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The generalized density matrix method is used to calculate microscopically the parameters of the collective
Hamiltonian. Higher-order anharmonicities are obtained consistently with the lowest-order results, the mean field
(Hartree-Fock-Bogoliubov equation), and the harmonic potential (quasiparticle random-phase approximation).
The method is applied to soft spherical nuclei, where the anharmonicities are essential for restoring the stability
of the system, as the harmonic potential becomes small or negative. The approach is tested in three models of
increasing complexity: the Lipkin model, model with factorizable forces, and the quadrupole plus pairing model.

DOI: 10.1103/PhysRevC.84.024318 PACS number(s): 21.60.Ev, 21.10.Re

I. INTRODUCTION

A long-standing question of microscopic description of
nuclear collective motion belongs to the class of problems
that are left behind by the advancing army that currently
is mostly interested in new frontiers, in our case, in drip
line physics. Meanwhile, we still lack a systematic theory
based on first principles and internucleon interactions that
would allow us to fully understand numerous collective
phenomena in the low-energy region of medium and heavy
nuclei and satisfactorily describe the data. In relatively light
nuclei, the shell model (what is nowadays called configuration
interaction) with effective nucleon-nucleon forces usually
works well, although even here the abundant numerical results
sometimes require some kind of model interpretation. In
heavier nuclei, the necessary orbital space is too large for
direct numerical diagonalization.

Phenomenological models frequently work well, first of
all the geometric Bohr Hamiltonian [1,2] and the interacting
boson model (IBM) [3]. However, the relation between their
parameters and the underlying microscopic structure remains
uncertain. Moreover, some assumptions of such models turn
out to be unreliable. For example, the identification in the IBM
of the prescribed boson number with the number of valence
fermionic pairs breaks down in the attempt to explain very
long “quasivibrational” bands extended, without considerable
changes in spacing, up to spin values much greater than the
finite boson number would allow (see, for example, the ground-
state band in 110Cd close to the equidistant ladder up to Jπ =
28+).

The microscopic theory is relatively successful in well-
deformed nuclei. Various mean-field methods, including the
modern energy density functional approach [4,5] with pairing,
indicate regions of nuclei with clearly pronounced deformed
energy minima. With the microscopic definition of shape, one
can calculate the moment of inertia by the cranking model
and the generator coordinate method, construct rotational
bands built on different intrinsic configurations, and explain
backbending and similar phenomena [6].
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In our opinion, the status of microscopic theory is still
underdeveloped with respect to spherical nuclei, especially in
the case of the presence of a low-lying collective mode. The
standard way of defining such modes is based on the quasipar-
ticle random-phase approximation (QRPA). This is essentially
the harmonic approximation that determines the frequency
and two-quasiparticle structure of the collective phonons.
If the multipole coupling is strong, the collective mode
has a large amplitude, the frequency falls down, and the
QRPA reveals instability. In reality, this is not necessarily
a point of phase transition. Rather, this is the region of
strong anharmonicities outside of the reach of the QRPA.
Phenomenologically, this can be described by a special choice
of potential and rotational parameters in the Bohr Hamiltonian
that are close to the O(6) limit of the IBM with a γ -unstable
potential. Currently, we do not have a reliable microscopic
approach to quantify collective behavior of this type. Another
practically important question related to anharmonicities is
the mode-mode coupling. The coexistence and interaction of
soft quadrupole and octupole modes are relevant, for example,
to the search of mechanisms for many-body enhancement
of the nuclear Schiff moment and the atomic electric dipole
moment [7].

Instead of the direct diagonalization of the primary nucleon
Hamiltonian, it seems reasonable to work out a procedure
for the microscopic derivation of the effective collective
Hamiltonian. Typical collective states can usually be identified
by their quantum numbers, low energies and large transition
probabilities. Being interconnected by large matrix elements
of corresponding collective operators, they form a collective
subspace of the total Hilbert space of the system. In the case
of a soft multipole mode, it is often possible to label the
empirical levels by the phonon quantum numbers, even if
their energies and transition rates noticeably differ from the
predictions of the harmonic approximation. This difference
results from anharmonic effects that still keep the geometric
nature of the mode. Therefore, our approach is to develop
the road to a consistent mapping of the underlying nucleonic
dynamics onto that inside the collective subspace.

The idea of this approach goes back to the boson expansion
technique suggested long ago [8]; a detailed review of work
in this direction can be found in Ref. [9]. The formalism
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of the generalized density matrix (GDM) reformulating
earlier work [10] by Kerman and Klein seems to be the most
appropriate for our goal [11–14]. This formalism was applied
to collective rotation [11,13,15,16] and large-amplitude
collective motion [17–20] generalizing the time-dependent
mean-field method [21]. Here we apply the GDM approach
to collective vibrations in soft spherical nuclei.

The GDM R12 = a
†
2a1 is the set of operators defined

originally in the entire Hilbert space [1 and 2 here represent a
complete set of single-particle (s.p.) quantum numbers]. The
microscopic Hamiltonian provides exact operator equations of
motion (e.o.m.) for this set. Taking matrix elements of these
equations between the states of the collective family, we map
the equations onto the dynamics of the collective operators
inside this family. The choice of the collective Hamiltonian
should be quite general dictated by the type and symmetries of
collective motion under study. Comparison with microscopic
dynamics determines the collective parameters. The lowest
orders give naturally the mean field [Hartree-Fock-Bogoliubov
(HFB) equation] and the harmonic part (QRPA). Next orders
determine anharmonicities. These higher-order terms are not
assumed to be perturbative; they are separated only by their
operator structure in the collective space. Simple estimates [22,
23] show that in many generic cases the quartic anharmonicity
with respect to the quadrupole coordinate plays an important
role. In fact, this was earlier confirmed by specific realistic
applications [24] of the phenomenological anharmonic Hamil-
tonian; 100Pd is probably the clean example of such dynamics.

We start with the discussion, Sec. II, of the general
procedure of the GDM method. In Sec. III we consider
systems near the critical point (small RPA frequency ω2).
Sections IV and V are devoted to the Lipkin model and
factorizable force model, respectively, which traditionally
serve as a testing ground for various theoretical approaches.
Section VI discusses the GDM method applied to realistic
nuclei with pairing and rotational symmetry. In Sec. VII we
give the results for a quadrupole plus pairing Hamiltonian, with
a semirealistic numerical example. Section VIII summarizes
our method and discusses future working directions. The
details of calculations are given in the appendixes.

II. THE GENERALIZED DENSITY
MATRIX METHOD

In this section we reveal the essence of the GDM method
in a simple system without complications owing to rotational
symmetry and pairing correlations. A single collective mode
is assumed; the case of multiple modes is discussed briefly
in Appendix L. The main result, beyond the well-known
HF equation and RPA, is a relation (44) involving cubic and
quartic anharmonicities.

A. Preparation

The starting point is the effective microscopic fermionic
Hamiltonian

H =
∑

12

Z12a
†
1a2 + 1

4

∑
1234

V1234a
†
1a

†
2a3a4. (1)

We find it convenient for H , Z12, and V1234 to be dimensionless;
in other words, H is measured in some unit of energy. We have
assumed in Eq. (1) a two-body force; inclusion of three-body
forces is discussed in Appendix A. In accordance with the
discussion in Sec. I, we assume that H has a band of collective
states {|Ci〉} characterized by low energies and large transition
amplitudes. We assume that there exists a reference state |�〉,
a collective mode operator A† = (α − iπ )/

√
2 (α, π are col-

lective coordinate and momentum), such that approximately

[α, π ] = i, (2)

|Ci〉 = [ci0 + ci1A
† + ci2(A†)2 + · · ·

+ ci−1A + ci−2(A)2 + · · ·]|�〉, (3)

〈C1|H |C2〉 = 〈C1|E0 + ω2

2
α2 + 1

2
π2

+ �(30)

3
α3 + �(12)

4
{α, π2}

+ �(40)

4
α4 + �(22)

8
{α2, π2}

+ �(04)

4
π4 + · · · |C2〉. (4)

Equation (2) says that A† is effectively a boson operator.
Equation (3) says that the collective band {|Ci〉} can be built
by repeated action of A† or A on the reference state |�〉. Later
|�〉 is identified as the HF ground state. Equation (4) says
that within the band the effect of the fermionic Hamiltonian
can be approximated by an expansion over the bosonic
operators, where we keep all time-even terms up to quartic
anharmonicities (α is time even, π is time odd).

Now our goal is to map the exact e.o.m. in the full Hilbert
space onto collective dynamics inside the band subspace. We
use contractions and normal ordering of operators. They are
defined as

A•B• ≡ 〈�|AB|�〉, (5)

N [AB] ≡ AB − 〈�|AB|�〉. (6)

Without paring, the reference state |�〉 has a definite particle
number,

〈�|a†
1a2|�〉 ≡ ρ21, 〈�|a1a2|�〉 = 〈�|a†

1a
†
2|�〉 = 0. (7)

ρ is the usual s.p. density matrix. Normal ordering of more
than two operators is defined by the Wick theorem:

a
†
1a

†
2a3a4 = N [a†

1a
†
2a3a4] + ρ41N [a†

2 a3] − ρ31N [a†
2a4]

− ρ42N [a†
1a3] + ρ32N [a†

1a4] + ρ41ρ32 − ρ31ρ42.

(8)

Equivalently, normal ordering puts quasiparticle creation
operators to the left of annihilation operators.

The GDM operator is defined in the full space as

R12 ≡ a
†
2a1 = ρ12 + N [a†

2a1] ≡ ρ12 + RN
12. (9)

The Hamiltonian (1) in the normal ordering form is

H = 〈�|H |�〉 +
∑

12

f12N [a†
1a2]

+1

4

∑
1234

V1234N [a†
1a

†
2a3a4], (10)
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where we have introduced the self-consistent field operator

W {R}12 ≡
∑

34

V1432R34, f12 = Z12 + W {ρ}12, (11)

and 〈�|H |�〉 = ∑
12(Z12 + 1

2W {ρ}12)ρ21 is the average en-
ergy of the reference state.

The exact e.o.m. for the density matrix operator in the full
many-body Hilbert space is

[R12,H ] = [a†
2a1,H ]= [f, ρ]12+[f,RN ]12 + [W {RN }, ρ]12 + 1

2

∑
345

(V1345N [a†
2a

†
3a4a5] − V5432N [a†

5a
†
4a3a1]). (12)

Because we are only interested in the band subspace, we take matrix elements of Eq. (12) between two collective states:

〈Ci |[R12,H ]|Cj 〉=〈Ci |[f, ρ]12 + [f,RN ]12+[W {RN }, ρ]12 + 1

2

∑
345

(V1345N [a†
2a

†
3a4a5] − V5432N [a†

5a
†
4a3a1])|Cj 〉. (13)

We assume that within the band the effect of R12 can be approximated by a boson expansion:

〈Ci |R12|Cj 〉 = 〈Ci |ρ12 + r
(10)
12 α + r

(01)
12 π + r

(20)
12

α2

2
+ r

(02)
12

π2

2
+ r

(11)
12

{α, π}
2

+ r
(30)
12

α3

3
+ r

(03)
12

π3

3

+ r
(21)
12

{α2, π}
4

+ r
(12)
12

{α, π2}
4

+ · · · |Cj 〉, (14)

where we keep explicitly terms up to quartic anharmonicities. A convenient normalization is as follows: A term with m of α and
n of π has a factor of 1/(mn); each anticommutator gives an additional 1/2. Similarly, for N [a†

4a
†
3a2a1] we have

〈Ci |N [a†
4a

†
3a2a1]|Cj 〉 = 〈Ci | 1

2 r
(20)
1234α

2 + 1
2 r

(02)
1234π

2 + 1
2 r

(11)
1234{α, π} + 1

3 r
(30)
1234α

3 + 1
3 r

(03)
1234π

3

+ 1
4 r

(21)
1234{α2, π} + 1

4 r
(12)
1234{α, π2} + · · · |Cj 〉, (15)

where we have assumed that the expansion starts from α2, π2,
{α, π}, as explained in Appendix C. Now the right-hand side
of Eq. (13) is written as an expansion over boson operators.

The left-hand side of Eq. (13) is approximately given by

〈Ci |[R12,H ]|Cj 〉

≈ 〈Ci |
[
ρ12 + r

(10)
12 α + · · · , E0 + ω2

2
α2 + · · ·

]
|Cj 〉,

where we have restricted the intermediate states (between R12

and H ) by those of the collective subspace {|Ci〉}, because H

is a collective operator: The matrix elements of H connecting
the collective band with states of a different nature are small.
This is the main approximation of the method; influence of
the neglected “environment” states can be later accounted for
with the use of statistical assumptions [25]. After calculating
commutators such as [π, α2] = −2iα, the left-hand side is
written as a boson operator expansion. Then we equate in
Eq. (13) left-hand side and right-hand side coefficients of
the same phonon structure: 1, α, π , α2/2, . . .. The resultant
equations are examined below.

B. Zero order: Mean field (Hartree-Fock)

Terms without α or π in Eq. (13) give

[f, ρ]12 = 0. (16)

Thus, f and ρ can be diagonalized simultaneously in some
s.p. basis:

f12 = δ12e1, ρ12 = δ12n1, (17)

providing mean-field s.p. energies and occupation numbers.
We always use this s.p. basis. If we restrict the reference state
|�〉 to be a Slater determinant, then the occupation numbers
n1 can be only 0 or 1; in this case, Eq. (16) is the usual
HF equation and |�〉 is the HF ground state. More general
choices, such as the thermal ensemble, are also possible. For
future convenience we define

e12 ≡ e1 − e2, n12 ≡ n1 − n2. (18)

We assume that degenerate s.p. levels have the same occupan-
cies,

e1 = e2 ⇒ n1 = n2, (19)

but the reverse is not necessarily true.

C. First order: Random-phase approximation

Terms linear in α and π in Eq. (13) give

π : ir (10) = [f, r (01)] + [w(01), ρ], (20)

α : −iω2r (01) = [f, r (10)] + [w(10), ρ], (21)

where w(10) = W {r (10)} and w(01) = W {r (01)} are the corre-
sponding components of the mean field. This is the set of RPA
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equations. The formal solution is

r
(10)
12 = n12

(e12)2 − ω2

[− iω2w
(01)
12 + e12w

(10)
12

]
, (22)

r
(01)
12 = n12

(e12)2 − ω2

[
iw

(10)
12 + e12w

(01)
12

]
. (23)

Note that r (10) and r (01) have only n1 �= n2 matrix elements.
From Eqs. (11), (22), and (23) we obtain a linear homogenous
set of equations for w(10) and w(01):

w
(10)
34 =

∑
12

V3214
n12

(e12)2 − ω2

[− iω2w
(01)
12 + e12w

(10)
12

]
, (24)

w
(01)
34 =

∑
12

V3214
n12

(e12)2 − ω2

[
iw

(10)
12 + e12w

(01)
12

]
. (25)

Introduce the matrix M:

M =
(

Ma Mb

Mc Md

)
, (26)

where (e3 �= e4, e1 �= e2)

Ma
(34),(12) = Md

(34),(12) = δ(12),(34) − V3214
n12e12

(e12)2 − ω2
, (27)

Mb
(34),(12) = ω2 · Mc

(34),(12) = V3214
ω2n12

(e12)2 − ω2
, (28)

in which δ(12),(34) = δ13δ24. Then the e3 �= e4 part of Eqs. (24)
and (25) is written as

M ·
(

w(10)

i · w(01)

)
= 0. (29)

Nonzero solution requires a zero determinant:

Det[M] = 0. (30)

Equation (30) is the RPA secular equation determining
the harmonic frequency ω2. We emphasize that in realistic
application the extra degrees of freedom in Eq. (29) owing
to the Hermiticity of w should be removed [w(10)

21 = (w(10)
12 )∗,

w
(01)
21 = (w(01)

12 )∗].
By Eq. (30) the transpose matrix of M , MT , has a

zero eigenvalue. Assume the corresponding eigenvector is
(λ34, χ34):

MT ·
(

λ

χ

)
= 0 ·

(
λ

χ

)
= 0 ⇒ (λT χT ) · M = 0. (31)

In other words, the row vectors of M are linearly dependent.
λ and χ are used later.

The normalization of r (10), r (01) can be fixed by the so-called
saturation principle, as explained in Appendix B :

1 =
∑

12

−n12

[(e12)2 − ω2]2

·(iw(10)
12 + e12w

(01)
12

)(
ω2w

(01)
21 + ie21w

(10)
21

)
. (32)

Starting from the next (second) order, r
(mn)
1234 ’s of Eq. (15)

begin to appear in the e.o.m.; the saturation principle is also
used to express them in terms of r

(mn)
12 of Eq. (14), as explained

in Appendix B.

