton polarization was monitored during the experiment
by the pulse NMR method. A radio-frequency (rf) pulse with a
frequency and a duration of 3.99 MHz and 2.2 μs was applied
to a 19 mmφ NMR coil covering the target crystal. The free
induction decay (FID) signal was detected by the same coil. We
carried out the absolute calibration to relate the FID signal to
the proton polarization by measuring the spin asymmetry in the
p+4He elastic scattering. Details of the calibration procedure
are described in the Appendix.

Devices located near the target, namely, the LGR, MW
shield, field sweeping coil, and NMR coil, were fabricated with
hydrogen-free materials to prevent production of background
events. Table I shows the material thicknesses of the devices
that recoil protons penetrate. Energy losses of the 20 MeV
protons in these materials are sufficiently small for the
detection as summarized in Table I.
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TABLE I. Thicknesses of the materials of target devices and
energy losses of 20 MeV recoil protons in them.

Material Thickness Energy loss
(mg/cm2) (MeV)

Target crystal (naphthalene) 0–336 0–9.5
LGR (Teflon, Cu foil) 9.3 0.2–0.4
Microwave shield (Al foil) 3.2 0.05–0.1
Cooling gas (N2) 13.5 0.3–0.6
Window (Kapton film) 20 0.5–1.0
Total 46–382 1.1–11.6

The target polarization during the experiment is shown in
Fig. 2 as a function of time. The polarization was built up for
the first 40 h and reached the maximum value of 20.4 ± 3.9%.
The target was then irradiated by a 71 MeV/nucleon 6He beam
for 55 h, by a 80 MeV/nucleon 4He beam for the following
25 h, and again by the 6He beam for 60 h. The magnitude of
average polarization was found to be 13.8 ± 2.7%. The target
polarization slowly decreased as a function of time, which is
due to beam-irradiation damage in the target material. This
radiation damage increased the relaxation rate of the target
material from � = 0.127(6) h−1 before the experiment to
� = 0.295(4) h−1 after the beam irradiation. The direction
of the target polarization was reversed three times during the
measurement to cancel spurious asymmetries. The 180◦ pulse
NMR method was used here. Reversal efficiency of 60–70%
was achieved.

III. DATA REDUCTION

A. Data analysis

In principle, elastic-scattering events of the 6He from
protons can be identified by the coincidence detection of
scattered 6He particles and recoil protons, since the 6He does
not have a bound excited state. Note that the first excited
state of 6He, which is the 2+ state at 1.87 MeV, is above

FIG. 2. Target polarization as a function of time during the
polarization buildup (open squares), the p+6He elastic-scattering
measurement (closed circles), and the p+4He elastic-scattering
measurement (open circles).

the two-neutron breakup threshold (0.975 MeV). Thus, any
excited 6He particles decay into α+n+n systems before
reaching the detectors.

Scattered particles were identified by the standard �E-E
method. Figure 3 shows a two-dimensional plot of the total
energies of scattered particles E versus their energy losses
�E, where loci of tritons, 4He, 6He, and 8Li are found.
Tritons and 8Li are the contamination in the secondary beam.
Most 4He particles were produced by 6He dissociation in
the secondary target. However, some originated from 6He
reactions in the plastic scintillators. So, to count all the
p+6He elastic-scattering events, the particle-identification
gate includes most of the 4He locus as shown by solid curves
in Fig. 3. The contribution of the dissociation reaction, which
is not excluded by this gate, was subtracted using a kinematics
relation. This is described after the response of the recoil proton
detectors is considered.

Figure 4 shows a two-dimensional scatter plot of the proton
energies versus their scattering angles in the center-of-mass
system, θc.m.. The kinematic locus of the elastic scattering
is clearly identified, while backgrounds from other reaction
channels such as p(6He, p4He) are also evident. The kinematic
locus of elastic-scattering events shows that the recoil protons
were properly detected outside of the target. It should be noted
that this correlation was not used for the event selection, since
it would cause a loss of events at forward angles.

To discriminate elastic scattering from the background, we
used the correlation of the azimuthal angles of protons φp

with those of scattered particles φscatt. In the case of the elastic
scattering, a scattered 6He and a recoil proton stay within a
well-defined reaction plane, since the final state is a binary
system. Thus, the difference of azimuthal angles �φ = φp −
φscatt makes a narrow peak at around 180◦. This back-to-back
correlation holds even if the scattered 6He is dissociated in
the plastic scintillator. In the case of other reactions, however,
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FIG. 3. Two-dimensional plot of the total energies of scattered
particles vs their energy losses. Solid curves indicate the particle-
identification gate.
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the azimuthal angle difference is more spread, since their final
states consist of more than two particles.

Figure 5 shows the distribution of the azimuthal angle
difference �φ fitted by a double-Gaussian function. The
narrower component is reasonably identified as that of the
elastic-scattering events. The peak width of 3.5◦ in sigma is
consistent with the detector resolution of 3.1◦. We selected the
events of |�φ − 180◦| < 12.4◦. The background remaining
in the gate was evaluated from the broader component and
was subtracted. Contributions of the inelastic scattering and
other reactions such as breakup were removed in this way
without losing the elastic-scattering yields. Figure 6 shows
a background-subtracted two-dimensional plot of scattering
angles in the center-of-mass system versus angles of scattered
particles. Center-of-mass scattering angles were deduced from
recoil angles of the protons in the laboratory system, since the
resolution of scattering angles of 6He particles is insufficient
due to the kinematic focusing. In Fig. 6, clear peaks of
elastic-scattering events lie along the solid curves indicating

Azimuthal angle difference Δφ (deg)

FIG. 5. Azimuthal angle difference between scattered particles
and recoil protons, fitted by a double-Gaussian function.

FIG. 6. Scattering angle correlation between scattered particles
and recoil protons. The solid curves indicate the kinematics of the
p+6He elastic scattering.

the kinematics of the p+6He elastic scattering. Small peaks at
|θ 6He| ≈ 4◦ originated from the ambiguity in the background
subtraction. Yields of the p+6He elastic scattering were
obtained by counting the events of the elastic-scattering peaks
in the typical width of 4◦ in θ 6He.

