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Quantum Monte Carlo calculations of spectroscopic overlaps in A � 7 nuclei
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We present Green’s function Monte Carlo calculations of spectroscopic overlaps for A � 7 nuclei. The
realistic Argonne v18 two-nucleon and Illinois-7 three-nucleon interactions are used to generate the nuclear
states. The overlap matrix elements are extrapolated from mixed estimates between variational Monte Carlo and
Green’s function Monte Carlo wave functions. The overlap functions are used to obtain spectroscopic factors and
asymptotic normalization coefficients, and they can serve as an input for reaction calculations.
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I. INTRODUCTION

One-nucleon spectroscopic overlaps, defined as the expec-
tation value of the nucleon removal operator between states
of nuclei differing by one particle, have been used in the
treatment of processes in which one particle is added to or
removed from the system [1,2]. In particular, these functions
provide the interface between nuclear structure and direct
reaction theories [3–6]. Traditionally, direct reaction theories
of processes such as one-nucleon transfer, capture, knockout,
or electron-induced proton knockout assume that the state
of motion of only one particle is changed as a result of the
projectile-target interaction, while the other particles are left
essentially undisturbed. Under such a drastic approximation,
the structure input needed to analyze experimental reaction
data consists of single-particle-like functions of the involved
nucleon inside the interacting nuclei, the one-nucleon overlaps.

For decades, direct reactions have been the main tool for
extracting spectroscopic factors (SFs) defined as norms of
spectroscopic overlaps. Given the single-particle-like nature of
these overlaps, SFs are often associated with single-particle-
level occupancies and compared mainly with shell-model
values. In practical applications, “experimental” SFs are ex-
tracted from experimental cross sections in a model-dependent
way with structure and reaction uncertainties entangled. This
dependence was illustrated, for example, in Refs. [7,8], where
SFs from transfer and electron-scattering data were shown to
differ unless extracted in a consistent way. Strictly speaking,
however, the overlaps and the SFs are merely theoretical
concepts that cannot be measured. The overlaps should not be
interpreted as the measurable probability amplitudes of finding
a nucleon at some distance from the rest of the nucleus [9].
Nevertheless, until more advanced reaction models become
available, spectroscopic overlaps and factors need to be
calculated theoretically for a chosen Hamiltonian to enable
the analysis of direct reaction data. These concerns are less
severe for the long-range scaling factors of overlaps, the
asymptotic normalization coefficients (ANCs), which enter the
cross section of peripheral direct reactions, as these coefficients
remain invariant under finite-range unitary transformations of
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the Hamiltonian [10]. The spectroscopic overlaps and factors
are still useful to assess the relative importance of clustering
patterns in a given nucleus.

Typically, spectroscopic overlaps are approximated by
shell-model or mean-field single-particle functions, or they
are taken as solutions of single-particle [Woods-Saxon (WS)]
potential wells with some commonly accepted but otherwise
arbitrary potential parameters [2,4,11]. Of a more recent
vintage are some calculations attempting to account for
contributions from missing model space, for example, results
obtained within the correlated basis function theory [12] or
overlaps generated as solutions of an inhomogeneous equation
with a shell-model source term [13]. Realistic calculations of
one-nucleon overlaps based on modern nuclear interactions
are scarce and limited to light nuclei as they are complicated
even in the simplest cases: In the s shell, they were computed
in the hyperspherical harmonics (HH) method [14,15]; some
overlaps and SFs for p-shell nuclei were calculated within the
no-core shell model [16,17] and the coupled-cluster method
[18]. Of particular relevance for the present work are previous
variational Monte Carlo (VMC) overlap calculations for nuclei
up to A = 10 (unpublished, available from Ref. [19]) and a
more recent VMC-based calculation of ANCs in light nuclei
[20]. VMC overlaps have been used in some analyses of
hadronic [21–25] and leptonic [26] experiments.

This work provides a systematic study of one-nucleon spec-
troscopic overlaps, SFs, and ANCs in light nuclei calculated
within the Green’s function Monte Carlo (GFMC) method
based on realistic two- and three-nucleon interactions. The
GFMC method is designed to project the exact solutions out
of trial wave functions by propagating them in imaginary
time. The GFMC propagations are initiated by VMC wave
functions. Over the years, the VMC/GFMC method has been
found to accurately describe the structure and some reaction
aspects of light nuclei [27–33]. Given our experience, GFMC
is expected to improve VMC overlaps, especially in the p shell.
In this paper, we present GFMC overlap results for nuclei up
to A = 7; heavier nuclei up to A � 10 will be the subject of a
forthcoming paper.

This paper is organized as follows. In Sec. II, the theoretical
framework is established, the VMC and GFMC methods are
briefly reviewed, and all overlap-related quantities are defined.
Section III contains technical and computational details and
an error analysis of the GFMC overlap calculations. Results
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are presented and discussed in Sec. IV; final remarks and
conclusions are given in Sec. V.

II. QUANTUM MONTE CARLO

To calculate spectroscopic overlaps, we first construct wave
functions �(Jπ , T , Tz) for nuclei of interest as solutions of the
nonrelativistic many-body Schrödinger equation:

H�(Jπ , T , Tz) = E�(Jπ , T , Tz), (1)

with Jπ , T , and Tz denoting the total spin-parity, isospin,
and isospin projection, respectively. The A-body Hamiltonians
used in this work have the form

H =
A∑
i

Ki +
A∑

i<j

vij +
A∑

i<j<k

Vijk, (2)

where Ki is the nonrelativistic kinetic energy and vij and
Vijk are two-nucleon (2N ) and three-nucleon (3N ) potentials,
respectively. Most of the results presented in this paper have
been obtained for a combination of Argonne v18 (AV18) [34]
2N and Illinois-7 (IL7) [35] 3N realistic interactions. For
benchmarking purposes, some calculations involved AV18
supplemented by the older Urbana IX (UIX) [36] 3N force.
Our wave functions are translationally invariant and hence we
have no spurious center-of-mass effects.

A. Variational Monte Carlo

The wave functions are constructed in two steps. First, a
trial VMC approximation of �, �V , is written and optimized
by minimizing the energy expectation value as computed by
Metropolis Monte Carlo integration [37]. Our latest variational
functions have the form given by Eq. (3.13) of [38].

|�V 〉 = S
A∏

i<j

[
1 + Uij +

A∑
k �=i,j

Ũ 3N
ijk

]
|�J 〉. (3)

The Jastrow wave function, �J , is a fully antisymmetric
state having the desired Jπ , T , Tz quantum numbers of the
state of interest; the Uij and Ũ 3N

ijk are two- and three-nucleon
short-range correlation operators induced by dominant parts of
2N and 3N forces, respectively, while S is a symmetrization
operator that restores the antisymmetry violated by the
noncommuting character of Uij and Ũ 3N

ijk . At long range,
appropriate boundary conditions are imposed on �V [39].

The Jastrow wave function for s-shell nuclei consists of a
simple product of central pair and triplet correlation functions
and an antisymmetrized spin-isospin state. For p-shell nuclei,
we use two types of �J : a shell-model-like trial function,
which we call type I, and a clusterized version denoted
type II. These two kinds of wave functions differ primarily
in their treatment of correlations between p-shell particles and
the long-range asymptotics.

In type I trial functions, the single-particle radial functions
of p-shell particles are exponentially decaying solutions of WS
potential wells centered at the s-shell α core with potential
parameters subject to a variational search. Pair correlations

between s- and p-shell particles and among p-shell particles
themselves are chosen to allow clusterization in the p shell.
Being less restrictive on long-range cluster decomposition
compared with type II functions, type I functions are more
widely applicable. Details of type I functions for nuclei with
A = 6, 7 can be found in Ref. [40].

Type II functions that may be used for nuclei with low-
lying cluster breakup thresholds impose a strict cluster-cluster
asymptotic decomposition. Examples are the ground states
of 6Li and 7Li that may asymptotically decouple into α +
d and α + t , respectively. In type II trial functions, the p-
shell single-particle radial functions are again solutions of p-
wave differential equations with potentials containing WS and
Coulomb terms, but with an added Lagrange multiplier that
turns on at long range. The role of the Lagrange multiplier is
to impose the cluster boundary condition:

�V (r → ∞) ∝ ψαψxW−η,l+1/2(2kr)/r, (4)

where x = d or t for 6Li and 7Li, respectively, and r and l are
the relative α-x distance and orbital angular momentum. The
Sommerfeld parameter η and the wave number k are related to
the α-x separation energy in a given nucleus, which is set to its
experimental value. Here, W is the Whittaker function defined
in Eq. (13.1.33) of [41]. The correlations between p-shell
particles in 6Li and 7Li are adopted from exact deuteron and
variational triton wave functions, respectively. More details on
type II trial functions are given in Refs. [32,42,43].