D. Second order: Cubic anharmonicity

Using Eqs. (B11)–(B13), the second-order terms, α2/2,
π2/2, and {α, π}/2, in Eq. (13) give

−2iω2r (11) − 2i�(30)r (01)

= [f, r (20)] + [w(20), ρ] + 2[w(10), r (10)], (33)

−iω2r (02) + ir (20) + i�(12)r (10)

= [f, r (11)] + [w(11), ρ] + [w(10), r (01)] + [w(01), r (10)],

(34)

2i r (11) − i�(12)r (01)

= [f, r (02)] + [w(02), ρ] + 2[w(01), r (01)]. (35)

First we consider the e1 = e1′ matrix elements r
(20)
11′ , r

(11)
11′ ,

and r
(02)
11′ . As one can check, Eqs. (33) and (35) give the same

r
(11)
11′ . However, r (02)

11′ and r
(20)
11′ are not fully determined because

Eq. (34) determines only the difference ω2r
(02)
11′ − r

(20)
11′ . We fix

them by the saturation principle, the e1 = e1′ matrix elements
of Eqs. (B6) and (B8):

r
(20)
11′ = −i[p, r (10)]11′ , r

(02)
11′ = i[x, r (01)]11′ ,

(36)
r

(11)
11′ = i[x, r (10)]11′ = −i[p, r (01)]11′ .

It is straightforward to show that Eq. (36) is consistent with
Eqs. (33)–(35).

Next the e1 �= e2 matrix elements r
(20)
12 , r

(11)
12 , and r

(02)
12

are solved formally in terms of w(20/02/11) and �(30/12) from
Eqs. (33)–(35). Then by Eq. (11) we obtain the linear set of
equations for w(20), w(02), and w(11).

E. Third order: Quartic anharmonicity

Using Eqs. (B14)–(B17), the third-order terms, α3/3,
{α2, π}/4, {α, π2}/4, and π3/3, in Eq. (13) give

−3i

2
ω2r (21) − 3i�(30)r (11) − 3i�(40)r (01)

= [f, r (30)] + [w(30), ρ] + 3

2
[w(20), r (10)] + 3

2
[w(10), r (20)],

(37)

− 2iω2r (12) + 2ir (30) − 2i�(30)r (02) + 2i�(12)r (20) + i�(22)r (10)

= [f, r (21)] + [w(21), ρ] + [w(20), r (01)] + [w(01), r (20)]

+ 2[w(11), r (10)] + 2[w(10), r (11)], (38)

−2iω2r (03) + 2ir (21) + i�(12)r (11) − i�(22)r (01)

= [f, r (12)] + [w(12), ρ] + [w(10), r (02)]

+ [w(02), r (10)] + 2[w(11), r (01)] + 2[w(01), r (11)], (39)
3i

2
r (12) − 3i

2
�(12)r (02) + 3i�(04)r (10)

= [f, r (03)] + [w(03), ρ] + 3

2
[w(02), r (01)] + 3

2
[w(01), r (02)].

(40)

The e1 = e1′ matrix elements r
(30/21/12/03)
11′ can now be

found in terms of the lower-order quantities from Eqs. (37)–
(40). The e1 �= e2 matrix elements r

(30/21/12/03)
12 can be calcu-

lated formally in terms of w(30/21/12/03) and �(40/22/04) from
Eqs. (37)–(40). By Eq. (11) we obtain a linear set of equations
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for w(30), w(21), w(12), and w(03). However, this set is not
linearly independent. Thus, we have a solvability condition. To
see this, keeping only (r/w)(30/21/12/03) and �(40/22/04) terms,
Eq. (37) + 1

2ω2 × Eq. (39) gives

−iω2

[
1

2
r (21) + ω2r (03)

]

=
[
f, r (30) + 1

2
ω2r (12)

]
+
[
w(30) + 1

2
ω2w(12), ρ

]

+ 3i�(40)r (01) + i
1

2
ω2�(22)r (01) + · · · . (41)

1
2 × Eq. (38) + ω2 × Eq. (40) gives

+i

[
r (30) + 1

2
ω2r (12)

]

=
[
f,

1

2
r (21) + ω2r (03)

]
+
[

1

2
w(21) + ω2w(03), ρ

]

− i
1

2
�(22)r (10) − 3iω2�(04)r (10) + · · · . (42)

The variable parts of Eqs. (41) and (42) have the same structure
as the RPA equations (20) and (21). Introducing temporarily
x = r (30) + 1

2ω2r (12), y = 1
2 r (21) + ω2r (03), we can solve x,

y in terms of W {x}, W {y}. Using Eq. (11) to obtain linear
equations for W {x}, W {y}, the e3 �= e4 part is written as

M ·
(

W {x}
iW {y}

)
=
(

A

B

)
+ · · · , (43)

where the matrix M is defined in Eqs. (26)–(28); A, B consist
of �(40), �(22), and �(04) terms. Multiplying Eq. (43) from
left by (λT χT ) and using Eq. (31) we come to the solvability
condition:

3�(40)
∑

12

∑
e3 �=e4

[χ34 − e12λ34] · V3214
ir

(01)
12

(e12)2 − ω2

+ 1

2
�(22)

∑
12

∑
e3 �=e4

V3214

·ω
2λ34 · [r (10)

12 − ie12r
(01)
12

]− χ34 · [e12r
(10)
12 −iω2r

(01)
12

]
(e12)2−ω2

+ 3ω2�(04)
∑

12

∑
e3 �=e4

[ω2λ34−e12χ34] · V3214
r

(10)
12

(e12)2−ω2

= · · · . (44)

The right-hand side “. . .” contains only the lower-order
quantities, including �(30) and �(12). On the left-hand side
the coefficients of the �(40), �(22), �(04) terms are of order
1, ω2, ω4, respectively, although this might not be obvious
from Eq. (44). It follows from examining the expressions of
M , A, and B in Eq. (43). This point will be important for the
discussion in Sec. III.

At the current stage, the cubic and quartic anharmonicities
are not completely fixed; we find only one relation (44)
constraining them. However, we are able to obtain �(30)

and �(40) near the critical point ω2 ≈ 0, with important
applications, as is explained in Sec. III. Even with this
limitation, Eq. (44) is useful. One could fit the ratios of �(mn)

with the experimental data, then use Eq. (44) to determine their
magnitudes. This is especially interesting for the cases with
certain symmetries, where the ratios are known. Results in this
direction will be discussed elsewhere.

F. Self-consistent Hamiltonian conditions

If the approach is self-consistent, substituting the solutions
of Eqs. (14) and (15) into Eq. (1) should provide Eq. (4).
Namely,

E0 = 〈�|H |�〉 =
∑

12

(
Z12 + 1

2
W {ρ}12

)
ρ21, (45)

�(mn) =
∑

1

e1r
(mn)
11 + 1

4

∑
1234

V1234r
(mn)
4321 . (46)

We checked Eq. (46) explicitly up to the cubic anharmonicities.
Concerning the quartic anharmonicity, we checked the combi-
nations �(40) − 1

2ω2�(22) and ω2�(04) − 1
2�(22), because from

the fourth-order e.o.m. (not listed) only r
(40)
11 − 1

2ω2r
(22)
11 and

ω2r
(04)
11 − 1

2 r
(22)
11 are determined, similar to the situation in the

cubic order.
In summary, this section discusses the general procedure

of the GDM method. The exact e.o.m. for the density matrix
operators are mapped onto the collective subspace by taking
matrix elements between states of this family. Comparing
terms with the same phonon operator structure, order by order,
we get equations for the GDM. In each order, the GDM is
solved from a set of coupled linear equations in terms of
lower-order quantities. The bosonic Hamiltonian coefficients
�(mn) appear as parameters in the solution.

At the current stage the anharmonicities are not completely
fixed; we find only one relation (44) involving cubic and quartic
anharmonicities, appearing in the third order as a solvability
condition. In the next section, we show that the cubic potential
�(30) and quartic potential �(40) can be determined in a special
case: around the critical point ω2 ≈ 0.

III. SYSTEMS NEAR THE CRITICAL POINT

Anharmonicities become important when the harmonic
potential ω2α2/2 becomes small or negative. This is the case
in many realistic medium and heavy nuclei away from magic
numbers [26]. The quartic potential �(40) and higher terms
restore the stability of the system. At the same time, the system
can be deformed by odd anharmonicities; the potential is flat
at the bottom, or γ unstable. Near the critical point ω2 ≈ 0,
we are able to determine the cubic potential term �(30) and
the quartic potential term �(40). Deformation owing to �(30)

will be studied separately. In this work we concentrate on the
case of small �(30), consistent with the idea of soft spherical
nuclei.

We make an assumption in the spirit of Landau phase
transition theory: In Eq. (4), the leading potential term ω2α2/2
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vanishes at the critical point, while other higher-order terms
�(mn) remain finite. Taylor expanding �(mn) over ω2,

�(mn) = �(mn)
c + �

(mn)
1 ω2 + �

(mn)
2 ω4 + · · · , (47)

the leading constant term �(mn)
c is finite.

Near the critical point the stability of the system is restored
by higher-order anharmonicities, for example, �(40)α4/4.
Thus, 〈Ci |α|Cj 〉, 〈Ci |π |Cj 〉, . . . , are finite. Consequently,
r

(mn)
12 in Eq. (14) is finite, because the left-hand side

〈Ci |a†
2a1|Cj 〉 is finite. Again, we call the finite leading constant

term in a Taylor expansion r
(mn)
c12 .

We can obtain �(40)
c from Eq. (44) by keeping only leading

constant terms (neglecting terms with ω2, ω4, . . .), as explained
below Eq. (44). Another approach is possible: neglecting ω2

terms earlier, in each e.o.m. For convenience, we use
.= instead

of = if an equation is correct in constant terms but not in ω2

terms or higher. In this way we determine �(30)
c [Eq. (53)], as

well as �(40)
c [Eq. (54)].

A. RPA

Keeping only the constant terms of Eq. (24) we have

w
(10)
34

.=
∑

12

V3214
n12

e12
w

(10)
12 . (48)

Defining a square matrix

D(34),(12) ≡ δ(12),(34) − V3214
n12

e12
, (e3 �= e4, e1 �= e2), (49)

the e3 �= e4 part of Eq. (48) is written as Dw(10) .= 0. Because
the quantities w

(10)
c12 do not vanish, we have Det[D]

.= 0. Thus,
DT , the transpose matrix of D, has a 0 eigenvalue. More
accurately, DT has an eigenvalue of order ω2; because Det[D],
the product of all eigenvalues of DT , is of order ω2. Assume
that the eigenvector corresponding to this eigenvalue is η34:

DT η
.= 0η = 0 ⇒ ηT D

.= 0. (50)

B. Cubic anharmonicity

Keeping only the constant terms of Eq. (33),

− 2i�(30)r
(01)
12

.= e12r
(20)
12 − n12w

(20)
12 + 2[w(10), r (10)]12, (51)

and calculating w
(20)
34 from Eq. (51), the e3 �= e4 part is written

as

D · w(20) .= C, (52)

where D is defined in Eq. (49) and C contains �(30) and
lower-order quantities. Multiplying Eq. (52) from the left by
ηT and using Eq. (50), we obtain

�(30) ·
∑
e1 �=e2

∑
e3 �=e4

η34V3214
r

(01)
12

e12

.= i
∑
e1 �=e2

∑
e3 �=e4

η34V3214
[w(10), r (10)]12

e12

− 1

2

∑
e1=e1′

∑
e3 �=e4

η34V31′14[p, r (10)]11′ , (53)

where p is given in Eq. (B7). Equation (53) gives �(30)
c +

O(ω2). Then w
(20)
12 is solved from Eq. (52) with an overall

factor (temporarily called δ(20)) still undetermined.
Neglecting the −iω2r (02) term, w

(11)
12 then r

(11)
12 are solved

from Eq. (34) as a function of �(12) and δ(20). We emphasize
that in solving w

(11)
12 the coefficient matrix is actually not

singular after combining w
(11)
21 = (w(11)

12 )∗ with w
(11)
12 , because

w(11) have symmetries different from w(10) in Eq. (48).
From Eq. (35) we obtain an equation D · w(02) .= . . ..

Multiplying it from the left by ηT , we fix δ(20) as a function
of �(12). Then from the equation D · w(02) .= . . . we solve for
w

(02)
12 as a function of �(12), with an overall factor δ(02) still

undetermined.
In summary, there remain two undetermined parameters in

this order: �(12) and an overall factor δ(02) in w
(02)
12 . Later in

Sec. V they are seen explicitly in the factorizable force model.

C. Quartic anharmonicity

Similarly, we obtain from Eqs. (37) and (38)

�(40) ·
∑
e1 �=e2

∑
e3 �=e4

η34V3214
r

(01)
12

e12

.= i

3
�(12)

∑
e1=e1′

∑
e3 �=e4

η34V31′14r
(20)
11′ − �(30)

∑
e1 �=e2

∑
e3 �=e4

η34V3214
r

(11)
12

e12

− i

3
�(30)

∑
e1=e1′

∑
e3 �=e4

η34V31′14r
(02)
11′ + i

2

∑
e1 �=e2

∑
e3 �=e4

η34V3214
[w(20), r (10)]12 + [w(10), r (20)]12

e12

− 1

6

∑
e1=e1′

∑
e3 �=e4

η34V31′14([w(20), r (01)]11′ + [w(01), r (20)]11′ ) − 1

3

∑
e1=e1′

∑
e3 �=e4

η34V31′14([w(11), r (10)]11′ + [w(10), r (11)]11′). (54)

Equation (54) gives �(40)
c + O(ω2). There is one unknown

parameter �(12); quantities (r/w)(20) and (r/w)(11) depend
implicitly on �(12).

In summary, this section fixes the cubic potential �(30) (53)
and the quartic potential �(40) (54) near the critical point
ω2 ≈ 0, by considering the leading terms of the e.o.m.
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Deformation owing to �(30) will be studied elsewhere. Near
the critical point, the stability of the system should be
restored by the quartic potential �(40), if it is positive and
large. In the following we test this idea in three models of
increasing complexity: the Lipkin model (Sec. IV), model with
factorizable forces (Sec. V), and the quadrupole plus pairing
model (Sec. VII).

IV. LIPKIN MODEL

We test the GDM method in the Lipkin model [27] where
the analytical solution is available. As we see, the agreement is
perfect (Sec. IV C). Then we discuss some problems inherent
to the bosonic approach itself (Sec. IV D).

A. Exact solution

In this model, there are two s.p. levels with energies ± 1
2

(the spacing is the energy unit), each with degeneracy  + 1.
The model Hamiltonian contains only “vertical” transitions
(σ = ±1; l = 1, 2, ...,  + 1):

H =
∑
σ,l

σ

2
a
†
σ,laσ,l + κ

2

∑
σ,l,l′

a
†
σ,la

†
σ,l′a−σ,l′a−σ,l . (55)

The quasispin operators,

J+ = J
†
− = Jx + iJy =

∑
l

a
†
+1,la−1,l ,

(56)
Jz = 1

2

∑
σ,l

σa
†
σ,laσ,l,

satisfy the angular momentum algebra. Using Eq. (56) the
Hamiltonian (55) is written as

H = Jz + 1

2
κ(J 2

+ + J 2
−), (57)

and the total quasispin J is a good quantum number. With the
Holstein-Primakoff transformation (HPT),

J+ = J
†
− = A†

√
2J − A†A, Jz = −J + A†A, (58)

where A† and A are bosonic creation and annihilation operators
with commutation relation [A,A†] = 1, the Hamiltonian (57)
is written as an expansion over A† and A; or α and π by the
canonical transformation

A = 1√
2

(iuα + vπ ), A† = 1√
2

(−iuα + vπ ), uv = −1.

(59)

Assuming J � 1, we keep only the leading order in 1/J .
Under the choice

u ≈ √
1 + 2κJ , v = − 1

u
, (60)

the Hamiltonian becomes

H = ω2

2
α2 + 1

2
π2 + �(40)

4
α4 + �(04)

4
π4, (61)

with

ω2 ≈ 1 − 4κ2J 2, �(40) ≈ κu4, �(04) ≈ −κv4. (62)

Other �(mn) vanishes in their leading order of 1/J .
Around the critical point ω2 ≈ 0,

κ ≈ 1

2J
, u ≈

√
2, v ≈ − 1√

2
, (63)

�(40) ≈ 2

J
, �(04) ≈ − 1

8J
. (64)

B. The GDM method

Applying the GDM method to the Hamiltonian (55), we
have solved for r

(mn)
12 explicitly in terms of �(mn) following

Sec. II. Below we summarize the main results. In the mean-
field order, the HF s.p. levels are the same as the original
s.p. levels. Introducing n ≡ nσ=−1 − nσ=1 > 0, where nσ are
occupation numbers of s.p. levels, in the harmonic order the
RPA secular equation (30) becomes

ω2 = 1 − (nκ)2. (65)

In the quartic order, the solvability condition (44) becomes

3

ω2
�(40) + �(22) + 3ω2�(04)

= 10

3

1

ω4
(�(30))2 + 2

1

ω2
�(30)�(12) + 3

2
(�(12))2

+ 12

n( + 1)

1 − ω2

ω2
. (66)

C. Comparison with exact solution

The quantum number J is found from Eq. (56):

J = |Jz|max =  + 1

2
|n1 − n−1| = n( + 1)

2
. (67)

We assume 2J = n( + 1) � 1. In the harmonic order,
the RPA secular equation (65) agrees with the HPT frequency
equation (62). In the quartic order, the HPT solutions (62)
satisfy our solvability condition (66).

The diverging behavior of Eq. (66) around the critical point
ω2 ≈ 0 gives �(40)

c . The �(30)
c term must vanish, as seen from

the presence of the term 10
3

1
ω4 (�(30))2, which is the only one

divergent as ω−4. Equating the left-hand side and right-hand
side diverging terms ∼ω−2, we obtain

�(40)
c = 4

n( + 1)
. (68)

This agrees with the HPT solution (64), �(40) ≈ 2
J

= 4
n(+1) .