The present work demonstrates the applicability of the solid
polarized proton target in the RI-beam experiment. The relaxed
operation condition of the target, i.e., a low magnetic field
of 0.1 T and high magnetic field of 100 K, enables us to
detect the low-energy recoil protons. As described in the data
analysis above, information on the trajectory of recoil proton is
indispensable both in identifying the elastic-scattering events
(Fig. 5) and in deducing the scattering angle (Fig. 6).

B. Experimental data

The dσ/d� of the p+6He elastic scattering measured at
71 MeV/nucleon are summarized in Table II. In the backward
region, the uncertainty mainly results from statistics and
from the ambiguity in the background subtraction. In the
forward angular region, θc.m. < 60◦, the main component of
the uncertainty in dσ/d� is the systematic uncertainty in the
number of incident particles (10%). The target was hit by only
a fraction of beam particles, since the size of the secondary
beam was comparable to that of the target. The percentage of
the beam particles incident on the target was determined from
the beam profile and found to be 65±7% of those counted
by the beam monitor. The beam profile was measured with the
MWDC by removing the beam stopper. Stability of the beam
profile was confirmed by several measurements carried out
before, during, and after the elastic-scattering measurement.

The analyzing power Ay is deduced with the standard
procedure as

Ay = 1

P

L − R

L + R
, L =

√
N

↑
LN

↓
R, R =

√
N

↓
LN

↑
R,

where P denotes the target polarization, and N represents
the yield of the elastic-scattering events, where subscripts and
superscripts denote the scattering direction (left and right) and
the polarization direction (up and down), respectively. The
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TABLE II. Differential cross sections for the p+6He elastic
scattering at 71 MeV/nucleon. The �θc.m. denotes the bin width.
The � dσ

d�
denotes the quadratic sum of the statistical and systematic

uncertainties.

θc.m. (deg) �θc.m. (deg) dσ

d�
(mb/sr) � dσ

d�
(mb/sr)

42.1 2.5 5.02 0.52
47.1 2.5 2.03 0.22
52.1 2.5 0.796 0.098
57.4 2.5 0.454 0.059
62.3 2.5 0.360 0.046
67.3 2.5 0.226 0.031
72.3 2.5 0.172 0.023
77.3 2.5 0.127 0.018
82.2 2.5 0.064 0.013
87.2 2.5 0.038 0.012

statistical uncertainty is expressed by

�Ay

Ay

= LR

L2 − R2

√
1

N
↑
R

+ 1

N
↓
R

+ 1

N
↑
L

+ 1

N
↓
L

.

This procedure allows us to minimize the systematic uncer-
tainties originating from unbalanced detection efficiencies and
misalignment of detectors. The obtained Ay are summarized in
Table III. It must be noted that there is an additional scale error
of 19% resulting from the uncertainty in the target polarization
P (see the Appendix).

Figure 7 shows dσ/d� and Ay for the p+6He elas-
tic scattering at 71 MeV/nucleon (closed circles: present
work, open circles: Ref. [22]), those for the p+4He at
72 MeV/nucleon (open squares: Ref. [23]), and those for
the p+6Li at 72 MeV/nucleon (open triangles: Ref. [24]).
The present data are consistent with the previous ones in
Ref. [22] in an overlapping angular region of θc.m. = 40◦–50◦.
We extended the data to the backward angles of θc.m. ≈ 90◦. It
is found that the dσ/d� of p+6He are almost identical with
those of p+6Li at θc.m. = 20◦–90◦, while they have a steeper
angular dependence than those of p+4He. In good contrast to
the similarity found in dσ/d�, Ay data are widely different
between p+6He and p+6Li. The Ay of p+6Li increase as
a function of the scattering angle in an angular region of
θc.m. = 40◦–70◦ and take large positive values. This behavior is
commonly seen in proton elastic scattering from stable nuclei
at the present energy region [25]. Unlike this global trend,

TABLE III. Analyzing powers for the p+6He elastic scattering at
71 MeV/nucleon. �Ay denotes the statistical uncertainty. Note that
there is an additional scale error of 19% resulting from the uncertainty
in the target polarization. �θc.m. denotes the bin width.

θc.m. (deg) �θc.m. (deg) Ay �Ay

37.1 2.5 −0.242 0.069
44.6 5.0 −0.021 0.089
54.6 5.0 −0.016 0.135
64.8 5.0 −0.11 0.18
74.3 5.0 −0.27 0.27

FIG. 7. (Color online) Differential cross sections and analyzing
powers of p+4He at 72 MeV (open squares: Ref. [23]), p+6Li at
72 MeV (open triangles: Ref. [24]), and p+6He at 71 MeV (open
circles: Ref. [22]; closed circles: present work).

Ay of p+6He decreases in θc.m. = 37◦–55◦, which is rather
similar to those of p+4He. While the large error bars prevent
us from observing the difference between Ay of p+6He and
of p+4He, it is clearly seen that the angular distribution of Ay

in p+6He deviates from that of p+6Li.

IV. PHENOMENOLOGICAL OPTICAL MODEL ANALYSIS

A. Optical potential fitting

The aim of this section is to extract the gross characteristics
of the spin-orbit interaction between a proton and 6He. For
this purpose, we determined the optical model potential that
reproduces the experimental data of both differential cross
sections and analyzing powers. The optical model potential
obtained in this phenomenological approach will be compared
with the semimicroscopic calculations in Sec. V.

We adopted a standard Woods-Saxon optical potential with
a spin-orbit term of the Thomas form:

UOM(R) = −V0 fr (R) − i W0 fi(R)

+ 4i aid Wd

d

dR
fid (R)

+Vs

2

R

d

dR
fs(R) L · σ p + VC(R), (1)

with

fx(R) =
[

1 + exp

(
R − r0xA

1/3

ax

)]−1

(x = r, i, id, or s). (2)
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TABLE IV. Parameters of the optical potentials for p+6Li at 72 MeV/nucleon [24] and p+6He at 71 MeV/nucleon ( [27] and present
work).