For either type of trial function, a diagonalization is carried
out to find the optimal values of mixing parameters for states
of different spatial symmetries among p-shell particles [27].

B. Green’s function Monte Carlo

Being variational solutions of Eq. (1), the VMC wave
functions �V can be improved further by action of the operator
limτ→∞ exp[−(H ′ − E0)τ ], which, for a given set of quantum
numbers, projects out the exact lowest-energy state �0 of a
possibly simplified version H ′ of the desired Hamiltonian H .
In practice, the operator is applied in small increments of the
imaginary time τ up to some finite value to yield a propagated
wave function �(τ ):

�(τ ) = e−(H ′−E0)τ�V . (5)

Obviously, �(τ = 0) = �V and �(τ → ∞) = �0. In prac-
tice, Eq. (5) is turned into an integral equation involving
Green’s functions with integrations performed by Monte Carlo
methods; hence, the name GFMC. The energy E0 is an
approximate guess for the true eigenenergy corresponding
to �0.

For a given state of the nucleus, quantities of interest are
evaluated in terms of a “mixed” estimate between �V and
�(τ ):

〈O(τ )〉M = 〈�(τ )|O|�V 〉
〈�(τ )|�V 〉 . (6)

The desired expectation values would have �(τ ) on both sides;
by writing �(τ ) = �V + δ�(τ ) and neglecting terms of order
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[δ�(τ )]2, we obtain the approximate expression

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V ], (7)

where 〈O〉V is the variational expectation value. The expec-
tation value of H ′ is an exception to Eq. (7) because for
this operator the mixed estimate already gives the correct
value [27]. For off-diagonal matrix elements between two
different A-body nuclear states, Eq. (7) can be generalized
to a form involving two mixed estimates [32,33].

We note that the GFMC propagator involves a simplified
Hamiltonian H ′ = AV8′ + H ′

3N based on a reprojection
AV8′ of the full AV18 two-body potential [40]. Therefore,
the GFMC wave functions are really eigenstates of H ′
rather than H , which, in general, should not be a problem
given that H ′ is a good approximation of H . In this work, the
three-nucleon part H ′

3N is either UIX or IL7, with the strength
of their central repulsive parts adjusted so that 〈H ′〉 ≈ 〈H 〉.
Although energies can be corrected perturbatively by adding
〈H − H ′〉 to 〈H ′〉, this kind of correction is not possible for
other observables. In what follows, we refer to the desired
Hamiltonian H remembering that, in fact, we use H ′ in GFMC
propagations.

For a detailed description of the nuclear GFMC method,
see the review [27] and references therein.

C. Spectroscopic overlaps and factors and asymptotic
normalization coefficients

Let us consider a decomposition of an A-body nucleus,
the parent, into the core C and a valence particle v (a
proton or a neutron), namely, A → C + v. The terms “core”
and “valence” are used in a figurative sense considering
that the parent wave functions are explicitly antisymmetrized
states of indistinguishable particles. Then, a one-nucleon
spectroscopic overlap is defined as a projection of a par-
ent state onto an antisymmetrized core-valence product
form,

R(α, γ, ν; r)

= C
TATz,A

TCTz,C ttz
O(α, γ, ν; r)

≡
〈
ACv

[
[�(γ ; ξC) ⊗ Y(ν; r̂Cv, σv, τv)]JA

δ(r − rCv)

r2
Cv

]

×
∣∣∣∣�(α; ξA)

〉
, (8)

where C
TATz,A

TCTz,C ttz
is an isospin Clebsch-Gordan coeffi-

cient; α ≡ {A, Jπ
A , TA, Tz,A}, γ ≡ {C, Jπ

C , TC, Tz,C}, and ν ≡
{v, l, s, j, t, tz} are composite indexes for the parent, the
core, and the valence particle, respectively; ξ comprise all
degrees of freedom in a given nucleus; �rCv is the vector
extending from the core’s center of mass to the valence
particle; and ACv is the core-valence antisymmetrizer: ACv =
(1/

√
A)

∑A−1
1 (−1)pPCv with PCv being the permutation

operators exchanging the valence particle with those inside
the core and p determining the permutation parity ±1. The

symbols A and C = A − 1 also denote the nuclear mass
numbers, and the subscripts A and C may be dropped when
convenient. In Eq. (8), the parent and core states are assumed
to be normalized to unity, and the integral is done over
all 3(A − 1) internal coordinates of the parent nucleus. The
valence angle-spin-isospin function is defined as

Y(ν; r̂Cv, σv, τv) ≡ [Yl(r̂Cv) ⊗ χs(σv)]jχt,tz (τv), (9)

where Yl is a spherical harmonic, χs(σv) and χt,tz (τv) denote the
valence spin and isospin states with s = t = 1/2, respectively,
and tz gives the valence isospin projection ±1/2. Taking into
account the antisymmetry of the parent state, one can turn the
integral in Eq. (8) into a simpler form:

R(α, γ, ν; r) =
√

A

〈
[�(γ ) ⊗ Y(ν)]JA

∣∣∣∣δ(r − rCv)

r2
Cv

∣∣∣∣ �(α)

〉
.

(10)

By definition (8) and by using translationally invariant wave
functions �, the overlap functions R are translationally
invariant. For a given parent-core combination, different
angular momentum channels will be denoted lj .

The theoretical SF is then defined as the norm of the overlap:

S(α, γ, ν) =
∫

|R(α, γ, ν; r)|2r2 dr. (11)

Among other sum rules, all possible (proton, neutron)
SFs for a given state of the parent nucleus add up
to the parent’s number of nucleons (protons, neutrons)
[1]. Our definition of SFs is consistent with those of
some other works, for example, Ref. [13], but differs
from others [4,44] by inclusion of the isospin Clebsch-
Gordan coefficient in Eq. (8) into overlaps and consequently
into SFs [these works define SFs as norms of O(r) in
Eq. (8)].

To calculate the overlap functions R within GFMC, one can,
neglecting terms of order [�(α; τ ) − �V (α)]2 and [�(γ ; τ ) −
�V (γ )]2, derive the following expression similar to Eq. (19)
in Ref. [32]:

R(α, γ, ν; r; τ )

=
√

A

〈
[�(γ ; τ ) ⊗ Y(ν)]JA

∣∣∣ δ(r−rCv )
r2
Cv

∣∣∣�(α; τ )
〉

√
〈|�(γ ; τ )|2〉

√
〈|�(α; τ )|2〉

≈ 〈R(α, γ, ν; r; τ )〉MA
+ 〈R(α, γ, ν; r; τ )〉MC

−〈R(α, γ, ν; r)〉V , (12)

where

〈R(α, γ, ν; r; τ )〉MA

=
√

A

〈
[�V (γ ) ⊗ Y(ν)]JA

∣∣∣ δ(r−rCv )
r2
Cv

∣∣∣ �(α; τ )
〉

〈�V (α)|�(α; τ )〉
√
N ,

(13)

〈R(α, γ, ν; r; τ )〉MC

=
√

A

〈
[�(γ ; τ ) ⊗ Y(ν)]JA

∣∣∣ δ(r−rCv )
r2
Cv

∣∣∣�V (α)
〉

〈�(γ ; τ )|�V (γ )〉

√
1

N ,

(14)
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〈R(α, γ, ν; r)〉V

=
√

A

〈
[�V (γ ) ⊗ Y(ν)]JA

∣∣∣ δ(r−rCv )
r2
Cv

∣∣∣�V (α)
〉

〈�V (α)|�V (α)〉
√
N ,

(15)

with a self-normalization factor:

N = 〈�V (α)|�V (α)〉
〈�V (γ )|�V (γ )〉 . (16)

The overlap function 〈R〉V in Eq. (15) is a pure variational
estimate, to be called a VMC overlap, whereas the other two
estimates, 〈R〉MA

in Eq. (13) and 〈R〉MC
in Eq. (14), involve

combinations of GFMC-propagated and VMC wave functions,
and as such will be called A- and (A-1)-body mixed overlaps
and referred to by the corresponding GFMC-propagated
nucleus. For each estimate [Eqs. (13)–(15)] one can define
a SF similar to Eq. (11). The GFMC-extrapolated overlap R

in Eq. (12) is called a GFMC overlap. Obviously, at τ = 0,
R = 〈R〉V = 〈R〉MA

= 〈R〉MC
.