If we follow the procedure in Sec. III, we obtain the same
result (68).

D. Numerical diagonalization and discussion

Here we discuss some problems inherent to the bosonic
approach itself. The bosonic Hamiltonian (4) is usually
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TABLE I. The first excitation energy E1 − E0 for different J in the Lipkin model. The top three lines are the results of diagonalizing
different bosonic Hamiltonians in different phonon spaces; the bottom two lines are the results of diagonalizing Eq. (57) directly in the {|JM〉}
space. In the space |n � 2J 〉, the matrix of, for example, α4 is calculated by multiplications of the α matrices, which is different from truncating
the α4 matrix of the space |n � +∞〉. Higher excited states from the GDM method are also in good agreement with the exact results; please
see the figure in Ref. [23].

E1 − E0 J = 2 J = 3 J = 4 J = 6 J = 10 J = 50

2
J

α4

4 + π2

2 − 1
8J

π4

4 in |n � 2J 〉 1.011 0.904 0.835 0.740 0.630 0.371
2
J

α4

4 + π2

2 in |n � 2J 〉 1.087 0.949 0.863 0.754 0.636 0.372
2
J

α4

4 + π2

2 in |n � +∞〉 1.087 0.950 0.863 0.754 0.636 0.372
Exact, κ = 1

2J+1 0.950 0.869 0.808 0.722 0.620 0.370
Exact, κ = 1

2J−1 0.895 0.776 0.707 0.625 0.537 0.334

diagonalized in the infinite phonon space; practically the space
is enlarged until convergence is reached. However, there exists
a maximal phonon number, close to the active valence particle
number in the system. Applying the phonon creation operator
A† too many times to the ground state, we run out of valence
particles. We call this finite phonon space “physical space.”
Only if, for example, the first excitation energy has reached
convergence within the physical space is it valid to formally
enlarge the Hilbert space to the infinite space. This point is
especially important for the soft modes, where amplitudes of
vibrations are large and may exceed the range (maximal 〈α2〉)
of the physical space.

We illustrate this problem in the Lipkin model, where we
know the physical space exactly. The HPT (58) maps the
angular momentum space {|JM〉} onto the phonon space {|n〉}
(see Ref. [9]):

|JM〉 → |n = M + J 〉, (69)

where |n〉 is the eigenstate of A†A. Because −J � M � J ,
we have 0 � n � 2J . By Eq. (67), 2J = n( + 1) is just the
valence particle number.

Now we consider the possibility of diagonalizing Eq. (61)
in the infinite space. The negative �(04)π4/4 term causes
divergence. Thus, we have two steps of approximations: First,
the �(04)π4/4 term can be neglected when diagonalizing
Eq. (61) in the physical space {|n � 2J 〉}; second, the space
can be increased to the infinite space {|n � +∞〉}.

The negative �(04)π4/4 term is smaller than the π2/2 term
in the physical space (especially for the first few excited states)
on the ω2 > 0 side of the critical point. Equations (60) and (62)
give

|�(04)| =
∣∣∣∣ 1

4J + 4κJ 2 + 1/κ

∣∣∣∣ � 1

8J
. (70)

The equality sign in Eq. (70) holds at the critical point when
κ = κc = 1/(2J ). On the ω2 > 0 side

〈n|π4|n〉
〈n|π2|n〉 = (6n2 + 6n + 3)/(4v4)

(2n + 1)/(2v2)
� 6n2 + 6n + 3

2n + 1
, (71)

where the equality sign holds at the critical point when v2 =
1/2. Consequently,∣∣∣∣ 〈�(04)π4/4〉

〈π2/2〉
∣∣∣∣ <

1

2
· 1

8J
· 6J = 3

8
. (72)

The upper limit of Eq. (72) is reached at the critical point for
the state with the maximal number of phonons. We see that
in the physical space the negative �(04)π4/4 term does not
reverse the order of states. For the first few excited states the
upper limit in Eq. (72) is actually much smaller, of the order
1/J , because the upper limit in Eq. (71) is of the order 1.

The space can be safely increased to the infinite space
when J is large enough. The range of the physical space 〈n =
2J |α2|n = 2J 〉 ∼ J increases linearly with J . The zero-point
vibrations 〈α2〉 in the first few excited states also increase, but
much slower. On the ω2 > 0 side, an upper limit is obtained
when dropping the harmonic potential ω2α2/2 in Eq. (61), in
which case 〈α2〉 ∼ (�(40))−

1
3 ∼ J

1
3 . However, it is not justified

when the collectivity is not so large, or if �(40) is numerically
small (thus large zero-point vibrations; see Sec. V B).

We do a numerical example to illustrate the above two steps
of approximations. The results for the first excitation energy
E1 − E0, at the critical point ω2 = 0, are presented in Table I.
In the last two lines Eq. (57) is diagonalized directly in the
{|JM〉} space, where κ takes the critical value corresponding
to ω2 = 0. In the last line the critical κ is calculated by the
RPA secular equation (65), with n = 1. In the second-to-last
line the critical κ is calculated from

ω2 ≈ 1 − 4κ2(J 2 + J ). (73)

Equation (73) is better than Eq. (62) because it is accurate not
only in the leading order but also in the next order of 1/J .

The difference between line 1 and line 4 comes from
neglecting higher orders in 1/J of �(mn); between line 1 and
line 2 from neglecting the negative − 1

8J
π4

4 term; between line
2 and line 3 from increasing the space. We see that they agree
quite well, and better for larger J . The difference between line
4 and line 5 is because the RPA secular equation is accurate in
the leading order of 1/J but not in the next order, which is the
source of the biggest error in our method.

In summary, we argue that the existence of a finite
physical boson space is general, in which the bosonic Hamil-
tonian should be diagonalized. This Hamiltonian may have
“divergent-looking” terms [e.g., the negative �(04) term in
Eq. (61)], which are indeed well behaved in the finite physical
space.

However, in general, the exact physical space is unknown.
Further approximations are needed if the microscopically
calculated (e.g., by GDM) bosonic Hamiltonian is used to
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reproduce the spectrum of the original fermionic Hamiltonian.
First, the “divergent” terms must be small and have little
influence on the interested quantities; thus, they can be
dropped. Second, the interested quantities must have reached
convergence within the physical space; thus, formally the
bosonic Hamiltonian (without the “divergent” terms) can
be diagonalized in the infinite boson space. If the above
two conditions are not satisfied, the bosonic Hamiltonian
encounters serious difficulties or might be inapplicable in
reproducing the correct spectrum.

V. FACTORIZABLE FORCE MODEL

Here we consider the factorizable force model where the
GDM method provides approximate analytical results. They
will be compared with the exact results obtained by the
shell model diagonalization. First we introduce a Hermitian
multipole operator,

Q =
∑

12

q12a
†
1a2. (74)

For simplicity we assume q12 is real; its Hermiticity implies
q12 = q21. Furthermore, we assume that Q is time even. The
model Hamiltonian is

H =
∑

1

ε1a
†
1a1 + 1

4

∑
1234

(−κq14q23 + κq13q24)a†
1a

†
2a3a4.

(75)

By definition of this model, the two-body part is different from

− κ

2
Q · Q = −κ

2

∑
12

(qq)12a
†
1a2

+ 1

4

∑
1234

(−κq14q23 + κq13q24)a†
1a

†
2a3a4 (76)

by a one-body term.

A. The GDM method

The mapping of Q is performed by substituting Eq. (14)
into Eq. (74):

Q{R} ≡ Tr{qR}
= Tr{qρ} + Tr{qr (10)}α + Tr{qr (01)}π + Tr{qr (20)}α

2

2

+ Tr{qr (02)}π
2

2
+ Tr{qr (11)} {α, π}

2
+ · · ·

= Q(00) + Q(10)α + 0 · π + Q(20) α
2

2

+Q(02) π
2

2
+ 0 · {α, π}

2
+ · · · , (77)

where Q(mn) = Tr{qr (mn)}. If n is odd, Q(mn) vanish because
we assume that Q is time even. All Q(mn) are real because Q

is Hermitian. The self-consistent field becomes

W {R}12 =
∑

34

(−κq12q34 + κq14q32)R43

≈ −κq12

∑
34

q34R43 = −κq12Q{R}, (78)

where we make the usual approximation keeping only the
“coherent” summation. This is obvious in the harmonic order,
where the justification can be r

(10)
43 ∼ q43; for higher orders

this approximation is discussed in Appendix D. Substituting
Eq. (77) into Eq. (78) we obtain the expansion of W {R}12.

Below we summarize the main results. Details including
solutions for r

(mn)
12 are given in Appendix E. In the mean-field

order we solve the HF equation (16):

[f, ρ]12 = 0, f12 = Z12 − κQ(00)q12. (79)

Having in mind a spherical mean field, we assume that in the
solution Q(00) = Tr{qρ} = 0. Thus, f and Z are the same,
e1 = ε1.

In the harmonic order the RPA secular equation (30)
becomes

1 = −κ
∑

12

|q12|2n12e12

(e12)2 − ω2
. (80)

The normalization condition (32) becomes

1 = −(κQ(10))2
∑

12

|q12|2n12e12

[(e12)2 − ω2]2
. (81)

For higher orders we give the leading order expressions in
ω2, following the procedure of Sec. III. In the cubic order,
Eq. (53) becomes

�(30) .= (κQ(10))3

⎛
⎝∑

e1 �=e2

[
q,
(

n
e

: q
)]

12q21

e12

+
∑

e1=e1′

∑
2

q12q21′q1′1n12

(e12)2

)
, (82)

where we have introduced notations for the weight factors
( n

e
: q)12 ≡ n12

e12
q12. In Eq. (82), the substitution of κQ(10) by

the leading order of Eq. (81) gives �(30)
c . Another equation

becomes

�(12) .= −2
Q(20)

Q(10)
+ 4(κQ(10))2�(30)

∑
e1 �=e2

( n

e5
: q
)

12
q21

+ 2(κQ(10))3 ·
⎛
⎝2

∑
e1 �=e2

[
q,
(

n
e

: q
)]

12q21

(e12)3

+
∑
e1 �=e2

[
q,
(

n
e2 : q

)]
12q21

(e12)2
−
∑

e1=e1′

∑
2

q12q21′q1′1n12

(e12)4

⎞
⎠.

(83)

Equation (83) determines Q(20) as a function of �(12).
We summarize the results in this order as follows: There

are two undetermined parameters �(12)
c and Q(02)

c ; �(30)
c is fully

determined; Q(20)
c and r

(20)
c12 , r (11)

c12 are determined as a function of
�(12)

c ; r (02)
c12 is determined as a function of �(12)

c and Q(02)
c . In the

present model Q(20)
c , Q(02)

c play the role of the “undetermined
overall factor” in w

(20)
12 , w

(02)
12 of Sec. III B, respectively.
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The quartic potential term (54) becomes

�(40) .=2(κQ(10))2(�(30))2
∑
e1 �=e2

( n

e5
: q
)

12
q21 − �(30)�(12) + (κQ(10))3�(30) ·

⎧⎨
⎩2

∑
e1 �=e2

[
q,
(

n
e

: q
)]

12q21

(e12)3
+
∑
e1 �=e2

[
q,
(

n
e2 : q

)]
12q21

(e12)2

+
∑
e1 �=e2

[
q,
(

n
e3 : q

)]
12q21

e12
+ 2

∑
e1=e1′

∑
2

n12q12q21′q1′1

(e12)4

}
+ 2(κQ(10))4 ·

⎧⎨
⎩
∑
e1 �=e2

∑
e3(�=e2)

q13
[
q,
(

n
e

: q
)]

32q21

e12e32

+
∑
e1 �=e2

∑
e2′ (=e2)

∑
3

q12′q2′3q32n23q21

e12(e23)2
+ 2

3

∑
e1=e1′

∑
e2(�=e1)

[
q,
(

n
e

: q
)]

12q21′q1′1

(e12)2
+1

3

∑
e1=e1′

∑
e2(�=e1)

[
q,
(

n
e2 : q

)]
12q21′q1′1

e12

⎫⎬
⎭ . (84)

In Eq. (84) there is an undetermined parameter �(12).

B. Two-level model

Here the GDM method is compared with the exact diago-
nalization in a simple two-level model (see Fig. 1). The model
has two s.p. levels with energies ± 1

2 (the spacing is the energy
unit), each with degeneracy . There are N =  particles.
The nonzero matrix elements of q are as follows: vertical
q12 = q21 = 1, q11′ = a/b for the nearest neighbors of the
+ 1

2/ − 1
2 s.p. levels (the leftmost and rightmost s.p. levels are

also connected by a/b). Each s.p. level 1 is connected to only a
few (three) other s.p. levels by q12; thus, the approximation in
Eq. (78) is justified, as explained in Appendix D. In summary,
the interaction has three parameters: overall strength κ , and
ratios a, b.

In the mean-field order, Q(00) = ∑
1 n1q11 = 0 because

q11 = 0. Hence, s.p. energies e are the same as ε. In
the harmonic order, only the vertical q12 = q21 = 1 matrix
elements contribute. The RPA secular equation (80) becomes

1 − ω2 = 2κ. (85)

Using Eq. (85) the normalization condition (81) gives the
collective amplitude

(Q(10))2 = 2. (86)

In the cubic anharmonicity, �(30)
c = 0 by Eq. (82), because

there is no way to complete a three-body loop. In the quartic
anharmonicity, �(40)

c is calculated from Eq. (84):

�(40)
c = 1


· [1 − 2(a − b)2]. (87)

The numerical diagonalization is done at  = 8; thus, κc =
1/16 and �(40)

c = [1 − 2(a − b)2]/8.

FIG. 1. Single-particle level scheme for the example in Sec. V B.
“a,” “b,” and “1” are nonzero matrix elements of the operator q.

First, we set the parameters a = b = 0. Figure 2 shows the
first excitation energy E1 − E0 as a function of κ (for now
ignore the two dotted lines “a = b = 0.353” and “a = −b =
0.353”). As κ increases to the critical value, the RPA frequency
ω drops to zero, while E1 − E0 with the quartic potential term
�(40) remains finite and agrees well with the exact results. This
term restores the stability of the system near the critical point.
We emphasize that we have replaced �(40) with �(40)

c = 1/8 in
Eq. (47); thus, we are making a big mistake when ω2 is large.
However, it does not matter too much because in this region
ω2α2/2 dominates over �(40)α4/4.

Next, we consider the case of nonzero a and b. Both the
exact E1 − E0 and our collective Hamiltonian are invariant
under the change (a, b) → (−a,−b); thus, it is enough to
consider only positive a. From the three lines of Fig. 2 “a =
b = 0,” “a = b = 0.353,” and “a = −b = 0.353,” we see that
the exact E1 − E0 depends on a − b, but is almost independent

FIG. 2. (Color online) The first excitation energy E1 − E0 in the
factorizable force model, as a function of κ . The red circles result
from diagonalizing ω2α2

2 + π2

2 + 1
4 · α4

8 in the infinite phonon space.
The black triangles give the RPA frequency ω; this corresponds to
diagonalizing ω2α2

2 + π2

2 . The black squares, green crosses, and purple
pluses are the exact shell model results with different values of a

and b (two lines “a = b = 0” and “a = b = 0.353” closely overlap
and are indistinguishable on the figure). We mention that the second
excitation energy E2 − E0 at κ = κc = 1/16 with a = b = 0 is also in
good agreement; the exact one is 1.236, while the GDM gives 1.269.
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of a + b. This is in agreement with our collective Hamiltonian:
ω is independent of a, b (in leading order of 1/); �(40)

depends on a − b but not on a + b. In the region of small κ , the
ω2 potential term dominates; thus, E1 − E0 depends weakly
on a − b. In the region of κ ≈ κc, the �(40) potential term is
important; thus, E1 − E0 depends relatively strongly on a − b.

As a = −b increases, �(40)
c decreases. At some point

�(40)
c becomes small numerically and π2

2 + �
(40)
c α4

4 no longer
describes the behavior of the system near the critical point.
First, other anharmonic terms, suppressed by powers of 1/,
may become important (see Appendix F ). Second, even if
there are no other anharmonicities, the description breaks down
because the increasing zero-point vibrations 〈α2〉 will exceed
the range of the physical space, as discussed in Sec. IV D.
The current model has a larger vibrational amplitude than the
Lipkin model owing to a smaller �(40)

c (∼1/ versus 4/).
Figure 3 shows E1 − E0 as a function of the parameter a = −b

at the critical point ω = 0 (κ = κc = 1/16). E1 − E0 depends

on the space in which we diagonalize π2

2 + �
(40)
c α4

4 . Unlike in
the Lipkin model, we do not know a priori what the physical
space is in the current model. However, it should be similar to
that of the Lipkin model with eight particles. Thus, we choose
nmax = 8 for both two finite spaces, each with a reasonable u of
Eq. (59). When a = −b is small, say, less than 0.2, E1 − E0 of
different spaces are close and all follow the trend of the exact
E1 − E0. When a = −b is large, E1 − E0 of different spaces
differ substantially, implying that 〈α2〉 has reached the edge
of the physical space; thus, the bosonic approach becomes
invalid. If in the current model we increase the collectivity
 = N , it is expected that E1 − E0 from the GDM method will
agree with the exact E1 − E0 up to a larger value of a = −b.