V0 r0r ar W0 r0i ai Wd r0id aid Vs r0s as

(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm)

Set A p+6Li [24] 31.67 1.10 0.75 14.14 1.15 0.56 — — — 3.36 0.90 0.94
Set B p+6He (present) 27.86 1.074 0.681 16.58 0.86 0.735 — — — 2.02 1.29 0.76
Set C p+6He [27] 30.00 0.990 0.612 14.0 1.10 0.690 1.00 1.76 0.772 5.90 0.677 0.630

Here, R is the relative coordinate between a proton and a 6He
particle [see Fig. 12(b)], L = R × (−ih̄∇R) is the associated
angular momentum, and σ p is the Pauli spin operator of the
proton. The subscripts r , i, id, and s denote real, volume
imaginary, surface imaginary, and spin orbit, respectively. VC

is the Coulomb potential of a uniformly charged sphere with
a radius of r0CA1/3 fm (r0C = 1.3 fm).

The search procedure for the best-fit potential parameters
was made in two steps: first the parameters of the central term
were found by minimizing the χ2 values of dσ/d�, and second
the parameters of the spin-orbit term by fitting Ay . These two
steps were iterated alternately until convergence was achieved.
Such a procedure is feasible, since the contribution of the
spin-orbit potential to dσ/d� is much smaller than those of
the central terms. In the fitting, we used the data in Ref. [22]
and the present ones. Uncertainties of dσ/d� smaller than
10% were artificially set to 10% in order to avoid trapping in
an unphysical local χ2 minimum. The fitting was carried out
using the ECIS79 code [26]. A set of parameters for the p+6Li
elastic scattering at 72 MeV/nucleon [24], labeled as set A in
Table IV, was used as the initial values in the search of the
p-6He potential parameters.

The parameters obtained for the p+6He elastic scattering
are labeled as set B in Table IV. The reduced χ2 values for
dσ/d� and Ay were 0.95 and 0.96, respectively. Uncertainties
of the parameters of the spin-orbit potential, r0s , as , and Vs , are
evaluated in the following manner. Figure 8 shows the contour
map of the deviation of χ2 value for Ay from that calculated by
set B (as indicated by point P), �χ2

Ay
, on the two-dimensional

plane of r0s and as after projecting with optimized Vs at each
point of the plane. In the figure, a simultaneous confidence
region for r0s and as is presented by the solid contour indicating
�χ2

Ay
= 1. In this region, the optimum Vs ranges between

1.15 MeV (at point Q) and 2.82 MeV (at point R). In the r0s-
as-Vs space, a surface that has �χ2

Ay
= 1 touches planes that

are expressed by r0s = 1.29 ± 0.13 fm, as = 0.76 ± 0.17 fm,
and Vs = 2.02 ± 0.87 MeV, which gives a rough estimation of
uncertainties of the parameters.

B. Characteristics of spin-orbit potential

In Fig. 9, the results of calculations of the observables
made with the optical potentials of sets A, B, and C in
Table IV are shown together with the experimental data. Set C
was taken from Ref. [27], where a phenomenological optical
model potential that reproduced only the previous dσ/d� data
of the p+6He at 71 MeV/nucleon [22] was reported. The radial

dependences of the p-6He optical potentials (sets B and C) are
shown in Fig. 10 by solid and dashed lines, respectively.

The calculation with the potential set C reasonably repro-
duces the present dσ/d� data, whereas it largely deviates from
the Ay data at θc.m. � 40◦. It should be noted that the Ay data
were unavailable when the potential set C was sought. The
calculation with the potential set B reproduces both dσ/d�

and Ay over the whole angular region except for the most
backward data point of Ay . Similarity of the dσ/d� calculated
with sets B and C potentials originates from that of the central
terms as shown in the upper panel of Fig. 10. The reliability of
the potential obtained in the present work is supported by the
fact that two independent analyses yielded similar results for
the central terms. In contrast to the central terms, the spin-orbit
terms of these two potentials are quite different, resulting in
a large difference in Ay as shown in Fig. 9. Note that the
present data are sensitive to the optical potential in a region of
R � 1.5 fm. The spin-orbit potential of set B is much shallower
than that of set C at R � 2.8 fm, while it is deeper at larger
radii. This is due to the small value of Vs and large values
of r0s and as of set B compared with those of set C. The
phenomenological optical model analysis suggests that the Ay

FIG. 8. Contour map of the �χ 2
Ay

values (see the text for the
definition) on the two-dimensional plane of r0s and as . The solid,
dashed, and dotted curves indicate �χ 2

Ay
=1, 3, and 5, respectively.

The point that gives the best-fit parameters, set B in Table IV, is
indicated by point P. See the text for the points Q and R.
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FIG. 9. (Color online) Differential cross sections and analyzing
powers calculated by the phenomenological optical potentials and
experimental data. Dot-dashed curves denote calculations of set A in
Table IV, solid curves set B, and dashed curves set C. Solid circles
are present data, and open circles are from Ref. [22].

data can be reproduced only with a shallow and long-ranged
spin-orbit potential.

The parameters of our spin-orbit potential are compared
with those of neighboring even-even stable nuclei and with
global potentials in Table V. Phenomenological optical
potentials for the p+16O at 65 MeV and p+12C at 16–40 MeV
are taken from Ref. [25] and Refs. [28,29], respectively.
In addition to these local potentials, we also examined the
parameters of global optical potentials: CH89 [4] and Koning-
Delaroche (KD) [5], of which applicable ranges are E =
10–65 MeV, A = 40–209, and E = 0.001–200 MeV, A =
24–209, respectively. While they are constructed for nuclei
heavier than 6He, it is worthwhile comparing them, since the
mass-number dependence of the parameters is relatively small.
For example, the mass-number dependence appears only in r0s

in the case of CH89 [4] as

Vs = 5.9(1) MeV,

FIG. 10. (Color online) Radial dependences of the phenomeno-
logical optical potential (sets B and C in Table IV). Solid and dashed
curves in the upper panel represent the real and imaginary parts of
the central term. The lower panel shows the spin-orbit potential.

r0s = 1.34(3)A−1/3 − 1.2(1)A−1/3 fm,

as = 0.63(2) fm.

Table V includes the parameters of these potentials for the
nuclei within the applicable range. Incident energies of E =
65 and E = 71 MeV were assumed here for CH89 and KD,
respectively.