Overlap functions R satisfy a one-body Schrödinger equa-
tion with the appropriate source terms [2]. Asymptotically,
for r → ∞, these source terms contain core-valence Coulomb
interaction at most, and, hence, the long-range part of overlap
functions for parent states below core-valence separation
thresholds is proportional to a Whittaker function W−η,l+1/2:

R(α, γ, ν; r)
r→∞−→C(α, γ, ν)

W−η,l+1/2(2kr)

r
, (17)

where η = ZCZv(e2/h̄c)
√

μc2/2B depends on proton num-
bers ZC and Zv and the core-valence reduced mass μ and
separation energy B (positive for parent states below core-
valence separation thresholds). The wave number k is defined
as

√
2μB/h̄, and l is the orbital angular momentum from

Eq. (9). Note that W , μ, B, and k implicitly carry channel labels
α, γ , and ν. The Whittaker function is defined in Eq. (13.1.33)
of Ref. [41], and it has an (approximately) exponentially
decaying tail. The proportionality constant C(α, γ, ν) in
Eq. (17) is the ANC.

To provide a convenient parametrization of overlaps suit-
able for reaction calculations and to extract ANCs, we perform
χ2 fits of the overlaps by the eigenstates of a single-particle-
like Hamiltonian −[h̄2/2μ]� + V (r) containing a WS plus
spin-orbit (so) plus Coulomb (Coul) potential,

V (r) = VWS

{
1

1 + exp[(r − RWS)/aWS]
− β exp[−(r/ρ)2]

}

+ (4�l · �s)
Vso

r

d

dr

{
1

1 + exp[(r − Rso)/aso]

}
+ VCoul,

(18)

with

VCoul =
{

ZCZve
2/r : r � RCoul,

ZCZve
2[3 − (r/RCoul)2]/[2RCoul] : r < RCoul.

(19)

The central WS part of the potential includes a Gaussian “wine-
bottle” term to provide an additional flexibility at short range.
The depths VWS and Vso are in the same units, the factor 4

in the spin-orbit part is approximately twice the square of
the pion Compton wavelength h̄/(mπc) in fm, and �l and �s
are operators of the core-valence orbital angular momentum
and of the valence spin, respectively, both in units of h̄. The
Coulomb radius is RCoul = 2 fm. The potential parameters are
varied freely to provide the best fit under the constraint of the
eigenenergy being equal to the desired value −B. This fitting
procedure provides good overlap fits at short and medium
distances; at large distances, the fits have the desired form
shown in Eq. (17). These overlap parametrizations can be used
in reaction codes such as PTOLEMY [45] or FRESCO [46], and
they will be referred to as WS fits throughout the paper.

III. INNER WORKINGS OF OVERLAP CALCULATIONS
AND ERROR ANALYSIS

In this section, we elaborate on some technical aspects of
the overlap calculations, show several detailed examples, and
assess systematic errors of quantities being computed. The
discussion of results is given in Sec. IV.

The VMC overlap 〈R〉V in Eq. (15) is calculated on a
random walk guided by the parent’s |�V (α)|2. On the same
walk, we also evaluate the self-normalization factor from
Eq. (16); to extend the denominator of N into the space
being sampled: (1) �V (γ ) is replaced by �V (γ ) × p(�rCv),
where p(�rCv) acts as a single-particle function of a virtual
valence particle taken with respect to the core’s center of mass,
and (2) the integral is extended to include �rCv . By requiring∫

p2(�rCv) d�rCv=1, the original value of the denominator of N
is preserved. In principle, any function can be used for p as
long as the product form |�V (γ ) × p|2 is a reasonably good
approximation of the sampling probability density to yield
reasonably small statistical errors on the denominator of N .
In practice, we find it sufficient to use purely radial (s-wave)
functions p(rCv) of either a Gaussian shape or one generated by
a single-particle-like Hamiltonian containing a WS potential
well with parameters adjusted to minimize the error on
N . The WS-generated single-particle functions provide the
advantage of |�V (γ ) × p|2 being a better approximation of
the sampling density at large core-valence distances, especially
when the potential depth is set to approximately reproduce the
(experimental or VMC) core-valence separation energy. In the
present work, the self-normalization factorsN were calculated
(after accounting for autocorrelations between local samples)
with an accuracy of the order of 0.1% or better.

The two mixed overlaps in Eqs. (13) and (14) are calculated
on random walks guided by GFMC propagations for the
corresponding nucleus. For the (A-1)-body mixed overlap,
the GFMC sampling density only spans the core’s subspace of
the full space of the parent nucleus; we draw the position of the
valence nucleon from the same single-particle density p2(�rCv)
used in the computation of the variational self-normalization
factor N .

Generating new VMC or GFMC samples is computation-
ally more expensive than evaluating a sample’s contribution
to Eqs. (13)–(15). Therefore, to improve the computational
efficiency, each VMC or GFMC sample is used several times:
In Eqs. (13) and (15), we consider all A cyclic particle
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τ [MeV
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3
H

mixed 
4
He
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FIG. 1. (Color online) Imaginary time evolution of SFs in the
s1/2 channel of the 〈3H | 4He〉 overlap obtained for the AV18 + IL7
potential. Only statistical errors are shown. Horizontal lines are SFs
for VMC and time-averaged mixed and GFMC overlaps, as described
in the text.

permutations to rotate the valence particle over all possible
positions within the parent nucleus, while in Eq. (14) the
position of the valence particle is drawn several (A) times
from its single-particle distribution p2 described above for
each core’s GFMC sample.

We illustrate the method with the 〈3H | 4He〉 overlap for
AV18 + IL7 taken as a typical example of overlaps in the s

shell. First, the VMC overlap is computed by Eq. (15). Then,
the wave functions of the parent and the core are independently
propagated and the two mixed and the GFMC overlaps are
computed in each radial bin following Eqs. (13), (14), and
(12). The corresponding SFs are plotted in Fig. 1. In all figures,
the quantities corresponding to the variational, the (A-1)- and
the A-body mixed, and to the GFMC overlaps are plotted as
black, red, blue, and green, respectively.

For s-shell nuclei, we do unconstrained propagations
[40] and thus obtain essentially exact solutions for a given

Hamiltonian H ′ in Eq. (5). Because of the fermion sign
problem, the statistical noise grows with time, as can be
inferred from Fig. 1. Fortunately, GFMC quickly eliminates
excited-state impurities from VMC wave functions resulting in
a rapid convergence of mixed and GFMC overlaps and SFs. For
s-shell nuclei, GFMC propagations are fully converged long
before τ = 0.5 MeV−1, at which point they are terminated to
avoid the increasing statistical noise.

To improve the statistical accuracy further, the (A-1)- and
A-body mixed overlaps are separately averaged over time.
These mixed time averages are then combined with the VMC
overlap to obtain the final time-averaged GFMC overlap from
Eq. (12). In Fig. 1 and similar figures, the variational estimate,
although computed at τ = 0 MeV−1, is plotted across the full
range of times, while the other solid lines give SFs for time-
averaged mixed and GFMC overlaps with averaging done over
the range of times indicated by the horizontal extent of these
lines; the dashed lines show statistical errors. We have checked
that our time-averaged results have little dependence on the
exact time interval being averaged over as long as this interval
is safely within the GFMC converged region and does not
include large τ ’s for unconstrained propagations.

In Fig. 2, the VMC and time-averaged mixed and GFMC
〈3H | 4He〉 overlaps are shown along with the asymptotic
Whittaker function corresponding to the experimental sep-
aration energy (discussed below), a WS fit to the GFMC
overlap, and the radial sampling probability. In general, the
differences between s-shell VMC and time-averaged mixed
and GFMC overlaps in a given overlap channel are very small
because the starting VMC wave functions are already very
good approximate solutions of Eq. (1); these small differences
are reflected by small (∼2%) differences between VMC and
GFMC SFs, as illustrated in Fig. 1. Statistical errors on SFs
are small because the dominant contribution to Eq. (11) comes
from the volume region well covered by the Monte Carlo
sampling probability, also shown in Fig. 2.

