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Proton dominance in the 2+
2 → 0+

1 transition of N = Z ± 2 nuclei around 28Si
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E2 transitions in 30Si are investigated in relation to intrinsic deformations based on a method of antisymmetrized
molecular dynamics. By comparing E2 transition strengths in the mirror nuclei 30Si and 30S, transition matrix
amplitudes Mp and Mn for protons and neutrons are discussed in mirror analysis. Particular attention is paid to
the Mn/Mp ratio in the transition from the 2+

2 state to the 0+
1 state. The Mn/Mp ratio in 26Mg and 26Si is also

investigated. It is found that the proton dominance in the transition 2+
2 → 0+

1 in 30Si and 26Si originates in the
oblate trend of the Z = 14 proton structure.
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I. INTRODUCTION

Nuclear systems often show intrinsic quadrupole deforma-
tions. In many nuclei except for shell-closed nuclei, normal
deformations are found in the ground bands. Shell effects are
essential for the deformations as described by the Nilsson
model, and therefore, a variety of shapes appear depending
on the mass number particular in mid-shell nuclei. In Z = N

nuclei in the sd-shell region, a nuclear shape rapidly changes
as a function of Z = N reflecting the proton-neutron coherent
shell effects in deformed systems. For instance, the prolate
ground band in 20Ne and the oblate one in 28Si are known.
These shapes are easily understood from the shell effects in
the Nilsson model, where the Z = N = 10 and Z = N = 14
shell gaps appear in the prolate and the oblate deformations,
respectively.

For Z �= N nuclei, deformation phenomena are not as
simple as in Z = N nuclei. If the shell effect for proton orbits
and that for neutron ones compete with each other, the proton
shape can be affected by the neutron structure, or decoupling
between proton and neutron deformations may occur. The
latter case might be possible in light-mass nuclei and it may
be observed in the quadrupole transition properties such as
the ratio of the neutron transition matrix amplitude to the
proton one (the so-called Mn/Mp ratio). Such a decoupling
between proton and neutron shapes has been suggested,
for instance, in 16C, for which an enhanced Mn/Mp ratio,
i.e., neutron dominance, was observed in the ground-band
transition [1]. The neutron dominance was described by
the oblate proton and prolate neutron shapes [2,3]. One of
the reasons for the characteristic structure of 16C is that
a Z = 6 system favors an oblate proton deformation while
an N = 10 nucleus has the prolate trend of the neutron
deformation because of each shell effect of the proton and
neutron parts. To clarify the oblate tendency of the proton
structure in 16C, a possible K = 2 side band and its transition
properties should be experimentally observed. In general, such
a nucleus having oblate proton and prolate neutron structures
may show an isovector triaxiality. If this is the case, in
addition to the K = 0 band, a K = 2 side band is constructed
with the rotation around the symmetric axis of the prolate
neutron part. Since the proton contribution should be dominant
while the neutron contribution is minor for this rotation, the

transition from the 2+
2 state in the K = 2 band to the ground

state may show the proton dominance resulting in a small
Mn/Mp ratio. Although the K = 2 side band was theoretically
suggested, the 2+

2 state in 16C has not been experimentally
confirmed yet, unfortunately. 10C is another candidate for the
nuclei with the isovector triaxiality [2,4], but the transition
strength from the 2+

2 state to the 0+
1 state has not yet been

measured.
A similar situation of the isovector triaxiality is expected

in Z = 14 nuclei, i.e., Si isotopes, because the oblate proton
structure is favored due to the Z = 14 shell effect. Let us
consider deformations of 26Si and 30Si. From the negative
sign of the Q moments for the 2+

1 states in the Z =
N = 12 and Z = N = 16 systems, the prolate trend of the
neutron structure is expected in N = 12 and N = 16 systems.
Considering the prolate tendency of the neutron part, the
isovector triaxiality in 26Si and 30Si would be possible and
it might lead to the proton dominance in the 2+

2 → 0+
1

transition resulting in a small Mn/Mp ratio. For 26Si and
30Si, the Mn/Mp ratios for the 2+

2 → 0+
1 transition as well

as the 2+
1 → 0+

1 was experimentally determined by mirror
analysis [5,6] and inelastic scattering data [7]. The reported
values of the Mn/Mp ratio in the 2+

2 → 0+
1 are 0.50 ± 0.07

and 0.52 ± 0.03 for 26Si and 30Si, respectively, and they
indicate the proton dominance. The data of neutron and
proton transition matrices, Mn and Mp, in this mass region
are qualitatively reproduced by shell model calculations [8]
and they have been discussed in relation to effective charges
coming from core polarization [8,9]. The proton dominance in
the 2+

2 → 0+
1 of 26Si was discussed also in relation to the γ

softness in the calculations based on the quadrupole collective
Hamiltonian [10].