First, we focus on r0s and as to discuss the radial shape of the
spin-orbit potential. A combination of different values of r0s

and as can provide similar results of Ay since the observable
is sensitive to the surface region of the spin-orbit potential.
We thus compare these parameters on the two-dimensional
plane of r0s and as as shown in Fig. 11. Parameters for the
stable nuclei are mostly distributed in a region of r0s = 0.8–
1.1 fm and as = 0.5–0.6 fm, whereas that for 6He is located
in the upper right side of the figure. These large r0s and/or as

values indicate that the spin-orbit potential between a proton
and a 6He has a long-ranged nature compared with those for
stable nuclei. The depth parameter Vs was also compared with

TABLE V. Parameters of the spin-orbit term of phenomenological and global optical potentials.

Vs (MeV) r0s (fm) as (fm)

p+6He, E = 71 MeV (set B) 2.02 1.29 0.76
p+12C, E = 40 MeV [28] 6.18 1.109 0.517
p+12C, E = 16–40 MeV [29] 6.4 1.00 0.575
p+16O, E = 65 MeV [25] 5.793 1.057 0.5807
CH89, E = 65 MeV, A = 40–209 [4] 5.9 ± 0.1 0.99–1.14 0.63±0.02
KD, E = 71 MeV, A = 24–209 [5] 4.369 – 4.822 0.961–1.076 0.59
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FIG. 11. Two-dimensional distribution of r0s and as of phe-
nomenological OM potentials for p+6He (closed circle), p+12C
(closed triangle: Ref. [29]; closed diamond: [28]), and p+16O (closed
square: [25]). The solid contour indicates the simultaneous confidence
region for the r0s and as values for the p+6He as displayed in
Fig. 8. Parameters of global OM potentials [4,5] are also shown
by solid lines which represent the A dependence of r0s .

the global systematics. The Vs value of the p-6He potential
was found to be 2.02 MeV for the best-fit potential (set B)
and ranges between 1.15 and 2.82 MeV in the simultaneous
confidence region for r0s and as . On the other hand, those of
stable nuclei are mostly distributed around 5 MeV as shown in
Table V. Comparing these values, the depth parameter of the
spin-orbit potential between a proton and a 6He is found to be
much smaller than those of stable nuclei.

The phenomenological analysis indicates that the spin-orbit
potential between a proton and 6He is characterized by large
r0s/as and small Vs values yielding shallow and long-ranged
radial dependence. Intuitively, these characteristics can be
understood from the diffused density distribution of 6He.
However, its microscopic origin cannot be clarified by the phe-
nomenological approach. To examine the microscopic origin
of the characteristics of the p-6He interaction, microscopic and
semimicroscopic analyses are required. Section V describes
one such analysis based on a cluster folding model for 6He.

V. SEMIMICROSCOPIC ANALYSES

In this section, we examine two kinds of the folding
potential, the cluster folding (CF) and the nucleon folding (NF)
ones. They are compared with the phenomenological optical
model (OM) potential determined in the preceding section. The
results of calculations of observables made by these potentials
are compared with the experimental data.

In the CF potential, we adopt the αnn cluster model for
6He and fold interactions between the proton and the valence
neutrons, Vpn, with the neutron density in 6He and those
between the proton and the α core, Vpα , with the α density
in 6He. In the NF potential, we decompose the α core into two

neutrons and two protons and fold the interactions between the
incident proton and the four neutrons, Vpn, with the neutron
density in 6He and those between the incident proton and two
target protons, Vpp, with the proton density in 6He.

The detailed expressions of such folding potentials are
given in the following section, where the Coulomb interaction
is considered in the p-p and p-α interactions when compared
with the corresponding scattering data, but finally it is assumed
to act between the proton and the 6He target with r0C =
1.400 fm [27].

A. Folding potentials

Denoting two valence neutrons by n1 and n2, the CF
potential UCF is given as

UCF =
∫

Vpn1 ρCF
n (r1) d r1 +

∫
Vpn2 ρCF

n (r2) d r2

+
∫

Vpα ρCF
α (rα) d rα , (3)

where r1, r2, and rα are the position vectors of n1, n2, and the α

core from the center of mass of 6He, respectively. The neutron
and α densities, ρCF

n and ρCF
α , are calculated by the αnn cluster

model for 6He [30,31], where the condition r1 + r2 + 4rα = 0
is considered as usual.

In the present work, we specify the potentials in the right
hand side of Eq. (3) by the central plus spin-orbit (LS) type:

Vpni
= V 0

pn(|rpni
|) + V LS

pn (|rpni
|)�pni

· (σ p + σ ni
),

where i = 1, 2 and

Vpα = V 0
pα(|rpα|) + V LS

pα (|rpα|)�pα · σ p. (4)

Here, rpn1 , rpn2 , and rpα are defined in Fig. 12(a), and �pn1 =
rpn1 × (−ih̄∇pn1 ), etc.

In the following, we transform the set of coordinates
(rpn1 , rpn2 , rpα) to that of (ξ , ζ , R), which are defined in
Fig. 12(b), to describe the angular momenta �pni

and �pα in
terms of L. The transformation is

rpn1 = −R − 2
3ζ − 1

2ξ ,

rpn2 = −R − 2
3ζ + 1

2ξ , (5)

rpα = −R + 1
3ζ ,

FIG. 12. (Color online) Coordinate systems for the cluster folding
model.
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and consequently

∇pn1 = − 1
6∇R − 1

2∇ζ − ∇ξ ,

∇pn2 = − 1
6∇R − 1

2∇ζ + ∇ξ , (6)

∇pα = − 2
3∇R + ∇ζ .

These relations lead to, for example,

�pn1 =(−R − 2
3ζ − 1

2ξ
)×[−ih̄

(− 1
6∇R − 1

2∇ζ − ∇ξ

)]
.

(7)

Here, ∇ξ and ∇ζ can be neglected, because these are the
momenta for the internal degrees of freedom of 6He and their
expectation values are zero for a spherically symmetric nucleus
[32]. Using 2

3ζ + 1
2ξ = −r1, we get

�pn1 = 1
6 [L − r1 × (−ih̄∇R)] , (8)

which is independent of the special choice of the 6He internal
coordinates, ξ and ζ . To L, r1 can contribute by its component
along the R direction [32], then

�pn1 = 1

6
L

(
1 − r1 · R

R2

)
. (9)

Similar expressions are obtained for �pn2 and �pα . Setting
1
2 (σ n1 + σ n2 ) = 0 and considering other quantities to appear in
symmetric manners on 1 and 2, we obtain the p-6He potential
as

UCF = UCF
0 (R) + UCF

LS (R) L · σ p , (10)

with

UCF
0 (R) = 2

∫
V 0

pn(|r1 − R|) ρCF
n (r1) d r1

+
∫

V 0
pα(|rα − R|) ρCF

α (rα) d rα (11)

and

UCF
LS (R) = 1

3

∫
V LS

pn (|r1 − R|)
{

1 − r1 · R
R2

}
ρCF

n (r1)d r1

+2

3

∫
V LS

pα (|rα− R|)
{

1 − rα · R
R2

}
ρCF

α (rα) d rα.