Overlaps between p-shell nuclei are computed by using the
same algorithm with some technical modifications. Compared

0 1 2 3 4 5
r [fm]

-1

-0.8

-0.6

-0.4

-0.2

0

R
 [

fm
-3

/2
]

VMC
mixed 

3
H

mixed 
4
He

GFMC
fit
sampling prob.

(a)

0 2 4 6 8
r [fm]

10
-4

10
-3

10
-2

10
-1

10
0

|R
| [

fm
-3

/2
]

VMC
mixed 

3
H

mixed 
4
He

GFMC
fit
W/r

(b)

FIG. 2. (Color online) Linear (a) and logarithmic (b) plots of VMC and time-averaged mixed and GFMC s1/2〈3H | 4He〉 overlaps obtained
for the AV18 + IL7 potential. Only statistical errors are shown. Also shown in (b) are a WS fit to the GFMC overlap and the asymptotic
Whittaker function corresponding to the experimental separation energy. Superimposed in the linear plot is the sampling probability (arbitrary
scale).
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FIG. 3. (Color online) Imaginary time evolution of SFs in the p3/2

channel of the 〈6He(0+) | 7Li(3/2−)〉 overlap obtained for the AV18 +
IL7 potential. The GFMC wave functions originated from type I VMC
wave functions. Only statistical errors are shown. Horizontal lines
are SFs for VMC and time-averaged mixed and GFMC overlaps, as
described in the text.

with s-shell nuclei, the fermion sign problem becomes more
severe in the p-shell, and we retreat to constrained path GFMC
sampling [38]. Consequently, statistical errors are well under
control, as illustrated in Fig. 3 for SFs in the p3/2 channel
of the 〈6He(0+) | 7Li(3/2−)〉 overlap. Given our experience
indicating that mixed estimates of many observables tend
to fluctuate more in the p shell than in the s shell, we
chose to carry out propagations for longer times up to τ =
3 MeV−1 to ensure full convergence in the p shell. VMC
and time-averaged mixed and GFMC overlaps corresponding
to Fig. 3 are shown in Fig. 4. The difference of about 8%
between the VMC and GFMC SFs reflects the change in the
shape of the underlying overlaps.

At short range, the GFMC overlap is a result of fine
cancellations between VMC and mixed overlaps in Eq. (12).
At large core-valence distances, the GFMC overlaps tend
to follow the A-body mixed overlaps, while the (A-1)-body

mixed overlaps usually stay close to the VMC ones, in
agreement with our expectation that it is the long-range falloff
of the parent’s wave function that primarily sets the tail of the
overlap, whereas the detailed structure of the core plays a less
important role in this region although the core still needs to be
described reasonably well. From this point on, mixed overlaps
and estimates are not shown, and the time-averaged GFMC
overlap is called a GFMC overlap.

Because of the vanishing sampling probabilities at large
distances (an example is shown in Fig. 2), reliable sampling
of overlap tails requires very large Monte Carlo sets; we
propagated about 12 × 106 samples in the s shell and about
250 000 for p-shell nuclei. As a consequence, statistical errors
are small. It is therefore important to assess systematic errors
in addition to statistical errors. The most notable sources of
systematic errors are the difference between the Hamiltonian
H ′ in the GFMC propagator in Eq. (5) and the desired H in
Eq. (1), possible errors owing to the constrained path sampling
in the p shell, and a residual dependence of GFMC results on
starting VMC wave functions. In addition, ANCs depend on
the separation energy used in their determination. We now
attempt to place limits on such systematic errors.

For s-shell nuclei, we can compare our results with those
obtained by the HH method [14,15,47,48]. For AV18 + UIX,
the agreement between HH and GFMC is very good, as can
be seen from Fig. 6 for overlaps and from Table IV for SFs in
Sec. IV. Testing the bias owing to H ′ for p-shell overlaps is
not possible because, to our knowledge, no p-shell overlaps
have been published previously for the realistic interactions
employed here. To test the dependence of GFMC SFs on
VMC wave functions, we include in Table V results involving
the ground state of 7Li obtained for several combinations of
types I and II (see Sec. II A) trial wave functions. Although
VMC SFs for different �V may differ by as much as 20%,
GFMC reduces the spread to no more than 3%. Hence, we
estimate systematic errors on GFMC SFs to be no more than
2–3%.

Typically, extracting ANCs directly from overlaps in
Eq. (10) is problematic for most many-body methods. First,
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FIG. 4. (Color online) Linear (a) and logarithmic (b) plots of VMC and time-averaged mixed and GFMC p3/2〈6He(0+) | 7Li(3/2−)〉 overlaps
obtained for the AV18 + IL7 potential. The GFMC wave functions originated from type I VMC wave functions. Only statistical errors are
shown. Also shown are a WS fit to the GFMC overlap and the asymptotic Whittaker function corresponding to the experimental separation
energy in the logarithmic plot.
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FIG. 5. (Color online) The ratio C(r) of VMC, GFMC, and fitted GFMC overlaps to asymptotic Whittaker functions. The WS fits and
the Whittaker functions assume experimental core-valence separation energies. (a) 〈3H | 4He〉 overlaps from Fig. 2; (b) 〈6He(0+) | 7Li(3/2−)〉
overlaps from Fig. 4.

these methods may not yield the correct exponential asymp-
totic form given in Eq. (17), as is the case of methods
employing harmonic oscillator bases [16,17]. In variational
methods, including VMC, it may be hard to impose the correct
asymptotics while preserving short-range properties. This
problem is less prevalent in integral methods of computing
ANCs in which the desired asymptotics is imposed by
definition regardless of the actual asymptotic shape of the
wave functions involved [13,20]. Second, ANCs extracted
from Eq. (17) depend on the separation energy B. To determine
ANCs from overlaps in a fully consistent manner, one should
use the separation energy BH obtained for a given Hamiltonian;
however, for ANCs to be practically usable for reaction
calculations, experimental values Bexp should be used. Ideally,
BH ≈ Bexp, a condition that is often violated in literature and
therefore relaxed without error analysis for ANCs [13,17,20].
We now discuss these aspects applied to GFMC.

It is gratifying to observe that the GFMC overlaps in Fig. 2
and Fig. 4 transition nicely from the interior into the asymptotic
region and that in the computationally safe region (r � 8 fm)
they follow closely the right asymptotic trend represented by
the Whittaker functions. To illustrate this in more detail for
overlaps from Figs. 2 and 4, we show in Fig. 5 the ratios

C(r) ≡ R(r)/[W−η,l+1/2(2kr)/r]. (20)

Ideally, C(r → ∞) should approach C from Eq. (17), the
ANC. As can be seen in the figure, the GFMC curves may not
flatten out perfectly at larger distances where the method being
driven by H ′ in Eq. (5) may break down because of insufficient
contributions of the asymptotic part of the configuration space
to the energy. To correct this imperfection, the GFMC overlaps
are extended to larger distances by means of WS fits [Eq. (18)].
ANCs are then determined by applying Eq. (20) to GFMC
overlap fits at large distances.