FIG. 3. (Color online) The first excitation energy E1 − E0 in the
factorizable force model, as a function of the parameter a = −b,
at the critical point ω = 0 (κ = κc = 1/16). The black squares
show the exact shell model results. The red circles are obtained
by diagonalizing π2

2 + 1
4 · [1−2·(a−b)2]α4

8 in the infinite phonon space.
The blue triangles and the green inverted triangles are obtained by
diagonalizing the same Hamiltonian in two different finite phonon
spaces, specified by nmax and u; u is the canonical transformation
parameter defined in Eq. (59), and nmax is the maximal number of
phonons.

In summary, near the critical point ω2 ≈ 0, the next even
potential term �(40) dominates the dynamics of the system,
provided it is positive and large. �(40) should be large enough
such that other anharmonicities were negligible, and zero-
point vibrations 〈α2〉 were within the finite physical boson
space. A larger collectivity factor  helps both, because
other anharmonicities are suppressed by powers of −1 (see
Appendix F ), and the range of the physical space grows as .

VI. REALISTIC NUCLEAR APPLICATION

There are three complications in realistic applications of the
GDM method. A realistic nucleus has two kinds of fermions;
symmetries, for example, rotational invariance, need to be
respected; pairing correlations should be considered.

As in the BCS theory we substitute the original system by
a grand-canonical ensemble, in which the chemical potential
is fixed by the average particle number of the ground state
in the mean-field order. In this case we need to consider
e.o.m. of not only a

†
2a1 but also a2a1. A good treatment of the

superfluid ground state, on top of which collective excitations
are formed, is essential.

The collective mode operators αλμ, πλμ have quantum
numbers corresponding to symmetries of the Hamiltonian. In
this section we keep only the quadrupole mode which is the
most important one at low energy. The case of interacting
modes (quadrupole and octupole) is discussed briefly in
Appendix L.

This section is a straightforward generalization of Sec. II.
The details of the derivation are given in Appendix G.

A. Preparation

The microscopic fermionic Hamiltonian for the canonical
ensemble is still given by Eq. (1): We include the −μN̂ term
in Ẑ, and the s.p. index 1, 2, . . . , can run over protons and
neutrons. Isospin may not be conserved for some effective
interactions. We do not write V in the form V J

(j1j2),(j3j4); Z12

and V1234 carry all the symmetries of H implicitly.
Now the reference state |�〉 does not have definite particle

number,

〈�|a†
1a2|�〉 ≡ ρ21, 〈�|a1a2|�〉 ≡ κ21. (88)

κ is the pair correlator [28]. Also, we need two GDM operators,

R12 ≡ a
†
2a1,K12 ≡ a2a1, (89)

and two self-consistent field operators,

W {R}12 ≡
∑

34

V1432R34, f {R} ≡ Z + W {R}, (90)

�{K}12 ≡ 1

2

∑
34

V1234K43. (91)

It will be convenient to introduce (RT , f T are transpose)

D{R,K} ≡
(

R K

K† I − RT

)
,

(92)

S{R,K} ≡
(

f {R} �{K}
�†{K} −f T {R}

)
.
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The collective mode operators α
†
λμ, π

†
λμ carry quantum

numbers of angular momentum λ, its projection μ, and parity
(−)λ. The coordinate α

†
λμ is time even, and the momentum π

†
λμ

is time odd. Their Hermitian properties are

α
†
λμ = (−)λ−μαλ−μ, π

†
λμ = (−)λ−μπλ−μ. (93)

The commutation relation is given by

[α†
λμ, πλ′μ′] = iδλλ′δμμ′ . (94)

Here we consider only the quadrupole mode λ = 2 and drop
the label λ.

The collective Hamiltonian replacing Eq. (4) should be
written with correct vector coupling of the operators:

H = E0 + ω2

2

√
5(α × α)0

0 + 1

2

√
5(π × π )0

0

+ �(30)

6

√
5{(α × α)2, α}0

0 + �(12)

4

√
5{α, (π × π )2}0

0

+ �(40)

4

√
5((α × α)0 × (α × α)0)0

0

+ �(04)

4

√
5((π × π )0 × (π × π )0)0

0

+
∑

L=0,2,4

�
(22)
L

8

√
5{(α × α)L, (π × π )L}0

0. (95)

H is Hermitian, time even, and invariant under rotation and
inversion.

B. Equations of motion in the collective band

Following the same procedure as in Sec. II, we find e.o.m.
replacing those in Secs. II B–II E. Matrices D(mn), S(mn) are

coefficients of expanding D{R,K}, S{R,K} over collective
operators α†

μ, π †
μ. In the mean-field order we obtain the HFB

equation

[S{ρ, κ},D{ρ, κ}] = [S(00),D(00)] = 0. (96)

In the harmonic order we obtain the QRPA equations

π †
μ : iD(10)

μ = [
S(00),D(01)

μ

]+ [
S(01)

μ ,D(00)
]
, (97)

α†
μ : −iω2D(01)

μ = [
S(00),D(10)

μ

]+ [
S(10)

μ ,D(00)
]
. (98)

In the cubic order:

(α† × α†)Lμ/2, L = 0, 2, 4 : − 2iω2D
(11)
Lμ − 2iδL,2�

(30)D(01)
μ

= [
S(00),D

(20)
Lμ

]+ [
S

(20)
Lμ ,D(00)

]+ 2
[
S(10),D(10)

]L
μ
, (99)

(π † × π †)Lμ/2, L = 0, 2, 4 : 2iD
(11)
Lμ − iδL,2�

(12)D(01)
μ

=[
S(00),D

(02)
Lμ

]+[S(02)
Lμ ,D(00)

]+2
[
S(01),D(01)

]L
μ
,

(100)

{α†, π †}Lμ/2, L = 0, 1, 2, 3, 4 :

−iδL,evenω
2D

(02)
Lμ + iδL,evenD

(20)
Lμ + iδL,2�

(12)D(10)
μ

= [
S(00),D

(11)
Lμ

]+ [
S

(11)
Lμ ,D(00)

]
+ [

S(10),D(01)
]L
μ

− [
D(10), S(01)

]L
μ
. (101)

In the quartic order:

{(α† × α†)lL , α†}Lμ/6, L = 0, 2, 3, 4, 6 : − 3i

2
ω2

∑
l=0,2,4

D
(21)
Llμ · γ L

l,lL
− 3i(−)L�(30)D

(11)
Lμ · γ L

2,lL
− 3iδL2�

(40)D(01)
μ · γ L=2

0,lL

= [
S(00),D

(30)
L

]+ [
S

(30)
L ,D(00)]+ 3

2

∑
l=0,2,4

([
S

(20)
l , D(10)]L

μ
− [

D
(20)
l , S(10)]L

μ

) · γ L
l,lL

, (102)

{(α† × α†)l , π †}Lμ/4; l = 0, 2, 4; L = 0, 1, 2, 3, 4, 5, 6 :

− 2i(−)Lω2
∑

l′=0,2,4

D
(12)
Ll′μ · gL

l,l′ + 2i

3
δl,lLD

(30)
Lμ + 4i

3
D

(30)
Lμ · gL

l,lL
− 2iδl2�

(30)D
(02)
Lμ + 2i�(12)D

(20)
Lμ · gL

l,2 + iδL2�
(22)
l D(10)

μ

= [
S(00),D

(21)
Llμ

]+ [
S

(21)
Llμ,D(00)

]+ [
S

(20)
l , D(01)

]L
μ

− [
D

(20)
l , S(01)

]L
μ

+ 2
∑

l′=0,1,2,3,4

([
S

(11)
l′ ,D(10)

]L
μ

− [
D

(11)
l′ , S(10)

]L
μ

) · gL
l,l′ ,

(103)

{α†, (π † × π †)l}Lμ/4; l = 0, 2, 4; L = 0, 1, 2, 3, 4, 5, 6 : − 2i

3
δl,lL (−)Lω2D

(03)
Lμ − 4i

3
ω2D

(03)
Lμ (−)L−lL · gL

l,lL

+ 2i(−)L
∑

l′=0,2,4

D
(21)
Ll′μ · gL

l,l′ − iδl2�
(12)D

(11)
Lμ + 2i(−)L�(12)D

(11)
Lμ · gL

l,2 − iδL2�
(22)
l D(01)

μ

= [
S(00),D

(12)
Llμ

]+ [
S

(12)
Llμ,D(00)

]+ [
S(10),D

(02)
l

]L
μ

− [
D(10), S

(02)
l

]L
μ

+ 2
∑

l′=0,1,2,3,4

([
S

(11)
l′ ,D(01)

]L
μ

− [
D

(11)
l′ , S(01)

]L
μ

)
(−)L−l′gL

l,l′ ,

(104)
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{(π † × π †)lL , π †}Lμ/6, L = 0, 2, 3, 4, 6 :
3i

2
(−)L

∑
l=0,2,4

D
(12)
Llμ · γ L

l,lL
− 3i

2
�(12)D

(02)
Lμ · γ L

2,lL
+ 3iδL2�

(04)D(10)
μ · γ L=2

0,lL

= [
S(00),D

(03)
L

]+ [
S

(03)
L ,D(00)

]+ 3

2

∑
l=0,2,4

([
S

(02)
l , D(01)

]L
μ

− [
D

(02)
l , S(01)

]L
μ

) · γ L
l,lL

. (105)

The numerical coefficients γ L
l,l′ and gL

l,l′ are defined by

{(α × α)l , α}Lμ = γ L
l,l′ · {(α × α)l

′
, α}Lμ,

(
γ L

l,l = 1
)
, (106)

1

8
{{α, π}l′ , α}Lμ =

∑
l=0,2,4

gL
l,l′ · 1

4
{(α × α)l , π}Lμ. (107)

Values of γ L
l,l′ and gL

l,l′ are given in Appendix I. lL in {(α† ×
α†)lL , α†}Lμ/6 is the choice of basis, different choices of lL do
not influence results.

There exists a relation involving cubic and quartic an-
harmonicities, replacing Eq. (44). Setting L = 2, keeping
only (D/S)(30/21/12/03) and �(40), �

(22)
l , �(04) terms, flL ×

Eq. (102) + 1
2ω2 ∑

l=0,2,4 fl × Eq. (104) gives

L = 2 : − iω2 ·
(

1

2

∑
l=0,2,4

fl · D
(21)
Llμ + ω2flL · D

(03)
Lμ

)

=
[
S(00),

(
flL · D

(30)
L + 1

2
ω2

∑
l=0,2,4

fl · D
(12)
Llμ

)]
+
[(

flL · S
(30)
L + 1

2
ω2

∑
l=0,2,4

fl · S
(12)
Llμ

)
,D(00)

]

+ 3i�(40)D(01)
μ · f0 + i

2
ω2

∑
l=0,2,4

fl · �
(22)
l D(01)

μ + · · · . (108)

1
2

∑
l=0,2,4 fl × Eq. (103) + ω2flL × Eq. (105) gives

L = 2 :i ·
(

flL · D
(30)
Lμ + 1

2
ω2

∑
l=0,2,4

fl · D
(12)
Llμ

)

=
[
S(00),

(
1

2

∑
l=0,2,4

fl · D
(21)
Llμ + ω2flL · D

(03)
L

)]
+
[(

1

2

∑
l=0,2,4

fl · S
(21)
Llμ + ω2flL · S

(03)
L

)
,D(00)

]

− i

2

∑
l=0,2,4

fl · �
(22)
l D(10)

μ − 3iω2�(04)D(10)
μ · f0 + · · · , (109)

where fl is defined in Eq. (I7). A solvability condition exists
because the variable parts of Eqs. (108) and (109) have the
same structure as the QRPA equations (97) and (98).

Following the procedure in Sec. III, we can obtain expres-
sions of �(30)

c and �(40)
c . In the next section we do this explicitly

for the quadrupole plus pairing model.

VII. QUADRUPOLE PLUS PAIRING MODEL

In this section the GDM method is applied to the quadrupole
plus pairing Hamiltonian. As was understood long ago [29,30],
this model combines the most important nuclear collective
phenomena in particle-particle (pairing) and particle-hole
(quadrupole mode) channels. The approximate analytical
results of the GDM method are compared below with the
exact results of the shell model diagonalization. The operator

of multiple moment is defined as

Q
†
λμ{R} = T r{q†

λμR} =
∑

12

q
†
λμ12a

†
1a2, (110)

q
†
λμ = fλ(r) · iλYλμ(θ, φ), (111)

where fλ(r) is real. The definition of Eq. (111) differs from the
“usual” one in two aspects: A factor iλ is included, and q

†
λμ ∼

Yλμ instead of qλμ (q†
λμ creates projection μ). The Hermitian

properties are

q
†
λμ = (−)λ−μqλμ,Q

†
λμ = (−)λ−μQλμ. (112)

The pairing operators P and P † are defined by

P † = 1

2

∑
1

a
†
1a

†
1̃
, P = 1

2

∑
1

a1̃a1, (113)
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where 1̃ is the time-reversed s.p. level of 1. P has angular
momentum 0 and positive parity. P + P † is time even, P − P †

is time odd.
The quadrupole plus pairing Hamiltonian is (dropping

λ = 2)

H =
∑

1

(ε1 − μ)a†
1a1 − G

4

∑
12

a
†
1a

†
1̃
a2̃a2

+ 1

4

∑
1234

∑
μ

(−κq
†
μ14qμ23 + κq

†
μ13qμ24)a†

1a
†
2a3a4.

(114)

Approximately, this Hamiltonian can be written as H ≈∑
1(ε1 − μ)a†

1a1 − GP †P − 1
2κ
∑

μ Q†
μQμ. The difference

is in a one-body term originating from the Q · Q part. H

is Hermitian and time even, which implies real G, κ , ε1 = ε1̃.
In a realistic nucleus there are protons and neutrons; formally,
we can still use Eq. (114) if the quadrupole force strengths
are the same for proton-proton, neutron-neutron, and proton-
neutron (κp = κn = κpn = κ), while remembering the pairing
is treated for protons and neutrons separately (Gp �= Gn). We
assume this is the case.

A. The GDM method

1. BCS

In the pairing plus quadrupole model the HFB equation (96)
becomes the BCS equation:

� ·
(

1 − G

4

∑
1

1

E1

)
= 0, (115)

e1 = ε1 − μ − G(v1)2, (116)

E1 =
√

(e1)2 + (�)2, (117)

(u1)2 = 1

2

(
1 + e1

E1

)
, (v1)2 = 1

2

(
1 − e1

E1

)
, (118)

N =
∑

1

(v1)2. (119)

BCS amplitudes u1 = u1̃, v1 = v1̃ are real. Pairing energy �

is a real number, not to be confused with the field �{K} in
Eq. (91) that is an operator matrix. E1 is the quasiparticle
energy. The chemical potential μ is fixed by Eq. (119). The
gap equation (115) has a nontrivial solution � > 0 only if G

is greater than its critical value Gc [30]. For convenience we
introduce

ξ
(2)
μ12 ≡ (u1v2 + u2v1)

(E1 + E2)2
qμ12, ημ12 ≡ (u1u2 − v1v2)qμ12. (120)

2. QRPA

The QRPA secular equation corresponding to Eq. (80) is
given by

1 = κ
∑

12

(E1 + E2)|ξμ21|2
(E1 + E2)2 − ω2

. (121)

The solution ω2 is independent of μ. Results in the form
of reduced matrix elements are given in Appendix K. The
normalization condition corresponding to Eq. (81) is

1 = (κQ(10))2
∑

12

(E1 + E2)|ξμ21|2
[(E1 + E2)2 − ω2]2

. (122)

3. Cubic anharmonicity

The cubic anharmonicity corresponding to Eq. (82) is

�(30) .= 3(κQ(10))3
∑

n1j1n2j2n3j3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

5

·
{

2 2 2
j1 j2 j3

}
· ξ

(1)†
‖12 ξ

(1)†
‖23 η

†
‖31, (123)

where ξ
(1)†
‖12 ≡ 〈n1j1‖ξ (1)†‖n2j2〉 is the reduced matrix element,

the convention for which is given in Appendix J. n1 combines
all other quantum numbers specifying a s.p. level, except j1.

We give the expression of P (20) which will appear in �(40)
c :

P (20) ·
⎧⎨
⎩1 − G

∑
n1j1

(2j1 + 1)
[(u1)2 − (v1)2]2

4E1

⎫⎬
⎭

.= −(κQ(10))2
∑

n1j1n2j2

(2j1 + 1) ·
√

2j2 + 1

{
2 2 0
j1 j1 j2

}

·
[
2u1v1 · ξ

(1)†
‖12 ξ

(1)†
‖21 − (u1)2 − (v1)2

E1
· η

†
‖12ξ

(1)†
‖21

]
. (124)

P (20) is divergent when G is greater than but close to Gc. In
this region of the pairing phase transition, � is small, and
P (20) ∼ 1/�. The GDM + BCS method is not valid in this
region: In the mean-field order the BCS solution already fails,
as is well known.