(12)

In a way similar to the above development, we get the
NF model potential UNF. In this case, the relative coordinates
between the incident proton and six nucleons in the 6He
nucleus are transformed to the proton-6He relative coordinate
R and a set of five independent internal coordinates of 6He.
The obtained UNF, which is independent of the choice of the
set of the internal coordinates, is written as

UNF = UNF
0 (R) + UNF

LS (R) L · σ p , (13)

with

UNF
0 (R) = 2

∫
V 0

pp(|r1 − R|) ρNF
p (r1) d r1

+ 4
∫

V 0
pn(|r2 − R|) ρNF

n (r2) d r2, (14)

and

UNF
LS (R)= 1

3

∫
V LS

pp (|r1− R|)
{

1− r1 · R
R2

}
ρNF

p (r1) d r1

+ 2

3

∫
V LS

pn (|r2 − R|)
{

1− r2 · R
R2

}
ρNF

n (r2)d r2 ,

(15)

where ρNF
n and ρNF

p denote point neutron and proton densities,
respectively.

B. Numerical evaluation of p-6He potentials

To evaluate the p-6He folding potentials as specified in the
preceding section, we have to fix the following elements: the
p-α interaction Vpα , the p-p and p-n interactions Vpp and Vpn,
and the densities in 6He, ρα , ρp, and ρn. These are discussed
in the following sections.

1. p-α interactions

For Vpα used in the CF potential, we assume the standard
WS potential such as given in Eq. (1). The parameters involved
are searched so as to fit the data of dσ/d� and Ay in the
p+α scattering at 72 MeV/nucleon [23]. Particular attention
is given to reproducing the observables in the forward angular
region, since overall agreements with the data are not found
in spite of the careful search of the parameters. Two typical
parameter sets, with and without the volume absorption term,
are labeled as set 1 and set 2 in Table VI. The results of
calculations made with these potentials are compared with the
data in Fig. 13, where the dashed and solid lines show those
by set 1 and set 2 potentials, respectively. Both calculations
describe the data up to θ ≈ 100◦ but do not reproduce those
at backward angles, θ � 120◦. Such discrepancies between
the calculated results and the measured data at the backward
angles suggest participation of contributions of other reaction
mechanisms, such as knockon-type exchange scattering of the
proton with target nucleons. Such possible extra mechanisms
will be disregarded at present, since we are concerned with the
p-α one-body potential. In our CF calculations, we adopt the
potentials with the above parameter sets as Vpα . However,
the validity of the CF potential thus obtained is limited to
forward scattering angles, a low momentum transfer region,
of p+6He scattering. The real and imaginary parts of V 0

pα

and the real part of V LS
pα for the above parameter sets are

displayed in the upper and lower panels of Fig. 14. Although
set 1 (dashed) and set 2 (solid) potentials have rather different
rpα dependences, as shown later, this difference is moderated
in the folding procedure so yielding similar CF potentials.

2. p- p and p-n interactions

For Vpn and Vpp used in the CF and NF potentials, we
adopt the complex effective interaction (CEG) [33–35], where
the nuclear force [36] is modified by the medium effect
which takes account of the virtual excitation of nucleons of
the nuclear matter up to 10kF by the g-matrix theory. The
nuclear force is composed of Gaussian form factors, and
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TABLE VI. Parameters for the optical potentials for p+4He at 72 MeV/nucleon.

V0 r0r ar W0 r0i ai Wd r0id aid r0C Vs r0s as

(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) (MeV) (fm) (fm)

Set 1 64.13 0.7440 0.2562 6.338 1.450 0.2089 46.23 1.320 0.1100 1.400 2.752 1.100 0.2252
Set 2 54.87 0.8566 0.09600 — — — 31.97 1.125 0.2811 1.400 3.925 0.8563 0.4914

the parameters contained are adjusted to simulate the matrix
elements of the Hamada-Johnston potential [37]. The CEG
interaction has been successful in reproducing dσ/d� and
Ay measured for the proton elastic scattering by many nuclei
in a wide incident energy range, Ep = 20–200 MeV, in the
framework of the folding model [33–35]. It has been shown
that the imaginary part of the folding potential given by the
CEG interaction is slightly too large to reproduce experimental
N-A scattering [33,35]. In the present calculation, therefore, we
adopt the normalizing factor NI = 0.7 for the imaginary part
of the CEG interaction. However, calculations with NI = 1.0
do not give an essential change to the results.

3. Densities of α, p, and n in 6He

The densities ρCF
n and ρCF

α for the CF calculation are ob-
tained by applying the Gaussian expansion method [30,31] to
the αnn cluster model of 6He. This method has been successful
in describing structures of various few-body systems as well
as 6He [30,31]. As for the n-n interaction, we choose AV8′
interaction [38]. It is reasonable to use a bare (free space)
n-n interaction between the two valence neutrons in 6He, as
they are dominantly in a region of low density. As for the α-n
interaction, we employ the effective α-n potential in Ref. [39],
which was designed to reproduce well the low-lying states
and low-energy-scattering phase shifts of the α-n system. The
depth of the α-n potential is modified slightly to adjust the
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FIG. 13. (Color online) Angular distribution of the cross section
and Ay for the p+4He elastic scattering at 72 MeV/nucleon. Dashed
and solid lines are the optical model calculations with set 1 and
set 2 parameters, respectively. The experimental data are taken from
Ref. [23].

ground-state binding energy of 6He to the empirical value. In
Fig. 15(a), the densities obtained are shown as functions of
r , the distance from the center of mass of 6He, where ρCF