In GFMC, the binding energy is thought to be computed
with systematic errors of about 1–2% [27,38,40]. Most GFMC
overlaps in this work were obtained for the AV18 + IL7
potentials. For this potential, GFMC energies in Table I
differ by less than 1% from experimental values, in most

cases the difference is less than 0.5%. These deviations,
though being small fractions of total binding energies, may
translate into bigger (fractional) deviations on core-valence
separation energies, as can be seen from Tables II and III.
Even then, however, the difference between experimental
and GFMC separation energies is �3%, with a noticeable
exception being the 〈6He(0+) | 7He(3/2−)〉 overlap involving
a particle-unbound 7He. For the latter overlap, the analog of the
ANC is related to the decay width; in this work, we extract the
ANCs only for particle-bound states of parent nuclei. Because
GFMC wave functions are really eigenstates of H ′ rather than
H , it is equally important to observe in Tables II and III that
separation energies for these Hamiltonians are about the same
(H ′ was adjusted to get 〈H ′〉 ≈ 〈H 〉, as mentioned in Sec. II B).
To estimate the sensitivity of ANCs on separation energies, we
refitted the GFMC overlaps from Figs. 2 and 4 with solutions
of Eq. (18) imposing separation energies corresponding to
±3% deviations from Bexp. Using Bexp from Tables II and III,
we obtain the following ANCs for B = 0.97Bexp, B = Bexp,
and B = 1.03Bexp: −6.13, −6.45, and −6.78, respectively, for
the 〈3H | 4He〉 overlap and 3.33, 3.52, and 3.71, respectively,
for the 〈6He | 7Li〉 overlap. Thus, any uncertainty of about
3% or less on the separation energy translates into an ANC
uncertainty of about 5–6% or less. Furthermore, the s-shell
GFMC ANCs in Table VI agree well with those obtained
within the HH method except for the weak d waves in A = 3
nuclei for which the two methods differ for unknown reasons
(the HH ANCs assume the actual separation energies for a
given Hamiltonian that are within a fraction of a percent of the
experimental values). To test the dependence of GFMC ANCs
in the p shell on starting VMC wave functions, we include in
Table VII results involving the ground state of 7Li obtained for
several combinations of type I/II (see Sec. II A) trial wave
functions; depending on the starting VMC wave function,
GFMC ANCs differ by at most 7% in a given overlap channel.

Based on these arguments, we chose to fit GFMC overlaps
and to determine the GFMC ANCs assuming experimental
separation energies. We estimate the systematic errors on our
ANCs to be �5%.
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TABLE I. GFMC binding energies E for A � 7 nuclei for several
2N + 3N potentials H . Only statistical errors are shown on GFMC
values. For p-shell nuclei, the VMC wave-function type is indicated.
The energy shown for 2H was obtained in a stochastic sampling of an
explicit solution of Eq. (1). Experimental values are also shown.

AZ(J π , T ) Type H E (MeV)

GFMC Exp.

2H(1+, 0) AV18 −2.2247(3) −2.2246
3H( 1

2

+
, 1

2 ) AV18 + IL7 −8.47(0) −8.48
AV18 + UIX −8.47(0) −8.48

3He( 1
2

+
, 1

2 ) AV18 + IL7 −7.72(0) −7.72
AV18 + UIX −7.72(0) −7.72

4He(0+, 0) AV18 + IL7 −28.43(0) −28.30
AV18 + UIX −28.34(1) −28.30

6He(0+, 1) I AV18 + IL7 −29.20(3) −29.27
6Li(1+, 0) I AV18 + IL7 −31.93(3) −31.99

II AV18 + IL7 −31.88(3) −31.99
6Li(3+, 0) I AV18 + IL7 −29.59(3) −29.80
6Li(0+, 1) I AV18 + IL7 −28.43(3) −28.43
7He( 3

2

−
, 3

2 ) I AV18 + IL7 −28.66(3) −28.83
7Li( 3

2

−
, 1

2 ) I AV18 + IL7 −39.08(3) −39.24
II AV18 + IL7 −39.00(3) −39.24

7Li( 1
2

−
, 1

2 ) I AV18 + IL7 −38.88(3) −38.76
7Be( 3

2

−
, 1

2 ) I AV18 + IL7 −37.61(4) −37.60

For s-shell overlaps, C(r) in Eq. (20) flatten out at r ∼
2.5–3 fm, where C(r)/C ∼ 0.9, and they are almost fully
converged at r ∼ 5 fm; for p-shell overlaps, C(r)/C ∼ 0.9
is realized at r ∼ 5 fm. Therefore, the overlaps are (almost)
asymptotic at about 5 fm, which is the upper radial limit used
in our fitting procedure. We have checked that including the
region beyond 5 fm in the fitting procedure does not result in
significant changes of ANCs.

IV. RESULTS

In this section we present GFMC spectroscopic overlaps,
SFs, and ANCs and compare them with those obtained by
some other methods and with experimentally deduced values.
A convenient parametrization of the overlaps is also provided.

Table I shows computed and experimental binding energies
for A � 7 nuclear states relevant for this work. The errors
shown in parentheses are only the Monte Carlo statistical
errors; in addition, there may be systematic errors from the
GFMC algorithm of the order of 1–2% [27,38,40]. Compared
with previous GFMC works, the statistical accuracy on binding
energies is much better thanks to the high sample counts
needed for a statistically reliable sampling of overlap tails, as
mentioned in Sec. III. Most GFMC results were obtained for
the AV18 + IL7 potential. For this potential, GFMC energies
in Table I differ by less than 1% from experimental values;
in most cases the difference is less than 0.5%. For the ground
states of 6Li and 7Li, both type I and type II VMC wave
functions defined in Sec. II A were used. For comparison of
GFMC overlaps with those obtained by other methods, we
also constructed wave functions of s-shell nuclei bound by
AV18 + UIX whose energies are also shown in Table I.

Besides getting the absolute binding energies right, it is
important for consistent overlap calculations to work with
nuclear states having the correct one-nucleon separation
energies. In Tables II and III, we show GFMC one-nucleon
separation energies computed for the desired Hamiltonian
H from Eq. (1) and for the simplified H ′ from Eq. (5)
along with experimental values. Given the agreement between
GFMC and the experiment, and the related discussion in
Sec. III, we assume the experimental separation energies when
determining ANCs from GFMC overlaps and account for
possible systematic errors inflicted by this choice.

Tables IV and V summarize, respectively, SFs for s- and
p-shell nuclei with A � 7. In these tables, the errors on VMC
and GFMC SFs are only statistical; possible systematic errors
on GFMC values were estimated in Sec. III to be 2–3% or less.

In the s shell, where VMC wave functions are already very
good approximations of true eigenstates [27], the s1/2 SFs in
Table IV change by less than 2% between VMC and GFMC.
VMC, however, seems to underestimate the small amount
of d waves in A = 3 nuclei by about 15%. Not surprising,
s-shell results for AV18 + UIX and AV18 + IL7 are similar
because both 3N forces, IL7 and especially UIX, were tuned
to reproduce the binding of s-shell nuclei. The experimental
information on SFs in the s shell is scarce; for the 〈3H | 4He〉
overlap, the GFMC value of 1.61 is in good agreement

TABLE II. GFMC core-valence separation energies in the s shell for several 2N + 3N potentials H and for the corresponding H ′ from
Eq. (5). The combined statistical errors on the core and the parent energies from Table I are all �0.01 MeV. Experimental values are also
shown.

Parent Core H B (MeV)
AZ(J π , T ) A−1Z(J π , T ) GFMC, H GFMC, H ′ Exp.

3H( 1
2

+
, 1

2 ) 2H(1+, 0) AV18 + IL7 6.24 6.24 6.26
AV18 + UIX 6.24 6.24 6.26

3He( 1
2

+
, 1

2 ) 2H(1+, 0) AV18 + IL7 5.49 5.49 5.49
AV18 + UIX 5.50 5.50 5.49

4He(0+, 0) 3H( 1
2

+
, 1

2 ) AV18 + IL7 19.96 19.94 19.81
AV18 + UIX 19.89 19.88 19.81

3He( 1
2

+
, 1

2 ) AV18 + IL7 20.71 20.69 20.58
AV18 + UIX 20.63 20.62 20.58
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TABLE III. Same as Table II for A � 7 p-shell nuclei bound by AV18 + IL7. (Negative) Positive values mean that the A-body nucleus is
particle (un)bound relative to the core. The VMC wave function type is indicated.

Parent Core B (MeV)
AZ(J π , T ) Type A−1Z(J π , T ) Type GFMC, H GFMC, H ′ exp.

7He( 3
2

−
, 3

2 ) I 6He(0+, 1) I −0.54(4) −0.47(1) −0.45
7Li( 3

2

−
, 1

2 ) I 6He(0+, 1) I 9.88(4) 9.82(1) 9.98
II 9.81(4) 9.74(1) 9.98
I 6Li(1+, 0) I 7.15(4) 7.16(1) 7.25
II II 7.12(4) 7.06(1) 7.25
I 6Li(3+, 0) I 9.49(4) 9.45(1) 9.44
II 9.42(4) 9.37(1) 9.44
I 6Li(0+, 1) I 10.65(4) 10.60(1) 10.81
II 10.57(4) 10.52(1) 10.81

7Li( 1
2

−
, 1

2 ) I 6Li(1+, 0) I 6.95(4) 7.00(1) 6.77
7Be( 3

2

−
, 1

2 ) I 6Li(1+, 0) I 5.69(4) 5.68(2) 5.61
6Li(3+, 0) I 8.03(5) 7.98(2) 7.79
6Li(0+, 1) I 9.18(4) 9.13(2) 9.17

with an experimental value ∼1.4–1.6 deduced from electron
scattering [7].