4. Quartic anharmonicity

The quartic anharmonicity corresponding to Eq. (84) is

f0 · �(40) .= −2f2 · (κQ(10))2(�(30))2Tr
[
ξμξ (5)†

μ

]
− f2 · �(30)�(12) − f2 · �(30)(κQ(10))3

· (Tr
[{ξ (1), ξ (3)}L=2

μ η†
μ

]+ Tr
[{η, ξ (3)}L=2

μ ξ (1)†
μ

]
+ 2Tr

[{η, ξ (1)}L=2
μ ξ (3)†

μ

]+ Tr
[{η, ξ (2)}L=2

μ ξ (2)†
μ

])
− f0 · GP (20)(κQ(10))2

∑
12

(u1v1 + u2v2)ξμ12ξ
(2)†
μ21

+ f0 · GP (20)(κQ(10))2 ·
∑

12

{
(u1)2 − (v1)2

2E1

+ (u2)2 − (v2)2

2E2

}
ξ

(1)
μ12η

†
μ21 + (κQ(10))4

∑
l=0,2,4

fl

· (Tr
[{ξ, (ξ (1) × ξ (1))l}L=2

μ ξ (1)†
μ

]
− Tr

[{η, {η, ξ (1)}l,(1)}L=2
μ ξ (1)†

μ

]
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− Tr
[{ξ (1), {η, ξ (1)}l,(1)}L=2

μ η†
μ

])
, (125)

where {η, ξ (1)}l,(1)
12 = {η, ξ (1)}l12/(E1 + E2). There is an unde-

termined parameter �(12) in Eq. (125). Values of numerical
factors fl are given in Appendix I.

B. Comparison with exact results

We compare the results of our method in a semirealistic
model with those of NUSHELLX [31]. There are 10 fermions of
one kind and four s.p. levels with energies:

s.p. levels 1p 1
2 0f 7

2 1p 3
2 0f 5

2
ε (MeV) −0.1 0.0 1.0 1.1

We take the radial wave functions to be harmonic oscillator
ones. In Eq. (111) we take f (r) to be r2 so q†

μ = −r̂2Y2μ(θ̂ , φ̂).
For convenience we make q†

μ dimensionless by combining its
original dimension with κ (see the end of Appendix J ). The
model space is similar to the realistic pf shell, but the 1p 1

2 and
1p 3

2 levels are inverted to increase collectivity: In the current
case the q matrix elements (q1p 1

2 ,0f 5
2

and q1p 3
2 ,0f 7

2
) are large

between the s.p. levels above and below the Fermi surface.
We did a set of calculations with increasing pairing strength

G. At each value of G, the strength κ of the Q · Q force is
taken to be at the critical value κc such that the RPA frequency
ω2 = 0. The results are summarized in Table II. For clarity, we
draw the last three lines of Table II as Fig. 4. The coefficient
�(40) in Table II is calculated by Eq. (125) setting �(12) = 0
(dropping the −f2 · �(30)�(12) term). A nonzero �(12) term in
its reasonable range does not influence �(40) much, because
in the current model �(30) is small owing to the approximate
symmetry with respect to the Fermi surface (see Table II).
Then “GDM E2+” is the first excited state by diagonalizing
Eq. (95), setting �(12) = �(04) = �

(22)
L = 0 (ω2 = 0 because

κ takes its critical value).
The critical value of the pairing strength Gc is around

0.11–0.12 MeV. When G < Gc, the BCS solution � = 0, and
μ can be anywhere between ε0f 7

2
= 0 and ε1p 3

2
= 1.0 MeV.

We checked that in this case our results (121)–(125) do not

FIG. 4. (Color online) Excitation energies (from Table II) in the
quadrupole plus pairing model as a function of the pairing strength
G at the critical point ω = 0 (κ = κc). The black squares and red
circles show the exact excitation energy of the first 2+ and 4+ states,
respectively, “NUSHELLX E2+

1
” and “NUSHELLX E4+

1
” in Table II. The

blue triangles give “GDM E2+ ” from Table II.

depend on the choice of μ. In Table II we fix μ at 0.5 MeV. In
the region where G is greater than but close to Gc, our method
is invalid as discussed under Eq. (124). This is illustrated in
Fig. 4 by the “kink” on the “GDM E2+” curve near G ∼ 0.12.

In Fig. 4 “exact E2+” and “exact E4+” are the exact results
by NUSHELLX. At G = 0 the first excited state is 4+ instead
of 2+. In this case the 4+ state is a s.p. excitation from 0f 7

2

to 0f 5
2 ; the 2+ state is a collective state with approximately

half holes in 1p 1
2 and 0f 7

2 levels, half particles in 1p 3
2 and

0f 5
2 . As G increases, the collective 2+ state becomes the first

excited state. When G is large enough, � dominates over the
original s.p. spacing ε, and the results become stable. As an
example, at G = 0.30 MeV, the quasiparticle continuum starts
at ∼3.5 MeV; from the second excited state 0+ at 3.506 MeV,
to 4.153 MeV, there are 15 states with JP = 0+, 2+, 4+, 6+.
The first excited state 2+ at 2.438 MeV should be identified

TABLE II. Results of the quadrupole plus pairing model at different pairing strength G. All quantities are in units of MeV. � is the solution
of Eq. (115). The chemical potential μ is the solution of Eq. (119). κc is the critical κ such that ω2 in Eq. (121) becomes zero. �(30) is given
by Eq. (123). �(40) is given by Eq. (125) setting �(12) = 0. “GDM E2+ ” is the excitation energy of the first 2+ state by diagonalizing Eq. (95)
for ω2 = �(12) = �(04) = �

(22)
L = 0. “NUSHELLX E2+

1
” is the exact excitation energy of the first 2+ state by diagonalizing Eq. (114), in which

G and κ are given by G and κc in the table. Similarly, “NUSHELLX E4+
1

” is the exact excitation energy of the first 4+ state.

G 0 0.03 0.06 0.09 0.11 0.12 0.15 0.18 0.21 0.25 0.30

� 0.0 0.0 0.0 0.0 0.0 0.066 0.453 0.672 0.862 1.096 1.374
μ 0.5 0.5 0.5 0.5 0.5 0.454 0.444 0.429 0.415 0.395 0.370
κc 0.102 0.105 0.107 0.110 0.112 0.113 0.113 0.122 0.135 0.154 0.179
�(30) −0.160 −0.173 −0.188 −0.203 −0.213 −0.219 −0.234 −0.270 −0.310 −0.378 −0.474
�(40) 0.483 0.526 0.572 0.621 0.655 0.616 1.185 1.918 2.901 4.683 7.830
GDM E2+ 0.882 0.908 0.933 0.959 0.976 0.955 1.194 1.405 1.614 1.894 2.249
NUSHELLX E2+

1
0.855 0.892 0.944 1.023 1.106 1.158 1.353 1.552 1.764 2.059 2.438

NUSHELLX E4+
1

0.778 0.827 0.927 1.110 1.284 1.383 1.705 2.076 2.465 2.987 3.631
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as a collective state, stabilized at around 60% within the gap.
Higher collective states, if not fragmented, are deeply inside
the quasiparticle continuum. We did not make the effort to
identify them.

It is seen in Fig. 4 that the first excited state of the GDM
method (“GDM E2+”) agrees well with the exact result (“exact
E2+”) in general. On the G < Gc side, our E2+ does increase
with G although not rapidly enough. On the G > Gc side,
when � is not too small, the agreement is very good.

In summary, this section shows the potential of the GDM
method in doing realistic calculations. In medium and heavy
nuclei the pairing gap ∼2� ∼ 2 MeV, the critical region is
approximately bounded by |ω| < 1 MeV. Nuclei on the ω2 <

0 side are γ unstable. On the ω2 > 0 side, the whole region
can be calculated as in Fig. 2 [explained in the paragraph under
Eq. (87)].

VIII. CONCLUSIONS

The GDM method is promising in solving the longstanding
problem: constructing the collective bosonic Hamiltonian mi-
croscopically. The procedure is straightforward and consistent.
Results of the lowest orders, the well-known HFB and QRPA
equations, give us confidence to proceed to higher-order anhar-
monicities. The anharmonicities are important as the harmonic
potential ω2α2/2 becomes small or negative when going away
from closed shells. The GDM method provides a unified
description of different collective phenomena, including soft
vibrational modes of large amplitudes, γ -unstable potential,
and transition to static deformation. It maps the exact fermionic
e.o.m. onto the dynamics generated by approximate collective
operators. Here we used the phononlike operators; other
possibilities include rotational dynamics and the dynamics
corresponding to the symplectic symmetry or other group-
theoretical models. In such cases the GDM expansion should
be based on the group generators.

Section II discusses the general procedure of the GDM
method. In each order, a set of coupled linear equations is
solved in terms of lower-order results. At the current stage the
anharmonicities are not completely fixed; we find only one
relation (44) involving the cubic and quartic anharmonicities,
appearing in the third order as a solvability condition. In
Sec. III it is shown that around the critical point ω2 ≈ 0, we
are able to determine the cubic potential �(30) (53) and the
quartic potential �(40) (54). �(40) should be responsible for
restoring the stability of the system near the critical point,
if it is positive and large. This idea is then tested in three
models of increasing complexity: the Lipkin model (Sec. IV),
model with factorizable forces (Sec. V), and the quadrupole
plus pairing model (Sec. VII). The GDM method is only
responsible for calculating �(mn); other conditions are needed
if the resultant bosonic Hamiltonian is used to reproduce the
spectrum of the original fermionic Hamiltonian, as discussed
in the last two paragraphs of Sec. IV D. If these conditions are
not fulfilled, the approach of effective bosonic Hamiltonian
encounters serious difficulties. The conditions for quartic
potential (�(40)α4/4) dominance near the critical point are
discussed in the last paragraph of Sec. V B.

Calculations for realistic nuclei are in progress. However,
the pairing correlations need to be treated better than in the
BCS framework, because anharmonicities are sensitive to the
occupation numbers (u1, v1) of the superfluid ground state.
Unlike the QRPA secular equation (121), where terms in
the summation contribute coherently, in the expressions of
anharmonicities (123) and (125) different terms may cancel.
�(30) and �(40) depend on the balancing above and below
the Fermi surface; thus, they are sensitive to the occupation
numbers (u1, v1). Work is also in progress about the role
of �(30) on deformation, as well as the quadrupole-octupole
coupling in the presence of a low-lying octupole mode. The
realistic effective interactions (better than the quadrupole plus
pairing Hamiltonian) are to be used in the calculation. The
present paper sets the scene for the GDM method in the sense
that it is seen explicitly that there are no contradictions in
the solutions (Secs. II and VI), although at the current stage
we find only one constraint (44) on the anharmonicities. New
constraints, if found, would fix the anharmonicities completely
(for recent progress, see Ref. [32]).
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APPENDIX A: THREE-BODY FORCE

It is straightforward to include three-body forces in the
formulation. The microscopic Hamiltonian (1) includes a new
(antisymmetrized) term,

H (3) = 1

36

∑
123456

G123456a
†
1a

†
2a

†
3a4a5a6. (A1)

Under the definition

G{R}1256 ≡
∑

34

G123456R43,

(A2)
G{R,R}14 ≡

∑
23

G{R}1234R32,

the normal ordering Hamiltonian (10) acquires new terms,

〈�|H (3)|�〉 = 1
6 Tr[G{ρ, ρ}ρ],

(A3)
f (3) = 1

2G{ρ, ρ}, V (3) = G{ρ},
and a term 1

36

∑
123456 G123456N [a†

1a
†
2a

†
3a4a5a6]. In the e.o.m.

(12) f and V are replaced with the new ones including f (3)

and V (3) (W {R} is calculated from the new V ), and there are
two additional terms:

+1

4
[G{R2N }, ρ]12 + 1

12

∑
34567

(G134567N [a†
2a

†
3a

†
4a5a6a7]
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−G765432N [a†
7a

†
6a

†
5a4a3a1]), (A4)

where

G{R2N }16 ≡
∑
2345

G123456N [a†
2a

†
3a4a5]. (A5)

Formally, the HF and RPA equations are the same as before,
replacing f and W {R} with the new ones.

APPENDIX B: SATURATION PRINCIPLE FOR
SECTION II

Keeping only one-body terms in α and π ,

α =
∑

12

x12R21 =
∑

12

x12a
†
1a2, (B1)

π =
∑

12

p12R21 =
∑

12

p12a
†
1a2, (B2)

we have the following identities in the full space:

[R12, α] = [x,R]12, (B3)

[R12, π ] = [p,R]12, (B4)

where [x,R]12 = ∑
3(x13R32 − R13x32). Similarly to the ma-

nipulation of Eq. (12), we project Eqs. (B3) and (B4) onto
the collective subspace. Because α and π are collective
operators, we can substitute R by its boson expansion (14).
After calculating commutators on the left-hand side, we equate
coefficients of the same phonon structure: 1, α, π , α2

2 , . . ..
Equation (B3) gives

− ir
(01)
12 = [x, ρ]12 = x12(n2 − n1), (B5)

−ir (02) = [x, r (01)],−ir (11) = [x, r (10)]. (B6)

Equation (B4) gives

ir
(10)
12 = [p, ρ]12 = p12(n2 − n1), (B7)

ir (20) = [p, r (10)], ir (11) = [p, r (01)]. (B8)

Only the n1 �= n2 matrix elements of x and p are determined
from Eqs. (B5) and (B7). Higher-order expressions (B6) and
(B8) are approximate, saying that r (20/11/02) are completely
fixed by the the harmonic order solutions. In fact, the
two expressions of r (11) are not consistent with each other.
These defects are attributable to the neglected many-body
components in Eqs. (B1) and (B2), as explained in Appendix
C. The approximate expressions (B6) and (B8) are used below
to derive expressions of r

(mn)
1234 in terms of r

(mn)
12 .

In the full space we also have

[N [a†
4a

†
3a2a1], α]

= −
∑

5

x25N [a†
4a

†
3a1a5] +

∑
5

x15N [a†
4a

†
3a2a5]

−
∑

6

x64N [a†
6a

†
3a2a1] +

∑
6

x63N [a†
6a

†
4a2a1]

+ ir
(01)
24 N [a†

3a1] − ir
(01)
23 N [a†

4a1]

− ir
(01)
14 N [a†

3a2] + ir
(01)
13 N [a†

4a2], (B9)

where we have used Eq. (B5). Similarly,

[N [a†
4a

†
3a2a1], π ]

= −
∑

5

p25N [a†
4a

†
3a1a5] +

∑
5

p15N [a†
4a

†
3a2a5]

−
∑

6

p64N [a†
6a

†
3a2a1] +

∑
6

p63N [a†
6a

†
4a2a1]

− ir
(10)
24 N [a†

3a1] + ir
(10)
23 N [a†

4a1]

+ ir
(10)
14 N [a†

3a2] − ir
(10)
13 N [a†

4a2], (B10)

where we have used Eq. (B7). Again we project Eqs. (B9)
and (B10) onto the collective subspace, then substitute the
expansions (14) and (15). Both the left-hand side and the right-
hand side have no constant terms. This justifies the assumption
under Eq. (15): Terms linear in α and π are absent in the
expansion (15) of N [a†

4a
†
3a2a1] because they generate constant

terms in the left-hand side of Eqs. (B9) and (B10). The α and
π terms of Eqs. (B9) and (B10) give

r
(20)
1234 = r

(10)
14 r

(10)
23 − r

(10)
13 r

(10)
24 − r

(10)
24 r

(10)
13 + r

(10)
23 r

(10)
14 , (B11)

r
(02)
1234 = r

(01)
14 r

(01)
23 − r

(01)
13 r

(01)
24 − r

(01)
24 r

(01)
13 + r

(01)
23 r

(01)
14 , (B12)

r
(11)
1234 = r

(10)
14 r

(01)
23 − r

(10)
13 r

(01)
24 − r

(10)
24 r

(01)
13 + r

(10)
23 r

(01)
14 . (B13)

We mention that Eqs. (B9) and (B10) give the same expression
of r

(11)
1234 (B13). Using Eqs. (B6), (B8), and (B11)–(B13), the

α2/2, {α, π}/2, π2/2 terms of Eqs. (B9) and (B10) give

r
(30)
1234 = 3

2 (r (20)
14 r

(10)
23 − r

(20)
13 r

(10)
24 − r

(20)
24 r

(10)
13 + r

(20)
23 r

(10)
14 ),

(B14)

r
(03)
1234 = 3

2 (r (02)
14 r

(01)
23 − r

(02)
13 r

(01)
24 − r

(02)
24 r

(01)
13 + r

(02)
23 r

(01)
14 ),

(B15)

r
(21)
1234 = r

(20)
14 r

(01)
23 − r

(20)
13 r

(01)
24 − r

(20)
24 r

(01)
13 + r

(20)
23 r

(01)
14

+ 2r
(11)
14 r

(10)
23 − 2r

(11)
13 r

(10)
24 − 2r

(11)
24 r

(10)
13 + 2r

(11)
23 r

(10)
14 ,

(B16)

r
(12)
1234 = r

(10)
14 r

(02)
23 − r

(10)
13 r

(02)
24 − r

(10)
24 r

(02)
13 + r

(10)
23 r

(02)
14

+ 2r
(11)
14 r

(01)
23 − 2r

(11)
13 r

(01)
24 − 2r

(11)
24 r

(01)
13 + 2r

(11)
23 r

(01)
14 .