α is
localized in a relatively narrow region around the center, while
ρCF

n is spread widely.
The NF calculation depends on the assumptions made for

the densities of the two protons and four neutrons in 6He as
well as those made for the p-p and p-n interactions [18]. At
present, to see the essential role of clustering the four nucleons
into the α-particle core, we use the densities of the proton and
the neutron in the α obtained by decomposing the density of
the point α, ρCF

α , to the densities of the constituent nucleons
with a one-range Gaussian form factor with range 1.40 fm. The
total nucleon densities of 6He, ρNF

p , and ρNF
n , where the latter

includes the contribution of the valence neutrons, are displayed
in Fig. 15(b). The neutron density ρNF

n has a longer tail than
the proton one ρNF

p due to the presence of the valence neutrons.
In Refs. [40,41] the nucleon densities of 6He were calculated
in a more sophisticated way. They produced densities similar
to the present ones for the protons and neutrons. These two
kinds of nucleon densities provide similar results in the NF
calculation of dσ/d� and Ay of the p+6He scattering. Thus,
in the following, we will discuss UNF as formed using the
densities shown in Fig. 15(b).

4. p-6He folding potentials

In Fig. 16, the resultant p-6He potentials, UCF and UNF,
are compared with each other as well as with the optical
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the real part of set 1 (set 2) potential and the thin dashed (solid) lines
are for the imaginary part.
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∫
ρxr

2 dr = 1, where
x = α, n, and p.

model potential UOM. The CF potentials calculated by the two
sets of Vpα in Table VI, say UCF−1 and UCF−2, are shown
by long-dashed and solid lines in Fig. 16(a), respectively.
The folding procedure gives similar results in both cases.
The contribution of Vpn is displayed by short-dashed lines
in the figure, which is found to be mostly small. Especially,
in the spin-orbit potential, the contribution from Vpn is one
order of magnitude smaller than that from Vpα . The main
contribution to UCF arises from the interaction Vpα except for
the central real potential at R �3 fm, which is dominated by
the Vpn contribution. This is supposed to be the reflection of

the extended neutron density shown in Fig. 15 and produces
significant contributions to the observables as discussed later.

In Fig. 16(b), UCF due to set 2 of Vpα , UNF, and UOM

are shown by solid, dot-dashed, and short-dashed lines,
respectively. First we consider the central part of the potentials.
For small R, the real part of UCF

0 is deeper than those of
UNF

0 and UOM
0 , while for large R, UCF

0 is shallower than the
other two. In the imaginary part, the magnitude of UCF

0 is
much bigger than those of the other two potentials. This will
compensate the deficiency of the real part of UCF

0 at large R,
for example, in the calculation of the cross section. On the
other hand, the spin-orbit part of UOM has a larger magnitude
for R � 2 fm and thus has a longer range than those of the
other two potentials. Such long-range nature of the spin-orbit
interaction is a characteristic feature of the spin-orbit part of
UOM as described in Sec. IV. This is discussed later in more
detail with relation to Ay .

C. Comparison between experiments and calculations
in p+6He scattering

In the following, the dσ/d� and Ay for p-6He elastic
scattering calculated using UCF, UNF, and UOM are compared
with the data taken at 71 MeV/nucleon. In Fig. 17(a) the
results obtained using the two CF potentials, UCF−1 and UCF−2,
are shown by long-dashed and solid lines, respectively. Both
results are very similar to each other and well describe the
data of dσ/d�, except for large angles where the calculations
overestimate the data by small amounts. The calculations also
describe the angular dependence of the measured Ay up to
θ � 55◦. These successes basically support the CF potential
as a reasonable description of scattering. The discrepancies
at large angles, i.e., a large momentum transfer region, may
be related to the limitation of the validity of Vpα used in the
folding, as discussed in the subsection V B.
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calculation with set 2 parameters, the dot-dashed lines are the NF one and the short-dashed lines are the phenomenological optical potential.
The CF spin-orbit potential corrected by the �ULS term is shown by the long-dashed line (see text for detail).
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FIG. 17. (Color online) Angular distribution of the cross section and Ay for the p+6He elastic scattering at 71 MeV/nucleon. The
experimental data are denoted by circles (present) and squares (Korsheninnikov 1997: [22]). (a) The long-dashed (solid) lines are the CF
calculation in which set 1 (set 2) parameters are used for Vpα . The dot-dashed lines are the NF calculation. (b) The dashed lines and the solid
ones include the Vpn interaction, where the formers neglect the spin-orbit part of Vpn. The dash-dotted lines include only Vpα interaction.
(c) The solid lines are the CF calculation with set 2 parameters for Vpα and the short-dashed lines are the OM calculation. The long-dashed
lines are the CF calculation with set 2 parameters for Vpα where �ULS is added (see text for details).

In Fig. 17(a), the results of the calculation made using
the NF potential are shown by dot-dashed lines. They do not
reproduce the data well. The calculation gives a deep valley

around θ � 53◦ in the angular distribution of dσ/d� and a
large positive peak at the corresponding angle of the Ay angular
distribution. These features do not exist in the data. Since the
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present nucleon densities originated from the CF model ones,
the essential difference between the CF and NF potentials will
be produced by the use of the different interactions. Thus, the
CF calculation will owe its successes to the inclusion of the
characteristics of the realistic p-α interaction into the p-6He
potential.

It is interesting to examine if the α core in 6He is somewhat
diffused compared with a free α particle, due to the interactions
from the valence neutrons. For that purpose, we increased the
radius and diffuseness parameters, r0 and a, in the Vpα potential
as r0 to 1.1 r0 and a to a + 0.1 fm. The depth parameters
were changed to keep constant the values of the corresponding
volume integrals. The effect of this change is shown by the
short-dashed lines in Fig. 17(a), where reproduction of the
data is improved somewhat, especially in dσ/d� at large
angles.

In Fig. 17(b), the contributions of the valence neutrons
are demonstrated for the CF-2 calculation. As is speculated
from the analyses of the form factors of the potential in
Fig. 16(a), the dominant contribution to the observables in the
CF calculation arises from Vpα displayed by the dot-dashed
lines in Fig. 17(b). However, the valence neutrons produce
indispensable corrections to the observables. That is, the pn

central interaction decreases dσ/d� at large angles, giving
remarkable improvements in the agreement with the data as
shown by the dashed lines. The pn interaction also contributes
to Ay by a considerable amount through the central part. A
detailed examination of the calculation revealed that such
corrections were due to the Vpn part of the folding central
potential in an R region between R = 2 and 4 fm [see
Fig. 16(a)]. The spin-orbit part of Vpn has almost no effect
on the observables as shown by the solid lines in Fig. 17(b).
This is consistent with the result shown by Crespo et al. [42]
in a study at a higher incident energy.