The A = 3 nuclei contain 1.5 S, T = 1, 0 nucleon pairs
[49,50]. The sums of s- and d-wave SFs for overlaps of 3H and
3He with a deuteron are about 1.32 and 1.33, respectively. If
these values are interpreted as numbers of deuterons [51], it ap-
pears that about 90% of T = 0 pairs in A = 3 nuclei are in the
deuteron state. We conjecture that the slightly bigger 〈2H | 3He〉
SF compared with that between 2H and 3H is attributable to the
fact that it is easier to compact a spatially extended deuteron
into 3He, which is somewhat bigger than the triton.

Using a similar probabilistic interpretation for 4He, where
all one-nucleon (neutron or proton) SFs add up to 2 [1] and
those for overlaps with A = 3 nuclei in Table IV are about 1.6,
we find that about 80% of all nucleon triples in 4He are in the
triton or 3He state. Because both A = 3 nuclei are spatially
more extended than 4He and the triton is somewhat smaller

than 3He, we conjecture that it is more likely to find a triton
than 3He inside 4He, which is reflected by a slight difference
in the corresponding SFs in Table IV. In the s shell, these
conjectures are plausible because the s-wave SFs in Table IV
account for such a big fraction of the total spectroscopic
strength.

In Table IV, the AV18 + UIX values labeled HH are
those of the HH method [47]; in particular, the overlaps for
A = 3 parent nuclei are from [14] and those for 4He are
improved and updated versions of previously published results
[15,48]. The HH results were converted to our conventions
for overlaps. The agreement between GFMC and HH is
very good, as can be seen from SFs in Table IV and from
Fig. 6, where the actual 〈2H | 3H〉 and 〈3H | 4He〉 overlaps
are shown. Small discrepancies exist between GFMC and
HH overlaps at short distances, and the d-wave ANCs in
A = 3 nuclei differ; the sources of these discrepancies remain

TABLE IV. SFs for overlaps between s-shell nuclei for a given 2N + 3N Hamiltonian H and angular momentum channel lj . The statistical
errors on VMC and GFMC values are less than 1 in the last digit shown; systematic uncertainties in GFMC values are 2–3% or less, as discussed
in Sec. III. Also shown are the results of the HH method and experimentally deduced values.

Parent Core lj H S

AZ(J π , T ) A−1Z(J π , T ) HH VMC GFMC Exp.

3H( 1
2

+
, 1

2 ) 2H(1+, 0) s1/2 AV18 + IL7 1.32 1.30
AV18 + UIX 1.30 1.32 1.30

d3/2 AV18 + IL7 0.0194 0.0224
AV18 + UIX 0.0225 0.0195 0.0223

3He( 1
2

+
, 1

2 ) 2H(1+, 0) s1/2 AV18 + IL7 1.32 1.31
AV18 + UIX 1.31 1.32 1.31

d3/2 AV18 + IL7 0.0190 0.0221
AV18 + UIX 0.0222 0.0191 0.0221

4He(0+,0) 3H( 1
2

+
, 1

2 ) s1/2 AV18 + IL7 1.64 1.61 ∼1.4–1.6 [7]
AV18 + UIX 1.60 1.63 1.61

3He( 1
2

+
, 1

2 ) s1/2 AV18 + IL7 1.62 1.60
AV18 + UIX 1.58 1.62 1.60
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FIG. 6. (Color online) Comparison of the s1/2 and the d3/2〈2H | 3H〉 (a), and the s1/2 〈3H | 4He〉 (b) overlaps obtained for the AV18 + UIX
potential within VMC, GFMC, and HH. Only statistical errors are shown on Monte Carlo overlaps.

unknown. An equally good agreement is obtained for overlaps
involving 3He.

As examples of our s-shell overlaps obtained for the
AV18 + IL7 potential, we show in Fig. 7 the 〈2H | 3H〉 and
〈3H | 4He〉 overlaps. Also shown in these figures are WS fits of
GFMC overlaps. Although the absolute overlap signs are rather
arbitrary because they depend on the detailed construction of
our wave functions, the order of vector couplings in Eqs. (8)
and (9), and the isospin Clebsch-Gordan coefficient in Eq. (8),
relative signs of different overlaps for a given parent-core
combination may be important for interference effects. In our
sign convention, the s- and d-wave overlaps in A = 3 nuclei
have opposite signs consistent with experimentally deduced
negative ratios of their ANCs shown in Table VI. Note the
slight dips in s-wave overlaps near the origin that are consistent
with a depletion of one-body densities of s-shell nuclei at short
range [27] owing to a repulsive potential core.

VMC and GFMC SFs between A = 6 and A = 7 p-shell
nuclei bound by AV18 + IL7 are listed in Table V along with
shell-model predictions and experimentally deduced values.
The Cohen and Kurath [44] shell-model (SM) values in Table V
were corrected for center-of-mass motion effects by a factor

A/(A − 1) [5,52] to make them comparable with our results,
which, as mentioned in Sec. II C, are free of such spurious
contaminations. In addition, a square of the isospin coupling
coefficient from Eq. (8) was factored into SM values in
Table V. Because it is not clear whether experimental SFs,
often compared by their authors with original shell-model
values of Ref. [44], were corrected backward for center-of-
mass effects or not, we quote them as they appear in the
literature.

In the p shell, the structure improvement provided by
GFMC over VMC is known to be more significant compared
with the s shell [27]. This is reflected by SFs in Table V that
change by as much as 15% between VMC and GFMC. The
results involving the ground states of 6Li and 7Li for which both
type I and type II VMC wave functions were used demonstrate
that, by closing the gap between VMC SFs as big as ∼20%
down to less than 3%, the GFMC method is rather insensitive
to starting trial functions.

In Table V, the experimental SFs from Ref. [26] are based
on electron scattering data; the other experimental values were
deduced from hadronic reactions. The experimental SFs from
Ref. [23] listed in the table are only relative; the authors of
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FIG. 7. (Color online) VMC and GFMC s1/2 and d3/2〈2H | 3H〉 (a) and s1/2〈3H | 4He〉 (b) overlaps obtained for the AV18 + IL7 potential.
Only statistical errors are shown. Also shown are WS fits of GFMC overlaps.
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TABLE V. SFs for overlaps between A = 6 and A = 7 p-shell nuclei for the AV18 + IL7 potential in angular momentum channels lj .
The VMC and GFMC statistical errors are insignificant compared with the estimated systematic uncertainties of 2–3% or less for GFMC, as
discussed in Sec. III. SM denotes corrected shell-model values (see text). Experimentally deduced values are also shown.

Parent Core lj S

AZ(J π , T ) Type A−1Z(J π , T ) Type SM VMC GFMC Exp.