(B17)

Equations (B9) and (B10) give the same expression of r
(21)
1234

(B16) and r
(12)
1234 (B17). The results (B11)–(B17) generalize the

so-called linearization of e.o.m. method,

a
†
4a

†
3a2a1 → ρ14a

†
3a2 − ρ13a

†
4a2 − ρ24a

†
3a1 + ρ23a

†
4a1.

(B18)

The normalization of the RPA solution r (10), r (01) is
determined by the commutator [α, π ] = i. Under the one-body
assumption (B1) and (B2),

i = [α, π ] = Tr{[x, p]R}
= Tr{[x, p]ρ} + Tr{[x, p]r (10)}α + · · · . (B19)

The constant term of Eq. (B19) gives Eq. (32). The higher-
order terms of Eq. (B19) should vanish, as discussed in
Appendix C.
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APPENDIX C: MANY-BODY MODE OPERATORS

Outside the harmonic regime the mode operators α and π

have many-body components. Here we write down the results
for α only; π is treated similarly. The structure of α replacing
Eq. (B1) is

α =
∑

12

x12a
†
1a2 + 1

4

∑
1234

x̃1234N [a†
1a

†
2a3a4]

+ 1

9

∑
123456

˜̃x123456N [a†
1a

†
2a

†
3a4a5a6] + · · · , (C1)

where x̃1234 and ˜̃x123456 are antisymmetrized structure coeffi-
cients. The saturation principle replacing Eq. (B3) is

[N [a†
2a1], α]

= [x, ρ]12 + [x,RN ]12 + [x̃{RN }, ρ]12

+ 1

2

∑
345

(x̃1345N [a†
2a

†
3a4a5] − x̃5432N [a†

5a
†
4a3a1])

+ [ ˜̃x{R2,N }, ρ]12 + 1

3

∑
34567

( ˜̃x134567N [a†
2a

†
3a

†
4a5a6a7]

− ˜̃x765432N [a†
7a

†
6a

†
5a4a3a1]) + · · · , (C2)

where

x̃{RN }14 ≡
∑

23

x̃1234N [a†
2a3], (C3)

˜̃x{R2,N }16 ≡
∑
2345

˜̃x123456N [a†
2a

†
3a4a5]. (C4)

Comparing coefficients of the same phonon structure we obtain

− ir (01) = [x, ρ], (C5)

and

− ir (02) = [x, r (01)] + [x̃(01), ρ], (C6)

−ir (11) = [x, r (10)] + [x̃(10), ρ], (C7)

and

− ir
(21)
12 = [x, r (20)]12 + 2[x̃(10), r (10)]12

+ [x̃(20) + ˜̃x(20)
, ρ]12, (C8)

−ir
(12)
12 = [x, r (11)]12 + [x̃(10), r (01)]12

+ [x̃(01), r (10)]12 + [x̃(11) + ˜̃x(11)
, ρ]12, (C9)

−2ir
(03)
12 = [x, r (02)]12 + 2[x̃(01), r (01)]12

+ [x̃(02) + ˜̃x(02)
, ρ]12. (C10)

From Eqs. (C5)–(C10) the structure coefficients x, x̃, and ˜̃x of
α are determined by the e.o.m. solutions r (mn), order by order.
For self-consistency, substituting them into Eq. (C1) should

give α,

α = Tr{xρ} + Tr{xr (10)}α + Tr{xr (01)}π
+ (Tr{xr (20)} + Tr{x̃(10)r (10)})α

2

2

+ (Tr{xr (02)} + Tr{x̃(01)r (01)})π
2

2
+ · · · , (C11)

which means that all other coefficients vanish, except
Tr{xr (10)} = 1. Tr{xρ} = 0 implies that diagonal matrix
elements x11 = 0. Tr{xr (01)} = 0 is satisfied identically by
Eq. (C5). Tr{xr (10)} = 1 is identical to the normalization
condition (32). For higher-order coefficients in Eq. (C11),
some are identically zero, for example, the π2/2 coefficient by
Eqs. (C5) and (C6); some impose new constraints, for example,
the vanishing of the α2/2 coefficient implies

Tr{xr (20)} + Tr{r (11)p} − iTr{[x, r (10)]p} = 0. (C12)

In the Lipkin model we have checked that these constraints
are satisfied identically, up to the α3, {α2, π}, {α, π2}, and π3

terms in Eq. (C11).
These many-body components should be kept in mind if

we want to compare the bosonic wave function with the shell-
model wave function.

APPENDIX D: COHERENT SUMMATION

The factorizable force model has an analytical solution only
if we neglect the “incoherent” terms in Eq. (78), as is usually
assumed in such models. Here we consider its justification
beyond the harmonic order. The exact expression of W {R}12

is

w
(mn)
12 =

∑
34

(−κq12q34 + κq14q32)r (mn)
43

= −κq12

∑
34

q34r
(mn)
43 + κ

∑
34

q14r
(mn)
43 q32.

An observable is given by a trace of w
(mn)
12 with some

operator(s) t :

O ∼ Tr[tw(mn)] = −κ · Tr[tq] · Tr[qr (mn)]

+ κ · Tr[qtqr (mn)]. (D1)

Quite generally, operator q12 has the following property: For a
given s.p. level 1, q12 essentially vanishes except for a few s.p.
level 2. For the realistic quadrupole moment operator qμ =
r2Y2μ, it is ensured by the selection rules with respect to r2,
L = 2 and μ. If q12 has the above property, a trace grows
linearly with the collectivity factor , independently of the
number of operators q inside. Hence, in Eq. (D1) the incoherent
sum is smaller by a factor of 1/ than the coherent one. The
approximation of keeping only coherent terms is valid when
the collectivity  is large.
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APPENDIX E: DETAILS OF FACTORIZABLE
FORCE MODEL

Here we supply the details for Sec. V A. In the harmonic
order we solve the RPA equation. The formal solutions (22)
and (23) become

r
(10)
12 = −κQ(10)q12

(e12)2 − ω2
n12e12, r

(01)
12 = −κQ(10)q12

(e12)2 − ω2
in12. (E1)

Then Q(01) = Tr{qr (01)} = 0, as it should be. From Q(10) =
Tr{qr (10)} �= 0 we obtain the RPA secular equation (80). The
n1 �= n2 matrix elements of x and p are given by Eqs. (B5)
and (B7):

x12 = κQ(10)q12

(e12)2 − ω2
, p12 = κQ(10)q12

(e12)2 − ω2
ie12, (n1 �= n2). (E2)

The leading order of Eq. (E1) is

r (10) .= −κQ(10)
(n

e
: q
)

, r (01) .= −iκQ(10)
( n

e2
: q
)

. (E3)

The leading order of the RPA secular equation (80) is

1
.= −κ

∑
12

|q12|2n12

e12
. (E4)

The leading order of the normalization condition (81) is

1
.= −(κQ(10))2

∑
12

|q12|2n12

(e12)3
. (E5)

In the cubic order, the e1 = e1′ matrix elements are given
by Eq. (36):

r
(20)
11′

.= −2(κQ(10))2
∑

2

q12q21′n12

(e12)2
, (E6)

r
(02)
11′

.= −2(κQ(10))2
∑

2

q12q21′n12

(e12)4
, (E7)

r
(11)
11′ = 0. (E8)

The e1 �= e2 matrix elements are determined from
Eqs. (33)–(35),

− 2i�(30)r
(01)
12

.= e12r
(20)
12 + κQ(20)n12q12

− 2κQ(10)[q, r (10)]12, (E9)

ir
(20)
12 + i�(12)r

(10)
12

.= e12r
(11)
12 − κQ(10)[q, r (01)]12, (E10)

2ir
(11)
12 − i�(12)r

(01)
12 = e12r

(02)
12 + κQ(02)n12q12, (E11)

with the solution (e1 �= e2)

r
(20)
12

.= −κQ(20)
(n

e
: q
)

12
− 2κQ(10)�(30)

( n

e3
: q
)

12

− 2(κQ(10))2

[
q,
(

n
e

: q
)]

12

e12
, (E12)

r
(11)
12

.= −iκQ(20)
( n

e2
: q
)

12

− iκQ(10)

[
2�(30)

( n

e4
: q
)

12
+ �(12)

( n

e2
: q
)

12

]

− i(κQ(10))2

{
2

[
q,
(

n
e

: q
)]

12

(e12)2
+ [q, ( n

e2 : q)]12

e12

}
,

(E13)

r
(02)
12

.= −κQ(02)
(n

e
: q
)

12
+ 2κQ(20)

( n

e3
: q
)

12

+ κQ(10)

[
4�(30)

( n

e5
: q
)

12
+ �(12)

( n

e3
: q
)

12

]

+ 2(κQ(10))2

{
2

[
q,
(

n
e

: q
)]

12

(e12)3
+ [q, ( n

e2 : q)]12

(e12)2

}
.

(E14)

If we set n1 = n2 in Eqs. (E12)–(E14), the powers of e12 in
the denominators will be canceled; thus, r (20/11/02)

12 are finite in
the limit e1 ≈ e2, as they should be. Moreover, if we set e2 =
e1′ = e1 in the resultant expressions, we obtain Eqs. (E6)–(E8),
derived from the saturation principle. This is also true in the
case of a general V1234. With the solutions (E6) and (E12) we
can calculate Q(20),

Q(20) =
∑
e1 �=e2

r
(20)
12 q21 +

∑
e1=e1′

r
(20)
11′ q1′1

.= Q(20) + 2
�(30)

κQ(10)
− 2(κQ(10))2

∑
e1 �=e2

[
q,
(

n
e

: q
)]

12q21

e12

− 2(κQ(10))2
∑

e1=e1′

∑
2

q12q21′q1′1n12

(e12)2
, (E15)

where we have used Eqs. (E4) and (E5). Canceling Q(20)

from both sides we obtain Eq. (82). Similarly, from Q(02) =∑
e1 �=e2

r
(02)
12 q21 +∑

e1=e1′ r
(02)
11′ q1′1 we obtain Eq. (83).

In the quartic order, the leading e1 = e1′ matrix element
r

(30)
11′ is determined from Eq. (38),

2i r
(30)
11′ − 2i�(30)r

(02)
11′ + 2i�(12)r

(20)
11′

.= −κQ(20)[q, r (01)]11′ − 2κQ(10)[q, r (11)]11′ , (E16)

with the solution (e1 = e1′ )

r
(30)
11′

.= −2(κQ(10))2�(30)
∑

2

q12q21′n12

(e12)4

+ 2(κQ(10))2�(12)
∑

2

q12q21′n12

(e12)2

− κQ(10)κQ(20)
∑

2

q12q21′n12

(e12)2
+ iκQ(10)[q, r (11)]11′ .

(E17)

The leading e1 �= e2 matrix element r
(30)
12 is determined from

Eq. (37),

−3 i�(30)r
(11)
12 − 3i�(40)r

(01)
12

.= e12r
(30)
12 + κQ(30)n12q12

− 3

2
κQ(20)[q, r (10)]12 − 3

2
κQ(10)[q, r (20)]12, (E18)

with the solution (e1 �= e2)

r
(30)
12

.= −κQ(30)
(n

e
: q
)

12
− 3κQ(10)�(40)

( n

e3
: q
)

12

− 3i�(30) r
(11)
12

e12
− 3

2
κQ(10)κQ(20)

[
q,
(

n
e

: q
)]

12

e12

+ 3

2
κQ(10) [q, r (20)]12

e12
. (E19)
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Then from Q(30) = ∑
e1 �=e2

r
(30)
12 q21 +∑

e1=e1′ r
(30)
11′ q1′1 we ob-

tain Eq. (84).
The solutions r

(mn)
12 are needed if we want to calculate the

transitions of the operator a
†
2a1 from Eq. (14).

APPENDIX F: QUARTIC POTENTIAL DOMINANCE

Around the critical point ω2 ≈ 0 the stability of the system
is restored by higher-order anharmonicities. We assume that
the quartic potential term �(40)α4/4 is dominant, and study the
conditions for this to be true. Under the rescaling of α and π ,

ᾱ = (�(40))
1
6 · α, π̄ = (�(40))−

1
6 · π, (F1)

which preserves the commutation relation [ᾱ, π̄ ] = i, the
Hamiltonian (4) is written as

H − E0 = (�(40))
1
3 ·
(

1

4
ᾱ4 + 1

2
π̄2 + �(30)(�(40))−

5
6

3
ᾱ3

+ �(12)(�(40))−
1
6

4
{ᾱ, π̄2}+ �(22)(�(40))−

1
3

8
{ᾱ2, π̄2}

+ �(04)(�(40))
1
3

4
π̄4 + �(60)(�(40))−

4
3

6
ᾱ6 + · · ·

)
.

(F2)

Thus, the term �(40)

4 α4 is dominant if coefficients of

other terms, for example, �(60)(�(40))−
4
3 , are small. We

consider their dependence on the collectivity factor  in
the factorizable force model. Let the quadrupole operator q

have the property specified in Appendix D. Equation (E5)
gives (κQ(10))2 ∼ −1. Equation (82) gives �(30) ∼ − 1

2 .
Equation (83) gives �(12) + 2Q(20)

Q(10) ∼ − 1
2 , and we assume

�(12) ∼ − 1
2 , Q(20)

Q(10) ∼ − 1
2 . Equation (84) gives �(40) ∼ −1.

A consistent estimation gives �(22) ∼ −1, �(04) ∼ −1. In
the expression of �(60) there should be terms such as (κQ(10))6·
[trace with six q’s]; thus, �(60) ∼ −2. In conclusion,

�(30)(�(40))−
5
6 ∼ 

1
3 ,�(12)(�(40))−

1
6 ∼ − 1

3 ,

�(22)(�(40))−
1
3 ∼ − 2

3 ,�(04)(�(40))
1
3 ∼ − 4

3 , (F3)

�(60)(�(40))−
4
3 ∼ − 2

3 .

The estimates (F3) are consistent with those in Ref. [22]. All
terms except �(30) are suppressed by powers of 1/. The
�(30) term is given by three-body loops (82), which are usually
suppressed, because of cancelations owing to the approximate
particle-hole symmetry near the Fermi surface, similarly to
the Furry theorem of QED. In the case of a spherical nucleus,
�(30) should be small.

APPENDIX G: DETAILS OF REALISTIC NUCLEAR
APPLICATION

Here we supply the details for Sec. VI. In Eq. (89) R is
Hermitian and K is antisymmetric. The Hermitian of K is
(K†)12 = a

†
2a

†
1. W {R} and f {R} in Eq. (90) are Hermitian;

�{K} in Eq. (91) is antisymmetric. The Hermitian of �{K} is

�†{K}12 ≡ (�{K}21)† = 1

2

∑
34

V4312(K†)34. (G1)

The expansion of the operator R replacing Eq. (14) is

R = ρ + RN = ρ +
∑

μ

r (10)
μ α†

μ +
∑

μ

r (01)
μ π †

μ

+ 1

2

∑
L=0,2,4

∑
μ

r
(20)
Lμ (α† × α†)Lμ

+ 1

2

∑
L=0,2,4

∑
μ

r
(02)
Lμ (π † × π †)Lμ

+ 1

2

∑
L=0,1,2,3,4

∑
μ

r
(11)
Lμ {α†, π †}Lμ (G2)

+ 1

6

∑
L=0,2,3,4,6

∑
μ

r
(30)
Lμ {(α† × α†)lL , α†}Lμ

+ 1

6

∑
L=0,2,3,4,6

∑
μ

r
(03)
Lμ {(π † × π †)lL , π †}Lμ

+ 1

4

∑
L=0,1,2,3,4,5,6

∑
l=0,2,4

∑
μ

r
(21)
Llμ{(α† × α†)l , π †}Lμ

+ 1

4

∑
L=0,1,2,3,4,5,6

∑
l=0,2,4

∑
μ

r
(12)
Llμ{α†, (π † × π †)l}Lμ + · · · .