Our aim is to understand the properties of proton and
neutron transition matrices from the viewpoint of deforma-
tions of proton and neutron parts. In particular, the proton
dominance in the 2+

2 → 0+
1 is a focusing feature which might

be interpreted in connection with decoupling of proton and
neutron shapes. To this aim, we apply a theoretical approach
of antisymmetrized molecular dynamics (AMD). The AMD
has been successfully applied to the study of structures of
p-shell and sd-shell nuclei [11–13]. The present method of
AMD calculations is the same as those used for investigation
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of deformation phenomena in 28Si, 24Ne, 22O, and 20C [14]
and those in C isotopes [2].

Applying the AMD method, we investigate the transi-
tion properties of 30Si. Assuming the mirror symmetry, the
calculated proton and neutron transition matrix amplitudes
are compared with the data evaluated by the observed E2
transition strength for 30Si and 30S, and they are discussed in
connection with proton and neutron deformations. Transition
properties in 26Mg and 26Si are also discussed. The proton
dominance in the transition 2+

2 → 0+
1 for 10C and 16C is also

shown as well as that for Si isotopes.
The paper is organized as follows. In the next section, the

formulation of the present calculation is explained. In Sec. III,
the results for 30Si and 30S and those for 26Mg and 26Si are
shown and the proton dominance of 2+

2 → 0+
1 in 30Si and 26Si

is discussed. The proton dominance in 10C and 16C is shown
in Sec. IV. In Sec. V, a summary is given.

II. FORMULATION

Here we briefly explain the formulation of the present
calculations. Details of the formulation of AMD methods for
nuclear structure study are explained in Refs. [11–13]. The
method of the present calculations is basically same as that in
Refs. [11,14].

An AMD wave function �AMD for a system with the mass
number A is given by a single Slater determinant of Gaussian
wave packets as

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the ith single-particle wave function is written as

ϕi = φXi
χiτi, (2)

φXi
(rj ) ∝ exp

{
−ν

(
rj − Xi√

ν

)2
}

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

Here the isospin function τi is fixed to be up (proton) or down
(neutron). The orientation of intrinsic spin ξi is also fixed
to be 1/2 or −1/2 in the present calculations as done in
Refs. [11,14]. The width parameter for the Gaussian wave
packet is taken to be ν = 0.15 fm−2 which is the optimum
value for 28Si used in Ref. [14]. The spatial part, φXi

, is
written by a Gaussian wave packet localized at the certain
position Xi in the phase space. Then, the AMD wave function
is expressed by {Xi} which indicate the Gaussian centers for
all the single-particle wave functions and are treated as the
independent complex variational parameters.

We perform energy variation for a parity eigenstate,
P ±�AMD ≡ �±

AMD, projected from an AMD wave function
by means of the frictional cooling method [11]. We consider
the AMD wave function obtained by the energy variation
as an intrinsic state, and total-angular-momentum projection
(P J

MK ) is performed after the variation to calculate such
observables as energies and transition strengths. The K mixing

is incorporated in the total-angular-momentum projection for
nonzero J states.

As shown later, two local minimum solutions are obtained
in the energy variation for the Z = 14 systems. The two
minima almost degenerate to each other and may correspond
to shape coexistence phenomena as already discussed in the
N = 14 systems [14]. Comparing the calculated structure
properties such as transition strengths with the experimental
data, we assign one of two minima to the intrinsic state of the
ground band.

By using the obtained wave functions, we calculate the
transition matrix amplitudes Mp and Mn for proton and
neutron, respectively, and also the E2 transition strengths.
They are defined as follows:

Mp = 〈
f

∣∣∣∣P (tz = 1/2)r2Y 2
μ

∣∣∣∣i〉, (5)

Mn = 〈
f

∣∣∣∣P (tz = −1/2)r2Y 2
μ

∣∣∣∣i〉, (6)

B(E2) = e2

2Ji + 1
M2

p. (7)

Here P (tz = ±1/2) are the isospin projection operators for
protons and neutrons.