7He( 3
2

−
, 3

2 ) I 6He(0+, 1) I p3/2 0.690 0.532 0.565 0.37(7) [21]
7Li( 3

2

−
, 1

2 ) I 6He(0+, 1) I p3/2 0.691 0.442 0.406 0.44(6)a [23], 0.42(4) [26]
II 0.365 0.409
I 6He(2+, 1) I p1/2 0.253 0.128

p3/2 0.212 0.146
Sum 0.466 0.274 0.16(2) [26]

I 6Li(1+, 0) I p1/2 0.338 0.229 0.230
p3/2 0.503 0.480 0.438
Sum 0.841 0.709 0.668 0.74(11)a [23], 0.73(5) [53]

II II p1/2 0.338 0.211 0.229
p3/2 0.503 0.401 0.428
Sum 0.841 0.612 0.657 0.74(11)a [23], 0.73(5) [53]

I 6Li(3+, 0) I p3/2 0.646 0.500 0.435 0.72(14) [54], 0.58(13) [55]
II 0.436 0.447
I 6Li(0+, 1) I p3/2 0.345 0.221 0.203 0.19(3)a [23]
II 0.183 0.204

7Li( 1
2

−
, 1

2 ) I 6Li(1+, 0) I p1/2 0.045 0.069 0.060
p3/2 0.997 0.854 0.759
Sum 1.042 0.923 0.819 1.15 [56], 0.90(9) [53]

7Be( 3
2

−
, 1

2 ) I 6Li(1+, 0) I p1/2 0.338 0.229 0.225
p3/2 0.503 0.480 0.438
Sum 0.841 0.709 0.663

6Li(3+, 0) I p3/2 0.646 0.500 0.457
6Li(0+, 1) I p3/2 0.345 0.221 0.210

aValues obtained from (σexp/σDWBA) × 0.32; see text.

that work concluded that their data analysis cannot be trusted
to provide an absolute determination of cross sections, and
only relative SFs for several reactions were provided upon
a renormalization by a somewhat arbitrary factor of 0.32,
making them comparable to theoretical VMC values available
at the time. In Ref. [26], SFs deduced from electron-induced
proton knockout on 7Li leading to the two lowest states of 6He
were found in perfect agreement with VMC values available
at the time; in Table V, the GFMC SFs involving 6He(0+)
still agree perfectly with experiment, but the agreement for
the reaction leading to 6He(2+) has been spoiled by an error
in the VMC code discovered after the original work [26] had
been published. The 〈6He(2+) | 7Li(3/2−)〉 overlap involves
an unbound state of 6He for which GFMC does not find a
stable energy; instead, the method produces the core nucleus
with an ever-increasing radius by breaking it gradually into
4He and two neutrons. Consequently, the GFMC SFs for this
overlap steadily decrease and as such are absent in Table V.
Given the experimental and systematic GFMC uncertainties
and bearing in mind all the issues related to the meaning of
spectroscopic overlaps and factors mentioned in Sec. I, we
conclude that the GFMC results in Table V seem to support
newer determinations of (relative) SFs.

We do not find a significant difference between SFs of
mirror nuclei 7Li and 7Be; also, SFs between the ground state

of 7Li and the Jπ , T = 0+, 1 isobaric analogs of 6He and 6Li
differ just by a factor of 2 owing to the difference in isospin
coupling coefficients in Eq. (8). Our SFs for overlaps between
A = 6 and A = 7 nuclei suggest a substantial quenching of
shell-model values by as much as 40% (except for the weak
p1/2 channel of the 〈6Li(1+) | 7Li(1/2−)〉 overlap).

As examples of p-shell overlaps, Fig. 8 shows the p1/2 and
p3/2 〈6Li(1+) | 7Li(3/2−)〉 overlaps obtained for the AV18 +
IL7 interaction with GFMC wave functions originating from
type I VMC functions (see Fig. 4 for another example). Also
shown in the figure are WS fits of GFMC overlaps. The
figure illustrates that the overlaps may change from VMC to
GFMC even when their SFs remain the same (p1/2 channel);
however, sometimes the change in SFs is more attributable
to a renormalization than a shape change (p3/2 channel). To
better appreciate where the changes in SFs come from, we
superimpose in Fig. 8 the “density” functions (R × r)2 whose
integral in Eq. (11) gives the SFs.

The 〈6He | 7He〉 overlap in Table V is particularly chal-
lenging for both theory and experiment because it involves
a parent nucleus that is particle unbound by about 450 keV
relative to the core. In our calculations, 7He is treated as a
bound state and the GFMC propagation yields a stable energy
and separation energy shown in Tables I and III. Despite
the bound-state approximation to 7He, GFMC substantially
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FIG. 8. (Color online) VMC and GFMC p1/2 (a) and p3/2 (b) 〈6Li(1+) | 7Li(3/2−)〉 overlaps obtained for the AV18 + IL7 potential. Only
statistical errors are shown. Also shown are WS fits of GFMC overlaps. Superimposed as dashed lines are the “density” functions (R × r)2.

improves the overlap tail compared with VMC, as can be seen
in Fig. 9, where the desired asymptotic form is represented by
the scattering Coulomb function plotted at 90◦ phase shift.

ANCs, extracted from GFMC overlaps by a fitting proce-
dure outlined in Sec. III, are listed in Tables VI and VII for s-
and p-shell nuclei along with experimentally derived numbers
and those of some other realistic methods. Systematic errors
on our ANCs were estimated in Sec. III to be �5%. As was
mentioned earlier in this section, the absolute signs of GFMC
overlaps and ANCs are not meaningful, but relative signs in
different overlap channels for a given parent-core combination
matter.

In the s shell, GFMC and HH overlaps obtained for the
AV18 + UIX force agree well (see Fig. 6), and so do ANCs
in Table VI except for the weak d waves in A = 3 nuclei
(and consequently for the ratios of d- to s-wave ANCs),
for which the two methods differ for unknown reasons. The
HH ANCs assume the actual separation energies for a given
Hamiltonian, which are close to the experimental values, and
so the ANCs would not change dramatically if experimental
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FIG. 9. (Color online) VMC and GFMC p3/2〈6He(0+) |
7He(3/2−)〉 overlaps obtained for the AV18 + IL7 potential. Only
statistical errors are shown. Also shown is the irregular Coulomb
function G(r)/r for the experimental separation energy representing
the scattering asymptotics at 90◦ phase shift.

separation energies were used instead. In Ref. [20], an integral
method (IM) was used to compute ANCs in A � 9 nuclei from
AV18 + UIX VMC wave functions assuming experimental
core-valence separation energies; in Table VI, these ANCs
are labeled VMC-IM. For the dominant s-wave channels,
VMC-IM results are in a good agreement with ours. However,
the difference between GFMC and VMC-IM ANCs for the
weaker d-waves in A = 3 nuclei, larger than 15%, is outside of
the systematic error bars set on GFMC ANCs; this discrepancy
is most likely attributable to VMC wave functions employed
by VMC-IM that, as shown in Table IV in terms of SFs,
underestimate the strength of d waves in A = 3 nuclei. Our
ANCs are in a fair agreement with some experimental values
but differ from others. Experimentally, particular emphasis
was put on the ratio of d- to s-wave ANCs in 3H and 3He
most precisely inferred from tensor analyzing powers; the
experimental values listed in Table VI agree well with ours,
including the relative negative phase.

As shown in Table VII, ANCs for overlaps between A = 6
and A = 7 nuclei are constrained rather poorly experimentally.
In general, ANCs in the lower p-shell are determined mostly
from hadronic processes, such as transfer or knockout reac-
tions; see Refs. [13,20] and references therein. In Table VII,
we show the full range of experimental ANCs from [63] for
overlaps between the ground state of 7Li and the lowest states
in 6Li. Overall, given the experimental uncertainties, it is hard
to compare GFMC to experiment. ANCs calculated within
VMC-IM for AV18 + UIX are in a broad agreement with our
AV18 + IL7 results, though with some notable differences
especially for the p3/2 〈6Li(1+) | 7Li(3/2−)〉 overlap. Based on
simple analytical arguments, the ratio of 〈6Li(1+) | 7Be(3/2−)〉
and 〈6Li(1+) | 7Li(3/2−)〉 ANCs involving mirror nuclei 7Be
and 7Li was predicted to be 1.02 for both p1/2 and p3/2 channels
[64]. We obtain 0.95(7) for the p1/2 channel and 0.98(7)
for the p3/2 channel assuming 5% errors on GFMC ANCs,
using averaged type I and type II 〈6Li(1+) | 7Li(3/2−)〉 ANCs
from Table VII, and disregarding the signs of involved ANCs.

Finally, we present in Table VIII potential parameters
appearing in Eq. (18) that provide good fits to GFMC
overlaps. These fits were used to extract ANCs. They also
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TABLE VI. ANCs for GFMC overlaps between s-shell nuclei for a given 2N + 3N Hamiltonian H and angular momentum channel lj .
Systematic uncertainties on GFMC values are 5% or less, as discussed in Sec. III. Also shown are the results of the HH and VMC-IM methods
and experimentally deduced values. The errors on VMC-IM are only statistical. For A = 3 nuclei, ratios of d- to s-wave ANCs are also shown.

Parent Core lj H C (fm−1/2)
AZ(J π , T ) A−1Z(J π , T ) HH VMC-IM GFMC Exp.