Three identical d bosons can couple to L = 0, 2, 3, 4, 6. In
the α3 and π3 terms of Eq. (G2) we choose the intermediate
quantum number for each L to be lL; this choice does
not influence the results. R is Hermitian, time even, and
invariant under rotation and parity [12]. This implies that the
coefficient r

(mn)
Lμ has the same symmetries as the operator part

{αm, πn}: (r (mn)
Lμ )† has angular momentum L and projection μ,

even parity, and sign of (−)n under time reversal; (r (mn)
Lμ )† =

(−)L−μr
(mn)
L−μ. Similarly, the expansion of the operator K is

K = κ + KN = κ +
∑

μ

k(10)
μ α†

μ +
∑

μ

k(01)
μ π †

μ

+ 1

2

∑
L=0,2,4

∑
μ

k
(20)
Lμ (α† × α†)Lμ + · · · . (G3)

K is antisymmetric, time even, and invariant under rotation and
parity. Thus, (k(mn)

Lμ )† has angular momentum L and projection

μ, even parity, and sign of (−)n under time reversal; k
(mn)
Lμ12 =

−k
(mn)
Lμ21. The Hermitian of Eq. (G3) is

K† = κ† + (K†)N = κ† +
∑

μ

(k̄†)(10)
μ α†

μ +
∑

μ

(k̄†)(01)
μ π †

μ

+ 1

2

∑
L=0,2,4

∑
μ

(k̄†)(20)
Lμ (α† × α†)Lμ + · · · , (G4)
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where

k̄Lμ ≡ (−)L−μkL−μ ⇒ k̄
†
Lμ = (−)L−μk

†
L−μ. (G5)

The expansion of N [a†
4a

†
3a2a1] replacing Eq. (15) is

N [a†
4a

†
3a2a1] = 1

2

∑
L=0,2,4

∑
μ

r
(20)
Lμ1234(α† × α†)Lμ + 1

2

∑
L=0,2,4

∑
μ

r
(02)
Lμ1234(π † × π †)Lμ + 1

2

∑
L=0,1,2,3,4

∑
μ

r
(11)
Lμ1234{α†, π †}Lμ

+ 1

6

∑
L=0,2,3,4,6

∑
l=0,2,4

∑
μ

r
(30)
Llμ1234{(α† × α†)l , α†}Lμ + 1

6

∑
L=0,2,3,4,6

∑
l=0,2,4

∑
μ

r
(03)
Llμ1234{(π † × π †)l , π †}Lμ

+ 1

4

∑
L

∑
l=0,2,4

∑
μ

r
(21)
Llμ1234{(α† × α†)l , π †}Lμ + 1

8

∑
L

∑
l=0,1,2,3,4

∑
μ

r
(11×10)
Llμ1234{{α†, π †}l , α†}Lμ

+ 1

4

∑
L

∑
l=0,2,4

∑
μ

r
(12)
Llμ1234{α†, (π † × π †)l}Lμ + 1

8

∑
L

∑
l=0,1,2,3,4

∑
μ

r
(11×01)
Llμ1234{{α†, π †}l , π †}Lμ + · · · . (G6)

In Eq. (G6), the α3, α2π , απ2, and π3 terms are overcomplete.
This form is convenient for finding expressions of r

(mn)
1234 in

terms of r
(mn)
12 by the saturation principle, as explained in Ap-

pendix H. Similarly, we need the expansions of N [a†
4a3a2a1],

N [a4a3a2a1], N [a†
4a

†
3a

†
2a1], and N [a†

4a
†
3a

†
2a

†
1].

1. Exact equations of motion

The Hamiltonian (1) in the normal ordering form is

H = 〈�|H |�〉 +
∑

12

f {ρ}12N [a†
1a2]

+ 1

2

∑
12

�†{κ}12N [a1a2] + 1

2

∑
12

�{κ}12N [a†
1a

†
2]

+ 1

4

∑
1234

V1234N [a†
1a

†
2a3a4], (G7)

where

〈�|H |�〉 =
∑

12

(
Z12 + 1

2
W {ρ}12

)
ρ21

+ 1

2

∑
12

�{κ}12(κ†)21 (G8)

is the average energy on |�〉. The exact e.o.m. in the full space
replacing Eq. (12) is

[R12,H ] = [a†
2a1,H ]

= [f {ρ}, ρ]12 − (κ�†{κ})12 + (�{κ}κ†)12

+ [f {ρ}, RN ]12 + [W {RN }, ρ]12 − (KN�†{κ})12

− (κ�†{KN })12 + (�{κ}K†N )12 + (�{KN }κ†)12

+ 1

2

∑
345

(V1345N [a†
2a

†
3a4a5] − V5432N [a†

5a
†
4a3a1]),

(G9)

and

[K12,H ] = [a2a1,H ] = (κf T {ρ})12 + (f {ρ}κ)12

+�{κ}12 − (�{κ}ρT )12 − (ρ�{κ})12

+ (KNf T {ρ})12 + (f {ρ}KN )12−(�{κ}(RT )N )12

− (RN�{κ})12 + (κWT {RN })12 + (W {RN }κ)12

+�{KN }12 − (ρ�{KN })12 − (�{KN }ρT )12

+ 1

2

∑
345

(V2543N [a†
5a4a3a1] − V1543N [a†

5a4a3a2]).

(G10)

Then in Eqs. (G9) and (G10) we equate the left-hand-side and
right-hand-side coefficients of the same phonon structure: 1,
αμ, πμ, 1

2 (α × α)Lμ, . . ., and obtain e.o.m. in the collective band
(96)–(105) of Sec. VI B.

2. Hartree-Fock-Bogoliubov equation

The HFB equation (96) says that S(00) and D(00) can be
diagonalized simultaneously,[(

E 0
0 −E

)
,

(
n 0
0 I − n

)]
= 0, (G11)

where E and n are diagonal matrices. The chemical potential
μ (buried in f ) is determined by N = ∑

1 ρ11 = Tr{ρ}.
The unitary canonical transformation from the original s.p.
operators a

†
1, a1 to the new quasiparticle operators b

†
λ, bλ is

bλ =
∑

1

(u∗
1λa1 − v1λa

†
1), b†λ =

∑
1

(u1λa
†
1 − v∗

1λa1). (G12)

If |�〉 is a “quasiparticle determinant,” |�〉 = norm ·∏λ bλ|0〉,
then the normal ordering with respect to |�〉 is to put b†’s to
the left of b’s. Equation (88) gives

ρ = vv†, κ = −vuT . (G13)
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In this case, D(00) is diagonalized by the canonical transfor-
mation (G12):

U =
(

u† −vT

−v† uT

)
, UD(00)U † =

(
0 0
0 I

)
, (G14)

where the matrix n in Eq. (G11) vanishes. The HFB equa-
tion (96) requires that S(00) be diagonalized by U simultane-
ously. In this article we assume that |�〉 is a “quasiparticle
determinant.”

It is convenient to solve the e.o.m. (96)–(105) in the
quasiparticle basis (multiplying U from the left and U † from
the right). The density matrix operators in this basis are

Rb
12 ≡ b

†
2b1 = N [b†2b1],Kb

12 ≡ b2b1 = N [b2b1],
(G15)

(Kb†)12 = b
†
2b

†
1 = N [b†2b

†
1].

Rb is a mix of R, K , and K† of Eqs. (89); similarly for Kb

and Kb†. The expansions of them are defined similarly to
Eqs. (G2)–(G4):

Rb =
∑

μ

rb(10)
μ α†

μ + · · · ,Kb =
∑

μ

kb(10)
μ α†

μ + · · · ,
(G16)

Kb† =
∑

μ

(k̄b†)(10)
μ α†

μ + · · · .

The field matrices in the quasiparticle basis are

DU = UDU †, SU = USU †. (G17)

We need to express them in terms of Rb, Kb, and Kb† of
Eq. (G16). The result of DU is simple:

DU = UDU † =
(

Rb Kb

Kb† I − (Rb)T

)
. (G18)

The result of SU is long:

SU = USU † =
(

SA SB

SC SD

)
, (G19)

where

SA = u†f {R}u − u†�{K}v∗

− vT �†{K}u − vT f T {R}v∗

= (u†Zu − vT ZT v∗ + u†W {vv†}u
+u†�{vuT }v∗ + vT �†{vuT }u − vT WT {vv†}v∗)

+ (u†W {u·β (u†)α·}u + u†�{u·β(vT )α·}v∗

+ vT �†{u·α(vT )β·}u − vT WT {u·β(u†)α·}v∗

−u†W {v·α(v†)β·}u − u†�{v·α(uT )β·}v∗

− vT �†{v·β(uT )α·}u + vT WT {v·α(v†)β·}v∗)b†αbβ

+ (−u†W {v·β(u†)α·}u − u†�{v·β(vT )α·}v∗

− vT �†{u·α(uT )β·}u + vT WT {v·β(u†)α·}v∗)b†αb
†
β

+ (−u†W {u·β(v†)α·}u − u†�{u·β(uT )α·}v∗

− vT �†{v·α(vT )β·}u + vT WT {u·β(v†)α·}v∗)bαbβ,

(G20)
and

SB = −u†f {R}v + u†�{K}u∗

+ vT �†{K}v + vT f T {R}u∗

= (−u†Zv + vT ZT u∗ − u†W {vv†}v
−u†�{vuT }u∗ − vT �†{vuT }v + vT WT {vv†}u∗)

+ (−u†W {u·β (u†)α·}v − u†�{u·β(vT )α·}u∗

− vT �†{u·α(vT )β·}v + vT WT {u·β(u†)α·}u∗

+u†W {v·α(v†)β·}v + u†�{v·α(uT )β·}u∗

+ vT �†{v·β(uT )α·}v − vT WT {v·α(v†)β·}u∗)b†αbβ

+ (u†W {v·β(u†)α·}v + u†�{v·β(vT )α·}u∗

+ vT �†{u·α(uT )β·}v − vT WT {v·β(u†)α·}u∗)b†αb
†
β

+ (u†W {u·β(v†)α·}v + u†�{u·β(uT )α·}u∗

+ vT �†{v·α(vT )β·}v − vT WT {u·β(v†)α·}u∗)bαbβ,

(G21)

and

SC = −v†f {R}u + v†�{K}v∗

+uT �†{K}u + uT f T {R}v∗ = (SB)†, (G22)

and

SD = v†f {R}v − v†�{K}u∗

−uT �†{K}v − uT f T {R}u∗ = −(SA)T . (G23)

From now on we always work in the quasiparticle basis unless
otherwise specified. For simplicity we drop the superscripts b

in Eq. (G16) and U in Eq. (G17).

3. Quasiparticle random-phase approximation

The QRPA Eqs. (97) and (98) are (we have dropped the
superscript U )

iD(10)
μ = [

S(00),D(01)
μ

]+ [
S(01)

μ ,D(00)
]
,

−iω2D(01)
μ = [

S(00),D(10)
μ

]+ [
S(10)

μ ,D(00)
]
.

Each of the above two equations has four components; only
two of them are independent. The upper-left component gives

r
(10)
μ12 = r

(01)
μ12 = 0. (G24)

The upper-right component gives

ik
(10)
μ12 = (SB)(01)

μ12 + (E1 + E2)k(01)
μ12, (G25)

−iω2k
(01)
μ12 = (SB)(10)

μ12 + (E1 + E2)k(10)
μ12. (G26)

The formal solution is

k
(10)
μ12 = iω2(SB)(01)

μ12 − (E1 + E2)(SB)(10)
μ12

(E1 + E2)2 − ω2
, (G27)

k
(01)
μ12 = −(E1 + E2)(SB)(01)

μ12 − i(SB)(10)
μ12

(E1 + E2)2 − ω2
. (G28)

From Eqs. (G21), (G27), and (G28) we obtain a linear
homogenous set of equations for (SB)(10) and (SB)(01); a
nonzero solution requires a zero determinant, from which we
solve for ω2.

Again, to fix the normalization of k
(10/01)
μ12 we need the

saturation principle. Because now we are solving everything in
the quasiparticle basis, it is convenient to redo the saturation
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principle in the quasiparticle basis. After that we obtain the
normalization condition (independent of μ):

i = [α†
μ, πμ] =constant terms

− 1
2 Tr

{(
k(01)
μ

)†
k(10)
μ

}+ 1
2 Tr

{
k̄(01)
μ k̄†(10)

μ

}
. (G29)

4. Cubic anharmonicity and quartic anharmonicity

The second-order e.o.m. are Eqs. (99)–(101). D
(11)
L=1,3;μ is

determined from Eq. (101) alone. D
(20/11/02)
L=0,4;μ is determined

from Eqs. (99)–(101). They are expressed in terms of lower-
order quantities. When L = 2, �(30) and �(12) enter Eqs. (99)–
(101), and D

(20/11/02)
L=2;μ is determined in terms of �(30) and �(12).

Similarly to the situation in Sec. II D, the E1 = E1′ matrix
elements r

(20/02)
L=0,2,4;μ11′ and r

(11)
L=1,3;μ11′ are fixed by the saturation

principle (E1 = E1′ ):

L = 0, 2, 4 : r
(20)
Lμ11′ = 2(k(10) × k̄†(10))Lμ11′ , (G30)

L = 0, 2, 4 : r
(02)
Lμ11′ = 2(k(01) × k̄†(01))Lμ11′ , (G31)

L = 0, 1, 2, 3, 4 : r
(11)
Lμ11′ = (k(10) × k̄†(01))Lμ11′ (G32)

+ (−)L(k(01) × (k̄†)(10))Lμ11′ .

Equations (G30)–(G32) are consistent with the second-order
e.o.m. (99)–(101).

The third order e.o.m. are Eqs. (102)–(105). The L �= 2
quantities (D/S)(30/21/12/03)

L �=2,μ are solved in terms of lower-order

quantities. When L = 2, �(40), �
(22)
l , and �(04) enter into the

equations and we have the solvability condition as explained
in Eqs. (108) and (109).

APPENDIX H: SATURATION PRINCIPLE FOR
SECTION VI

Keeping only one-body terms in αμ and πμ,

αμ =
∑

12

(xμ12a
†
1a2 + zμ12a1a2 + z̄

†
μ12a

†
1a

†
2), (H1)

πμ =
∑

12

(pμ12a
†
1a2 + oμ12a1a2 + ō

†
μ12a

†
1a

†
2), (H2)

where

x†
μ = (−)μx−μ, p†

μ = (−)μp−μ,
(H3)

zμ12 = −zμ21, oμ12 = −oμ21,

we have the following identities in the full space:

[R12, αμ] = [xμ,R]12 − 2(Kzμ)12 + 2(z̄†μK†)12, (H4)

[K12, αμ] = (xμK)12 − (xμK)T12

+ 2z̄
†
μ12 + 2(Rz̄†μ)T12 − 2(Rz̄†μ)12, (H5)

[(K†)12, αμ] = −(K†xμ)12 + (K†xμ)T12

− 2zμ12 − 2(zμR)T12 + 2(zμR)12, (H6)

and

[R12, πμ] = [pμ,R]12 − 2(Koμ)12 + 2(ō†μK†)12, (H7)

[K12, πμ] = (pμK)12 − (pμK)T12

+ 2ō
†
μ12 + 2(Rō†μ)T12 − 2(Rō†μ)12, (H8)

[(K†)12, πμ] = −(K†pμ)12 + (K†pμ)T12

− 2oμ12 − 2(oμR)T12 + 2(oμR)12. (H9)

We obtain a set of equations by equating the left-hand-side and
right-hand-side coefficients of the same phonon structure: 1,
αμ, πμ, 1

2 (α × α)Lμ, . . .. Considering the length we do not list
them here.

Similarly, we calculate the commutators of N [a†
4a

†
3a2a1],

N [a†
4a3a2a1], and N [a4a3a2a1] with αμ and πμ. We give only

the result of [N [a†
4a

†
3a2a1], αμ] as an example:

[N [a†
4a

†
3a2a1], αμ]

= ir
(01)
μ24N [a†

3a1] − ir
(01)
μ23N [a†

4a1] − ir
(01)
μ14N [a†

3a2]

+ ir
(01)
μ13N [a†

4a2] − ik̄
†(01)
μ34 N [a2a1] − ik

(01)
μ12N [a†

4a
†
3]

−
∑

5

xμ25N [a†
4a

†
3a1a5] +

∑
5

xμ15N [a†
4a

†
3a2a5]

−
∑

5

xμ54N [a†
5a

†
3a2a1] +

∑
5

xμ53N [a†
5a

†
4a2a1]

+ 2
∑

5

zμ54N [a†
3a2a1a5] + 2

∑
5

zμ35N [a†
4a2a1a5]

+ 2
∑

5

z̄
†
μ51N [a†

5a
†
4a

†
3a2] + 2

∑
5

z̄
†
μ25N [a†

5a
†
4a

†
3a1],

(H10)

where we have used the lowest-order results from Eqs. (H4)–
(H9). Equating the left-hand-side and right-hand-side coef-
ficients of the same phonon structure, we obtain a set of
equations. We give only the (α × α)Lμ terms as an example.
Using results from Eqs. (H4)–(H9) we have

−i
1√
5

∑
Lf =0,2,4

∑
L

√
2L + 1

2
· (r (21)

LLf 1234 × (α × α)Lf
)2
μ

−i
1

2
√

5

∑
Lf =0,2,4

∑
L

∑
l

(−)l+Lf
√

(2L + 1)(2l + 1)(2Lf + 1) ·
{

2 2 l

2 L Lf

}
· (r (11×10)

Ll1234 × (α × α)Lf
)2
μ

= −i
1√
5

∑
Lf =0,2,4

∑
L

√
2L + 1

2
· {[−(r (20)

Lf 13r
(01)
24

)L + (
r

(20)
Lf 14r

(01)
23

)L + (
r

(20)
Lf 23r

(01)
14

)L − (
r

(20)
Lf 24r

(01)
13

)L + (
k

(20)
Lf 12k̄

†(01)
34

)L
+ (

k̄
†(20)
Lf 34k

(01)
12

)L
] × (α × α)Lf

}2
μ

− i
1√
5

∑
Lf =0,2,4

∑
L

∑
l

(−)l+Lf
√

(2L + 1)(2l + 1)(2Lf + 1) ·
{

2 2 l

2 L Lf

}
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·{[− (
r

(11)
l24 × r

(10)
13

)L + (
r

(11)
l23 × r

(10)
14

)L + (
k

(11)
l12 × k̄

†(10)
34

)L + (
r

(11)
l14 × r

(10)
23 )L − (r (11)

l13 × r
(10)
24

)L
+ (

k̄
†(11)
l34 × k

(10)
12

)L
] × (α × α)Lf

}2
μ
. (H11)

The left-hand side and right-hand side of Eq. (H11) come
from the left-hand side and right-hand side of Eq. (H10),
respectively. The following expressions satisfy Eq. (H11):

r
(21)
Ll1234|L=0,1,2,3,4,5,6

l=0,2,4

= (
r

(20)
l14 r

(01)
23

)L + (
r

(20)
l23 r

(01)
14

)L − (
r

(20)
l13 r

(01)
24

)L
− (

r
(20)
l24 r

(01)
13

)L + (
k

(20)
l12 k̄

†(01)
34

)L + (
k̄
†(20)
l34 k

(01)
12

)L
, (H12)

r
(11×10)
Ll1234 |L=0,1,2,3,4,5,6

l=0,1,2,3,4

= 2 · {(r (11)
l14 × r

(10)
23

)L + (
r

(11)
l23 × r

(10)
14

)L − (
r

(11)
l13 × r

(10)
24

)L
− (

r
(11)
l24 × r

(10)
13

)L + (
k

(11)
l12 × k̄

†(10)
34

)L + (
k̄
†(11)
l34 × k

(10)
12

)L}
.