III. RESULTS

A. Effective interaction

The effective nuclear interactions adopted in the present
work consist of the central force, the spin-orbit force, and
the Coulomb force. We adopt the MV1 force [15] as the
central force. The MV1 force contains a zero-range three-body
force in addition to the two-body interaction. For interaction
parameters, we use the same parameter set as that in Ref. [14].
Namely, the MV1 force (case 1) with the parameters b =
0, h = 0, and m = 0.62 is used. For the spin-orbit force,
the two-range Gaussian form of the G3RS force [16] is
adopted. The strengths of the spin-orbit force are uI = −uII =
2800 MeV. These strengths were adjusted to reproduce energy
levels of 28Si in Ref. [14].

B. 30Si and 30S

After the energy variation for parity projected AMD wave
functions, two local minimum solutions (A) and (B) are
obtained for 30Si. The state (A) shows a smaller deformation as
(βp, γp) = (0.18, 0.01π ) and (βn, γn) = (0.20, 0.00π ) and the
state (B) has a larger deformation as (βp, γp) = (0.35, 0.00π )
and (βn, γn) = (0.26, 0.00π ). Here the definition of the
quadrupole deformation parameters (βp, γp) for proton density
distribution and (βn, γn) for a neutron one is given in
Ref. [4].

After the angular momentum projection, the energy levels
are obtained from the states (A) and (B) (Fig. 1). The
bands constructed from two intrinsic states, (A) and (B),
almost degenerate. As shown later, the band (A) shows good
agreements with experimental data such as the Q moment and
E2 transition strengths for the ground band, and therefore,
we can assign the band (A) to the experimental ground
band. The band (B) might correspond to the excited band,
but the excitation energy seems to be underestimated in
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FIG. 1. Energy levels of 30Si for positive parity states. The
calculated levels are obtained by the projection from the state
(A), the state (B), the superposition (A + B), the state (C), and
the superposition (A + C). The energies are measured from the 0+

1

calculated with (A + C). The experimental levels are the positive
parity bands observed by the gamma-ray measurements in Ref. [17].

the present calculation. Because of this underestimation, the
energy levels calculated by superposition of (A) and (B) show
the band-mixing feature around J ∼ 2 which is inconsistent
with the experimental data. Since our interest is in the transition
properties of the ground band and its side band, we consider
the state (A) for the ground band and omit the mixing with the
state (B) in the following discussions.

Experimentally, the E2 transition strengths were measured
up to high-spin states, and the Kπ = 2+ side band by the Kπ =
0+ ground band was identified [17]. In the present calculation,
no Kπ = 2+ side band member is obtained from the band (A)
because of the prolate intrinsic shape of the state (A). Owing to
the Z = 14 shell gap in the oblate deformation, it is naturally
expected that 30Si may be soft against γ deformation toward
the oblate region. Therefore, we construct another intrinsic
state (C) by the alternative energy variation where we vary the
single-particle neutron wave functions but freeze the proton
configuration so that it has the same proton structure as that
of the oblate ground state of 28Si. It corresponds to the energy
variation with the constraint of the oblate proton structure.
Thus obtained state (C) has an triaxial neutron structure of
(βn, γn) = (0.21, 0.15π ) with the oblate proton deformation of
(βp, γp) = (0.27, 0.28π ). The single-particle energy levels in
the intrinsic wave functions for the states (A) and (C) are shown
in Fig. 2 . The derivation of the single-particle energies of AMD
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FIG. 2. Single-particle energies in the intrinsic wave functions
30Si(A) and 30Si(C).

wave functions is described, for example, in Refs. [13,18]. In
the state (C), the single-particle energy spectra are consistent
with those for oblate systems where the N = 14 shell gap
is clearly seen, while the N = 14 shell gap vanishes in the
state (A).

After the angular momentum projection, the Kπ = 0+ and
the Kπ = 2+ side bands are generated from the intrinsic state
(C). The absolute energy of the 0+

1 projected from the state (C)
is relatively lower than that from the state (A) even though the
intrinsic energy of the state (C) is higher than (A) before the
projection. This is because the triaxial state gains more energy
than the prolate state in the angular momentum projection.
The lower energy of the state (C) than that of the state (A) may
support a trend of finite gamma proton configuration. However,
we should comment that the state (C) is not necessarily the
lowest state in the 0+

1 projected AMD wave functions though
the state (C) is a better solution than the state (A). To get
the most relevant state the method of variation after parity
and angular momentum projections or the method with β-γ
constraint [19] should be applied. However, it is difficult in
practice to apply these methods to A = 30 nuclei because of
computational costs.