In Fig. 17(c), we compared the results of the CF-2
calculation (solid lines) with those of the OM calculation in
the preceding section (short-dashed lines) as well as with the
data. In the optical model analysis, the experimental data can
be reproduced only with a shallow and long-ranged spin-orbit
potential. Compared with this potential, the spin-orbit part
of the CF-2 potential has a shorter range, as displayed by a
solid line in the lower panel of Fig. 16(b). To investigate the
role of the long tail in the spin-orbit potential, we calculated
the observables by adding a weak but long-range spin-orbit
interaction �ULS to the CF interaction. This correction is
assumed to be the Thomas type as

�ULS(R) = vadd
2

R

d

dR

[
1 + exp

{
(R − 61/3radd)/aadd

}]−1
.

(16)

For simplicity, we adopt vadd = 1 MeV, radd = 1.5 fm, and
aadd = 0.7 fm, where the large magnitudes of radd and aadd

are consistent with the characteristics of the magnitudes of
r0s and as of the OM potential discussed in Sec. IV. The
calculated observables are displayed in Fig. 17(c) by long-
dashed lines, where dσ/d� is little affected, but Ay receives
a drastic change, i.e., the angular distribution of Ay is now
similar to that by the OM calculation in a global sense, showing
qualitative improvements in comparison with the data. To see

the contribution of �ULS to the potential, we plot UCF
LS + �ULS

in Fig. 16(b) by long-dashed lines, where the new spin-orbit
potential becomes very close to that of the OM potential at
R � 2.5 fm. It is indicated that the long tail of the spin-orbit
potential is particularly important in reproducing the angular
distribution of Ay , while its microscopic origin is still to be
investigated. When some corrections which increase the range
of the spin-orbit interaction are found, they will be effective
for improving the CF calculation.

VI. MICROSCOPIC MODEL ANALYSES

In this section, we will describe the theoretical analysis of
the present data by a microscopic model developed in Ref. [7].
In this model, one can predict the scattering observables such
as cross sections and analyzing powers with one run of the rel-
evant code (DWBA98) with no adjustable parameter. Complete
details as well as many examples of use of this coordinate
space microscopic model approach are to be found in the
review [7]. Use of the complex, nonlocal, nucleon-nucleus
optical potentials defined in that way, without localization of
the exchange amplitudes, has given predictions of differential
cross sections and spin observables that are in good agreement
with data from many nuclei (3He to 238U) and for a wide
range of energies (40 to 300 MeV). Crucial to that success
is the use of effective nucleon-nucleon (NN ) interactions
built upon NN g matrices. The effective NN interactions
are complex, energy- and density-dependent admixtures of
Yukawa functions. They have central two-nucleon tensor and
two-nucleon spin-orbit character. The NA optical potentials
result from folding those effective interactions with the one-
body density matrix elements (OBDME) of the ground state
in the target nucleus. Antisymmetrization of the projectile
with all target nucleons leads to exchange amplitudes, making
the microscopic optical potential nonlocal. For brevity, the
optical potentials that result are called g-folding potentials.
Another application has been in the prediction of integral
observables of elastic scattering of both protons and neutrons,
with equal success [43]. Thus, the method is known now to
give good predictions of both angular-dependent and integral
observables.

It is important to note that the level of agreement with
data in the g-folding approach depends on the quality of the
structure model that is used. Due to the character of the hadron
force, proton scattering is preferentially sensitive to the neutron
matter distributions of nuclei; a sensitivity seen in a recent
assessment, using proton elastic scattering, of diverse Skyrme-
Hartree-Fock model structures for 208Pb [44].

A. Structure of 6He used
6He is a two-neutron halo nucleus and has been described

well by shell-model calculations. In calculation of the g-
folding potential for protons interacting with 6He, a complete
(0+2+4)h̄ω shell-model calculation has been made to specify
the ground-state OBDME. Essentially they are the occupation
numbers which define the matter densities of the nucleus.
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In the present study, we assume three sets of the single-
nucleon (SN) wave functions for 6He. One is the oscillator
wave functions with an oscillator length of 2.0 fm (HO set).
However, a neutron-halo character of 6He cannot be given
by the oscillator wave function whatever oscillator length is
used, as shown by the dashed curve in the lower panel of
Fig. 18. Thus, we assume two sets of SN wave functions
defined in Woods-Saxon (WS) potentials. One of them is
obtained by taking the geometry of the potential from that
found appropriate in Ref. [7], where electron form factors and
proton scattering from 6,7Li are studied. That study provided
a set of SN wave functions that we specify as the WS nonhalo
set, since the p-shell nucleons were all reasonably bound.
The extended neutron matter character of 6He is found by
choosing the binding energy of the halo-neutron orbits to
give the single-neutron separation energy (1.8 MeV) to the
lowest energy resonance in 5He. The set of SN wave functions
that result are specified as the WS halo set. The associated
density profile has the extensive neutron density coming from
the halo. Density profiles given by the various sets of SN
wave functions are shown in Fig. 18. The difference between
proton distributions of WS halo and WS nonhalo sets cannot
be seen.

Use of the WS halo set in analyses of 40.9 MeV/nucleon
data [45] gave a value of 406 mb for the reaction cross
section, which is in good agreement with the measured
value. Additional evidence for the WS halo set is given by
the root-mean-square (rms) radius of the matter distribution,
which is most sensitive to characteristics of the outer surface of
a nucleus. Using the WS nonhalo set of the SN wave functions
gave an rms radius for 6He of 2.30 fm, which is much smaller
than the expected value of 2.54 fm. On the other hand, using

FIG. 18. The (model) proton and neutron densities in the upper
and lower panels, respectively.

the WS halo set gave an rms radius for 6He of 2.59 fm, in good
agreement with that expectation.