(H13)

APPENDIX I: VALUES OF gL
l,l ′ AND γ L

l,l ′

The definition of gL
l,l′ is given by Eq. (107),

1

8
{{α, π}l′ , α}Lμ =

∑
l=0,2,4

gL
l,l′ · 1

4
{(α × α)l , π}Lμ,

which implies

gL
l,l′ = (−)l−l′

√
(2l + 1)(2l′ + 1)

{
2 2 l

2 L l′

}
= gL

l′,l . (I1)

The definition of γ L
l,l′ is given by Eq. (106),

{(α × α)l , α}Lμ = γ L
l,l′ · {(α × α)l

′
, α}Lμ.

Analytical expressions of γ L
l,l′ can be obtained in the following

way. Assume l and l′ are even. We have the identity[{(α † × α†)l
′
, α†}Lμ, (π × π )0

0

]|L=0,2,3,4,6
l′=0,2,4

= i
2√
5

∑
l=0,2,4

(
δl,l′ + 2 · gL

l,l′
) · {(α† × α†)l , π †}Lμ. (I2)

Replacing l′ in Eq. (I2) by l′′ we obtain[{(α † × α†)l
′′
, α†}Lμ, (π × π )0

0

]|L=0,2,3,4,6
l′′=0,2,4

= i
2√
5

∑
l=0,2,4

(
δl,l′′ + 2 · gL

l,l′′
) · {(α† × α†)l , π †}Lμ. (I3)

Let us take the ratio of Eq. (I2)/Eq. (I3). The left-hand side is
γ L

l′,l′′ by Eq. (106). Because in the right-hand side of Eq. (I2)
and Eq. (I3), {(α† × α†)l , π †}Lμ with different l are linearly
independent, we have

γ L
l′,l′′ = δl,l′ + 2 · gL

l,l′

δl,l′′ + 2 · gL
l,l′′

, (l = 0, 2, 4). (I4)

The ratio on the right-hand side is independent of l. Because
the matrix δl,l′ + 2 · gL

l,l′ is symmetric (with respect to l, l′),
Eq. (I4) implies

δl,l′ + 2 · gL
l,l′ = f L

l · f L
l′ , (I5)

where f L
l =

√
1 + 2 · gL

l,l . Then from Eq. (I4) we obtain

γ L
l′,l′′ = f L

l′

f L
l′′

. (I6)

We use only L = 2:

f L=2
l=0 =

√
7

5
, f L=2

l=2 = 2√
7
, f L=2

l=4 = 6√
35

. (I7)

In the main text the superscript L = 2 on f L=2
l is dropped for

simplicity.

APPENDIX J: CONVENTIONS

Our convention for the Wigner-Eckart theorem is

〈n1j1m1|T λ
μ |n2j2m2〉 = C

j1m1
j2m2,λμ · 〈n1j1‖T λ‖n2j2〉. (J1)

The reduced matrix element of q
†
λμ (111) is

〈nlj‖q†
λ‖n′l′j ′〉 =

{
il

′+λ−l(−)j
′+λ−j

√
(2λ+1)(2j ′+1)

4π(2j+1) · C
j 1

2

j ′ 1
2 ,λ0

∫
drr2fλ(r)Rnlj (r)Rn′l′j ′(r), l′ + λ − l is even,

0, l′ + λ − l is odd,

where the s.p. levels |nljm〉 are defined as

ψnljm = Rnlj (r) ·
∑
mlms

C
jm

lml,sms
ilYlml

(θ, φ)χms
,

in which spin s = 1
2 , Rnlj (r) is a real function, and a factor il

is included.

In this article we have used the matrix elements of
the realistic quadrupole moment operator in the harmonic
oscillator s.p. basis. In this case λ = 2, fλ(r) = r2, Rnlj (r) is
independent of j , and n = 2nr + l is the major-shell quantum
number. The nonvanishing matrix elements of 〈nlj‖q†‖n′l′j ′〉
have n − n′ = −2, 0, 2, and l − l′ = −2, 0, 2. For these
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combinations the symmetric radial integral becomes

∫
drr4Rnl(r)Rn′l′ (r) = b2 ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n + 3
2 , n′ = n, l′ = l,

−√
(n + l + 3)(n − l), n′ = n, l′ = l + 2,

− 1
2

√
(n + l + 3)(n − l + 2), n′ = n + 2, l′ = l,

1
2

√
(n + l + 3)(n + l + 5), n′ = n + 2, l′ = l + 2,

1
2

√
(n − l + 2)(n − l + 4), n′ = n + 2, l′ = l − 2,

where b =
√

h̄
m0

is the length parameter, 0 is the har-

monic oscillator frequency. As mentioned at the beginning
of Sec. VII B, the factor b2 will be combined with κ to make
q†

μ dimensionless.

APPENDIX K: DETAILS OF QUADRUPOLE PLUS PAIRING
MODEL

Here we supply the details for Sec. VII. In the quadrupole
plus pairing model the HFB equation becomes the BCS
equation. The canonical transformation (G12) becomes

u12 = δ12u1, v12 = −δ12̃v1, (u1)2 + (v1)2 = 1, (K1)

where u1 = u1̃, v1 = v1̃ are real numbers. The density matrices
(G13) become

ρ12 = δ12(v1)2, κ12 = δ12̃u1v1. (K2)

The f {ρ}12 field (90) becomes

f {ρ}12 = δ12[ε1 − μ − G(v1)2]

− κ
∑

3

∑
μ

(q†
μ12qμ33 − q

†
μ13qμ32)(v3)2

≈ δ12e1 − κ(q†
μ=0)12Q

(00), (K3)

where Q(00) = ∑
3(qμ=0)33(v3)2, e1 ≡ ε1 − μ − G(v1)2 = e1̃,

and we neglect the incoherent sum. In the case of a spherical
mean field, Q(00) = 0; thus, only the δ12e1 term survives. The
�{κ}12 field (91) becomes

�{κ}12 = −G

2
δ12̃

∑
3

u3v3 − κ
∑

3

∑
μ

q
†
μ13̃

qμ23u3v3

≈ −δ12̃�, (K4)

where the pairing energy � ≡ G
2

∑
3 u3v3, and we neglect

the quadrupole-force contribution to the pairing potential. The
HFB equation (96) gives the BCS set of equations (115)–(119).

Quadrupole moment in the quasiparticle basis is given by

Qμ =
∑

12

qμ21a
†
2a1

=
∑

1

(v1)2qμ11 +
∑

12

(u1u2 − v1v2)qμ21b
†
2b1

− 1

2

∑
12

(u1v2 + u2v1)qμ21(b2̃b1 + b
†
2b

†
1̃
). (K5)

Substituting the expansions of Rb, Kb, and Kb† (G16) into
Eq. (K5), we have

Qμ = Q(10)αμ + Q(20)
(α × α)2

μ

2
+ Q(02)

(π × π )2
μ

2

+Q(30)
{(α × α)l(L=2), α}2

μ

6

+
∑

l=0,2,4

Q
(12)
l

{α, (π × π )l}2
μ

4
+ · · · , (K6)

where Q(mn) is expressed in terms of r’s and k’s in Eq. (G16).
Note on the right-hand side only terms with the same symmetry
as Qμ survive. The Hermitian property (112) implies that all
Q(mn) are real. The pairing operator is given by

P = 1

2

∑
1

a1̃a1 = −1

2

∑
1

u1v1

+
∑

1

u1v1b
†
1b1 + 1

2

∑
1

[(u1)2b1̃b1 − (v1)2b
†
1b

†
1̃
]. (K7)

Substituting the expansions of Rb, Kb, and Kb† (G16) into
Eq. (K7) we have

P = −1

2

∑
1

u1v1 + P (20) (α × α)0
0

2

+P (11) {α, π}0
0

2
+ P (02) (π × π )0

0

2
+ · · · . (K8)

P + P † is Hermitian and time even, P − P † is anti-Hermitian
and time odd. Thus, P (20) and P (02) are real; P (11) is pure
imaginary. The f {R} field (90) becomes

f {R}12 = δ12e1 − GN [a†
1̃
a2̃] − κ

∑
μ

q
†
μ12Qμ

+ κ
∑

34

∑
μ

q
†
μ13qμ42a

†
4a3 ≈ δ12e1 − κ

∑
μ

q
†
μ12Qμ.

(K9)

Here again we neglect the incoherent sum and the pairing
contribution beyond the mean field. The pairing field (91)
becomes

�{K}12 = δ12̃GP − κ
∑

34

∑
μ

q
†
μ14qμ23a3a4 ≈ δ12̃GP,

(K10)
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again neglecting the quadrupole-force contribution. Finally,
the fields SA/B/C/D (G20)–(G23) become

(SA)12 = δ12[(u1)2 − (v1)2]e1 − κ[u1u2 − v1v2]

·
∑

μ

q
†
μ12Qμ − u1v1δ12G(P + P †), (K11)

(SB)12 = 2u1v1δ12̃e1 − κ[u1v2 + u2v1]
∑

μ

q
†
μ12̃

Qμ

+ δ12̃G[(u1)2P − (v1)2P †], (K12)

and SC = (SB)†, SD = −(SA)T . Substituting Eqs. (K6) and
(K8) into the above equations we obtain the expansions of
SA/B/C/D .

The QRPA secular Eq. (121) in the form of reduced matrix
elements is

1 = κ
∑

n1j1n2j2

(−)j2−j1

√
(2j1 + 1)(2j2 + 1)

5

· E1 + E2

(E1 + E2)2 − ω2
· ξ

†
‖12ξ

†
‖21. (K13)

The normalization condition (122) in the form of reduced
matrix elements is

1 = (κQ(10))2
∑

n1j1n2j2

(−)j2−j1

√
(2j1 + 1)(2j2 + 1)

5

· (E1 + E2)

[(E1 + E2)2 − ω2]2
· ξ

†
‖12ξ

†
‖21. (K14)

The cubic potential term (123) in the original form is

�(30) .= −(κQ(10))3
{
Tr
[
(ξ (1) × ξ (1))L=2

μ η†
μ

]
+ Tr

[{η, ξ (1)}L=2
μ ξ (1)†

μ

]}
, (K15)

where each term on the right-hand side is real and independent
of μ.

The quartic potential term (125) can be written in the form
of reduced matrix elements. The result is long; we write them
term by term. The term with (�(30))2 is

−2f2 · (κQ(10))2(�(30))2Tr
[
ξμξ (5)†

μ

]
= −2f2 · (κQ(10))2(�(30))2

·
∑

n1j1n2j2

(−)j2−j1

√
(2j1 + 1)(2j2 + 1)

5
· ξ

(5)†
‖12 ξ

†
‖21.

(K16)

The terms with �(30)(κQ(10))3 are

−f2 · �(30)(κQ(10))3
(
Tr
[{ξ (1), ξ (3)}L=2

μ η†
μ

]
+ Tr

[{η, ξ (3)}L=2
μ ξ (1)†

μ

]+ 2Tr
[{η, ξ (1)}L=2

μ ξ (3)†
μ

]
+ Tr

[{η, ξ (2)}L=2
μ ξ (2)†

μ

])
= 2�(30)f2 · (κQ(10))3

·
∑

n1j1n2j2n3j3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

5
·
{

2 2 2
j1 j2 j3

}

·
[
4ξ

(1)†
‖13 ξ

(3)†
‖32 η

†
‖21 + ξ

(2)†
‖13 ξ

(2)†
‖32 η

†
‖21

]
. (K17)

The two terms with P (20) are

−f0 · GP (20)(κQ(10))2
∑

12

(u1v1 + u2v2)ξμ12ξ
(2)†
μ21

=−f0· GP (20)(κQ(10))2 ·
∑

n1j1n2j2

(−)j2−j1 (K18)

·
√

(2j1 + 1)(2j2 + 1)

5
· (u1v1 + u2v2) · ξ

†
‖12ξ

(2)†
‖21 ,

and

+f0 · GP (20)(κQ(10))2

·
∑

12

{
(u1)2 − (v1)2

2E1
+ (u2)2 − (v2)2

2E2

}
ξ

(1)
μ12η

†
μ21

= f0 · GP (20)(κQ(10))2

·
∑

n1j1n2j2

(−)j2−j1

√
(2j1 + 1)(2j2 + 1)

5

·
{

(u1)2 − (v1)2

2E1
+ (u2)2 − (v2)2

2E2

}
· η

†
‖12ξ

(1)†
‖21 , (K19)

where P (20) is given in Eq. (124). The terms with (κQ(10))4 are

+(κQ(10))4
∑

l=0,2,4

fl · (Tr
[{ξ, (ξ (1) × ξ (1))l}L=2

μ ξ (1)†
μ

]− Tr
[{η, {η, ξ (1)}l,(1)}L=2

μ ξ (1)†
μ

]

− Tr
[{ξ (1), {η, ξ (1)}l,(1)}L=2

μ η†
μ

]) = 2(κQ(10))4
∑

l=0,2,4

fl ·
∑

n1j1n2j2n3j3n4j4

(−)j2−j3

·
√

(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)(2l + 1)

5
·
{

l 2 2

j1 j2 j3

}
·
{

2 2 l

j3 j2 j4

}

·
[
ξ
†
‖13ξ

(1)†
‖34 ξ

(1)†
‖42 ξ

(1)†
‖21 − 2η

†
‖13 · 1

E3 + E2
· η

†
‖34ξ

(1)†
‖42 ξ

(1)†
‖21 − 2η

†
‖13 · 1

E3 + E2
· ξ

(1)†
‖34 η

†
‖42ξ

(1)†
‖21

]
. (K20)
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APPENDIX L: MODE COUPLING

In many soft nuclei there exists a low-lying octupole (3−)
mode. It can interact strongly with the quadrupole (2+) mode,
and both of them should be kept in the collective subspace.
For convenience we still use αμ, πμ for the quadrupole mode;
and use α̂μ, π̂μ for the octupole mode. The collective bosonic
Hamiltonian replacing Eq. (4) is

H = ω2

2

√
5(α × α)0

0 + 1

2

√
5(π × π )0

0 + ω̂2

2

√
7(α̂ × α̂)0

0

+ 1

2

√
7(π̂ × π̂ )0

0+
�(10|20)

2

√
7(α × (α̂×α̂)2)0

0 + · · · .
(L1)

�(10|20) is the most important mode-coupling term in the case of
soft vibrations with large amplitudes. Following the procedure
of Secs. II and III, we are able to determine the leading constant
term of �(10|20) in a Taylor expansion over both ω2 and ω̂2 [see
Eq. (47)]. Below we give the result in the quadrupole plus
pairing model. The microscopic Hamiltonian is

H =
∑

1

(ε1 − μ)a†
1a1 − G

4

∑
12

a
†
1a

†
1̃
a2̃a2

+ 1

4

∑
1234

∑
μ

(−κq
†
μ14qμ23 + κq

†
μ13qμ24

− κ̂ q̂
†
μ14q̂μ23 + κ̂ q̂

†
μ13q̂μ24)a†

1a
†
2a3a4. (L2)

Approximately, this Hamiltonian can be written as
H ≈ ∑

1(ε1 − μ)a†
1a1 − GP †P − 1

2κ
∑

μ Q†
μQμ −

1
2 κ̂
∑

μ Q̂†
μQ̂μ, the difference is in a one-body term

originating from the Q · Q part. κ̂ is the strength of the
octupole force. The mean field is determined by the HFB
equation. In the harmonic order the two modes do not mix,
the octupole mode satisfies the same QRPA equation (121)
and normalization condition (122) as the quadrupole mode,
with necessary changes. In the next order we have the main
result:

�(10|20) .= 2κQ(10)(κ̂Q̂(10))2

·
∑

n1j1n2j2n3j3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

7

·
{

3 2 3

j1 j2 j3

}
·
[
2ξ

(1)†
‖13 ξ̂

(1)†
‖32 η̂

†
‖21 + η

†
‖13ξ̂

(1)†
‖32 ξ̂

(1)†
‖21

]
.

(L3)

The octupole operator q̂ connects s.p. levels with opposite
parity, thus the intruder state becomes important. This may
destroy in Eq. (L3) symmetry with respect to the Fermi surface.
Three-body forces will contribute to the �(10|20) term quite
differently.
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