3H( 1
2

+
, 1

2 ) 2H(1+, 0) s1/2 AV18 + IL7 2.14 2.11(3) [57], 2.07(2) [13], 1.87(14) [58]
AV18 + UIX 2.15 2.13(1) 2.14

d3/2 AV18 + IL7 −0.0848
AV18 + UIX −0.0925 −0.0979(9) −0.0842

Cd/Cs AV18 + IL7 −0.0396 −0.0418(15) [59]
AV18 + UIX −0.0430 −0.0460(5) −0.0393

3He( 1
2

+
, 1

2 ) 2H(1+, 0) s1/2 AV18 + IL7 2.10 2.10(16) [58], 1.76(11) [60]
AV18 + UIX 2.16 2.14(1) 2.10

d3/2 AV18 + IL7 −0.0762
AV18 + UIX −0.0865 −0.0927(10) −0.0794

Cd/Cs AV18 + IL7 −0.0363 −0.0389(42) [59]
AV18 + UIX −0.0400 −0.0432(5) −0.0378

4He(0+, 0) 3H( 1
2

+
, 1

2 ) s1/2 AV18 + IL7 −6.45 7.36(19) [58], 6.70(50) [58], 5.44(15) [61]
AV18 + UIX −6.47 −6.55(2) −6.49

3He( 1
2

+
, 1

2 ) s1/2 AV18 + IL7 6.45 6.77(51) [58], 6.52(49) [58]
AV18 + UIX 6.36 6.42(2) 6.49

allow our results to be easily used in DWBA or CCBA
reaction calculations [45,46]. Besides setting the core-valence
separation energies to their experimental values, no other
constraints were imposed in the fitting procedure. In the s shell,
we found it necessary to introduce a short-range repulsive

Gaussian potential term to reproduce dips in GFMC overlaps
near the origin as seen in Fig. 7; in the p shell, such a term is not
necessary. Good fits to d-wave overlaps in A = 3 nuclei seem
to require very strong repulsive potential cores and negative
radii of the central WS part. Also, for d waves the first few

TABLE VII. ANCs for GFMC overlaps between A = 6 and A = 7 p-shell nuclei for the AV18 + IL7 potential in angular momentum
channels lj . Systematic uncertainties on GFMC values are 5% or less as discussed in Sec. III. Results of the VMC-IM method for AV18 + UIX
with statistical errors only and experimentally deduced values are also shown.

Parent Core lj C (fm−1/2)
AZ(J π , T ) Type A−1Z(J π , T ) Type VMC-IM GFMC Exp.

7Li( 3
2

−
, 1

2 ) I 6He(0+, 1) I p3/2 3.68(5) 3.52 2.48 [62]
II 3.65
I 6Li(1+, 0) I p1/2 1.65(1) 1.73

p3/2 1.89(1) 2.29√∑
C2 2.51(1) 2.87 1.26–2.82 [63]

II II p1/2 1.85
p3/2 2.20√∑

C2 2.87 1.26–2.82 [63]
I 6Li(3+, 0) I p3/2 3.50 2.06–3.00 [63]
II 3.63
I 6Li(0+, 1) I p3/2 −2.39 1.71–2.62 [63]
II −2.46

7Li( 1
2

−
, 1

2 ) I 6Li(1+, 0) I p1/2 −0.543(16) −0.573
p3/2 −2.54(4) −2.85√∑

C2 2.60(4) 2.91
7Be( 3

2

−
, 1

2 ) I 6Li(1+, 0) I p1/2 −1.87(3) −1.70
p3/2 −2.15(3) −2.20√∑

C2 2.85(3) 2.78
6Li(3+, 0) I p3/2 −3.49
6Li(0+, 1) I p3/2 −2.58
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TABLE VIII. Fitting parameters from Eq. (18) for GFMC overlaps obtained for the AV18 + IL7 potential in angular momentum channels
lj . All p-shell overlaps originated from type I VMC wave functions. The precise values of VWS are adjusted to reproduce the experimental
separation energies Bexp.

Parent Core lj VWS RWS aWS β ρ Vso Rso aso Bexp
AZ(J π , T ) A−1Z(J π , T ) (MeV) (fm) (fm) 0.00 (fm) (MeV) (fm) (fm) (MeV)

3H( 1
2

+
, 1

2 ) 2H(1+, 0) s1/2 −172.88 0.56 0.69 1.15 0.64 6.2572
d3/2 −2732.90 −1.15 0.91 1.16 0.41 2.95 2.15 0.14 6.2572

3He( 1
2

+
, 1

2 ) 2H(1+, 0) s1/2 −179.94 0.54 0.68 1.13 0.64 5.4934
d3/2 −8155.10 −2.19 0.91 1.03 0.35 1.47 2.07 0.06 5.4934

4He(0+, 0) 3H( 1
2

+
, 1

2 ) s1/2 −202.21 0.93 0.66 0.87 0.81 19.814
3He( 1

2

+
, 1

2 ) s1/2 −200.93 0.88 0.69 0.87 0.79 20.578
7Li( 3

2

−
, 1

2 ) 6He(0+, 1) p3/2 −58.93 2.68 0.93 1.26 0.91 0.07 9.9758
6Li(1+, 0) p1/2 −41.80 3.18 0.85 2.45 1.35 0.17 7.25

p3/2 −69.55 1.89 1.17 2.13 2.36 0.21 7.25
6Li(3+, 0) p3/2 −62.98 2.35 1.18 1.72 0.55 0.09 9.436
6Li(0+, 1) p3/2 −59.39 2.64 0.97 0.93 0.91 0.22 10.813

7Li( 1
2

−
, 1

2 ) 6Li(1+, 0) p1/2 −33.71 3.39 0.31 1.44 1.09 0.03 6.772
p3/2 −65.00 2.04 1.15 1.14 0.88 0.03 6.772

7Be( 3
2

−
, 1

2 ) 6Li(1+, 0) p1/2 −39.45 3.32 0.76 3.47 1.44 0.39 5.6055
p3/2 −72.22 1.85 1.11 2.62 2.53 0.31 5.6055

6Li(3+, 0) p3/2 −59.20 2.52 1.07 1.08 0.79 0.03 7.7915
6Li(0+, 1) p3/2 59.49 2.64 0.96 1.06 1.05 0.03 9.1685

radial bins were omitted from the fit because they are rather
uncertain. To reproduce the results presented in this work, the
WS fits need to be normalized to SFs from Tables IV and V.
Our GFMC overlaps are available from Ref. [19].

V. SUMMARY AND CONCLUSIONS

We have reported GFMC calculations of one-nucleon
spectroscopic overlaps in nuclei with mass numbers A � 7.
The calculations have used wave functions derived from
a realistic Hamiltonian that reproduces well the low-lying
spectra of light nuclei. The overlaps are extrapolated from
mixed estimates between VMC and GFMC wave functions,
and they are extended to regions beyond the nuclear surface,
where the GFMC method may not be accurate, by means of
WS fits to the overlap interior. A goal of this work is to provide
a consistent set of spectroscopic overlaps, SFs, and ANCs in
light nuclei, obtained from our currently best GFMC wave
functions, that can be used as structure input in analyzing
existing or future experimental data.

The comparison of SFs and ANCs with experimentally
deduced values is obscured, as mentioned in Sec. I, by the
model-dependent way these quantities are extracted from
experimental data and by the issues related to the meaning of
spectroscopic overlaps. For many overlaps, it is hard to judge
the agreement or disagreement between theory and experiment

because of the nonexisting or conflicting experimental values.
Our (relative) SFs seem to broadly support more recent values
deduced from hadronic processes, and some agree particularly
well with values provided by electron-scattering experiments.
Our calculations reproduce, within error bars, the experimen-
tally well-deduced ratios of d- to s-wave ANCs in A = 3
nuclei. We observe a rather substantial (up to 40%) quenching
of GFMC SFs when compared with the traditional shell model.
The GFMC improves the VMC overlaps, but the corrections to
SFs are sufficiently small, indicating that the VMC values used
to analyze experimental data in Refs. [21–26] were reliable.

The GFMC overlaps presented in this paper are available
from Ref. [19]. The overlaps for somewhat heavier nuclei up
to A � 10 will be the subject of a forthcoming paper.
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