B. Differential cross sections and analyzing powers

The cross sections and analyzing powers for the p+6He
elastic scattering at 71 MeV/nucleon are shown in the top and
bottom panels of Fig. 19, respectively. The calculated results
found using the g-folding potential obtained with the HO set of
SN wave functions are not satisfactory, especially in the case
of the analyzing power. Of the WS sets, the halo description
gives the better match to data especially at the larger scattering
angles. This result is consistent with the findings from analyses
of lower energy scattering data at 40.9 MeV/nucleon [45] and
at 24.5 MeV/nucleon [46].

In fact, the differential cross sections calculated with the
WS halo set match the data so well that one does not need
to contemplate any adjustment. However, the story is not so
simple when one also considers the analyzing power data. At
forward scattering angles, both WS sets reasonably match the
data. But neither WS result produces the distinctive trend of
small values found at larger scattering angles. Nonetheless the
best result is that found using the WS halo set of SN functions.
Given that the cross section values in the region of 60◦ to
90◦ is of an order of 0.1 mb/sr, the limitations in the present
microscopic model formulation of the reaction dynamics may
be the problem.

VII. SUMMARY

Vector analyzing power has been measured for the elastic
scattering of 6He from polarized protons at 71 MeV/nucleon
to investigate the characteristics of the spin-orbit potential

FIG. 19. Differential cross sections and analyzing powers of the
p+6He elastic scattering at 71 MeV/nucleon (open circles: Ref. [22],
closed circles: present work). Three curves are results of g-matrix
folding calculation with 6He densities presented in Fig. 18.
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FIG. 20. Analyzing powers of the p+4He elastic scattering at
80 MeV/nucleon. Closed circles indicate the present data where Py =
12.3% is assumed. Open circles represent the reference data taken
from Ref. [47].

between the proton and the 6He nucleus. Measurement of
the polarization observable was realized in the RI-beam
experiment by using the newly constructed solid polarized
proton target, which can be operated in a low magnetic field of
0.1 T and at high temperature of 100 K. The measured dσ/d�

of the p+6He elastic scattering were almost identical to those
of the p+6Li. On the other hand, the Ay were found to be
largely different from those of the p+6Li and rather similar to
those of the p+4He elastic scattering.

To extract the gross feature of the spin-orbit interaction
between a proton and 6He, an optical model potential was de-
termined phenomenologically by fitting the experimental data
of dσ/d� and Ay . Compared with the global systematics of
the potentials for stable nuclei, it is indicated that the spin-orbit
potential for 6He is characterized by a small value of Vs and
large values of r0s and as , namely, by a shallow and long-ranged
radial shape. Such characteristics might be the reflection of the
diffused density of the neutron-rich 6He nucleus.

The cluster folding calculation was carried out to get
a deeper insight into the optical potential, assuming the
α+n+n cluster structure for 6He. In addition, nucleon folding
calculations were also performed by decomposing the α

core into four nucleons. The experimental data could not be
reproduced by the nucleon folding calculation, whereas the
αnn cluster folding calculation gave reasonable agreement
with the data. Thus, this indicates that it is important to take
into account of the α clusterization in the description of p+6He
elastic scattering. The cluster folding calculation shows that
the dominant contribution to the p-6He potential arises from
the interaction between the proton and the α core. Especially,
in the spin-orbit potential, the contribution of the interaction
between the proton and valence neutrons was found to be much
smaller than the α core contribution. However, the measured
cross section at large angles cannot be understood without
the contribution from the scattering by the valence neutrons.
Comparison of the phenomenological optical potential and the
cluster folding one indicates that the long-range nature of the
spin-orbit potential is important in reproducing the Ay data at

large angles. The microscopic origin of such a long tail is still
to be investigated.

The data were also compared with the predictions obtained
from a fully microscopic g-folding model. Three sets of single-
nucleon wave functions were tried since other details of the
calculation were predetermined. The model, which has been
successful in analyzing p+6He scattering cross sections in
the past [44], again gave good reproduction of the data in
the present case when the bound state wave functions specify
that 6He has a neutron halo. However, the match to the data,
in particular the analyzing power, is not perfect. This may
indicate limitation of the structure model and/or contribution
of unaccounted reaction mechanisms that influence the larger
momentum transfer results.

This work has demonstrated the capability of the solid
polarized proton target in low magnetic field and at high
temperature to probe the new aspects of the reaction involving
unstable nuclei. Future polarization studies of such kinds will
provide us with valuable information on the reaction and
structure of unstable nuclei.
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APPENDIX: ABSOLUTE MEASUREMENT
OF TARGET POLARIZATION

In the case of conventional solid polarized targets, the
NMR signal usually is related to the absolute magnitude of
the polarization by measuring the target polarization under the
state of thermal equilibrium (TE). However, measurement of
the TE polarization is quite difficult in our target. The first
reason for this is that the TE polarization is very small in a low
magnetic field and at high temperature, since it is represented
by PTE = tanh( μB

2kT
), where μ, B, and T are the magnetic

moment of proton, the field strength, and the temperature,
respectively. The second reason is that the sensitivity of the
present NMR system is not sufficiently high, since the target
design is optimized for scattering experiments.

One of the simple methods to measure the absolute target
polarization would be the measurement of the spin-dependent
asymmetry ε = PyAy for the proton elastic scattering whose
analyzing power Ay are known. In the present study, we
measured the spin asymmetry for the p+4He elastic scattering
at 80 MeV/nucleon. The Ay have already been measured
by Togawa et al. [47]. The use of the p+4He scattering is
profitable since we can measure ε with the same experimental
setup as that for the p+6He measurement only by changing
settings of the fragment separator RIPS to produce a secondary
4He beam. The profile of the 4He beam on the target was tuned
to be almost the same as that of the 6He beam.
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Figure 20 shows Ay of the p+4He elastic scattering
at 80 MeV/nucleon. The open circles represent the pre-
vious data [47], while the closed ones show the present
data whose magnitudes are scaled to the previous ones.
From the scaling factor, the average polarization during the
p+4He measurement was determined to be Py = 12.3 ±

2.4%. The relative uncertainty of the polarization �Py/Py ,
which was 19% in the present work, resulted from the
statistics of the p+4He scattering events. Future development
of the NMR system would be required for determining the
absolute polarization more precisely without losing beam
time.
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