We superpose the states (A) and (C) and obtain the energy
levels for the ground and side bands. The energy levels
calculated by the superposition (A + C) correspond well to
the experimental levels for the Kπ = 0+ and the Kπ = 2+
bands except for a slightly higher excitation energy for the
Kπ = 2+ band. Considering that the Kπ = 2+ band members
are constructed mainly from the |K| = 2 components of the
intrinsic state (C) and the ground band can be described
by the K = 0 states of (C), these bands are considered to
be the Kπ = 0+ and the Kπ = 2+ side bands projected from
the triaxial intrinsic state (C). We here note that the wave
functions of the Kπ = 0+ components of the states (C) and (A)
have large overlap with each other. Therefore, an alternative
interpretation is possible. Namely, the ground band is regarded
as the rotational band of the prolate state (A) and the K = 2
side band is the γ vibration band on the top of the prolate
state, which is taken into account by the superposition of (A)
and (C).

We calculate the quadrupole transition properties by the
superposition (A + C) and discuss the neutron and proton
contributions based on the mirror analysis. We first show
the calculated values of B(E2), the proton transition matrix
amplitudes Mp, and electric quadrupole moments Q in 30Si
in comparison with the experimental data in Table I. The
theoretical values are in good agreement with the experimental
data except for the inter-band transition 4+

2 → 2+
1 .

We next discuss the Mn/Mp ratio for the 2+
1 → 0+

1 and
2+

2 → 0+
1 transitions. We assume here the mirror symmetry

that the neutron transition matrix amplitudes Mn in 30Si are
consistent with the proton transition matrix amplitudes Mp in
30S. Then, the experimental Mn values for 30Si are evaluated by
B(E2) in 30S. As shown in Table II, the experimental Mn/Mp

ratio for 2+
1 → 0+

1 in 30Si is close to a unit indicating that the
proton and neutron parts equally contribute to the ground-band
transition. What is striking is that the Mn/Mp ratio for
2+

2 → 0+
1 is 0.5 in the experimental data. This indicates the

dominant proton matrix amplitude, which is about twice the
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TABLE I. E2 transition strengths of the in-band and inter-band
transitions in 30Si. The experimental data are taken from (a) Ref. [20]
and (b) Ref. [17].

Exp. Cal.

B(E2) Mp B(E2) Mp

Inband (K = 0+
1 )

2+
1 → 0+

1 8.5 ± 1.1a 14 5.6 12.5

4+
1 → 2+

1 4.5+1.5
−1.0

b 14 8.7 15.5

Inband (K = 2+
1 )

3+
1 → 2+

2 7+16
−6

b 15 8.5 15.4

4+
2 → 2+

2 4.1+3.7
−1.8

b 13 7.1 14

4+
2 → 3+

1 7.9

5+
1 → 3+

1 4.5+2.2
−1.4

b 15 7.6 14.5

5+
1 → 4+2 1.3+1.4

−0.7
b 8.1 4.5 11.1

Inter-band

2+
2 → 0+

1 1.7±0.5a 5.9 1.6 6.6

2+
2 → 2+

1 8.9+11
−5

b 14 9.1 15.9

3+
1 → 2+

1 3.8+2.7
−1.3

b 11 2.8 8.8

4+
2 → 2+

1 7.8+4.1
−1.2

b 18 0.02 0.8

4+
1 → 3+

1 4.1 10.6

Exp. Cal.

Q μ Q μ

2+
1 −5 ± 6 0.76 −4.1 1.3

neutron one in the transition from the side band to the ground
state. The present calculation reproduces this trend of the
quenched Mn/Mp ratio, though it much underestimates the Mn

value for 2+
2 → 0+

1 in 30Si. The origin of the dominant proton
contribution and the minor neutron one in this transition,
2+

2 → 0+
1 , is understood by the difference between proton

and neutron structures. As mentioned before, the side band
members are constructed mainly from the |K| = 2 components

TABLE II. The calculated and theoretical B(E2) values and the
proton transition matrix for the transitions 2+

2 → 0+
1 and 2+

1 → 0+
1

in 30Si and 30S. The experimental values of the Mn/Mp ratio are
evaluated based on the mirror analysis in which Mn of 30Si is
assumed to be equal to Mp of 30S. The experimental B(E2) values
are taken from Ref. [20] and (c) those evaluated from the life times
and branching ratios.

Exp. Cal.

B(E2) Mp Mn/Mp B(E2) Mp Mn/Mp

2+
1 → 0+

1
30Si 8.5 ± 1.1 15.3 1.1 5.6 12.5 1.2
30S 11c 18 7.6 14.5

2+
2 → 0+

1
30Si 1.7 ± 0.5 6.9 0.5 1.6 6.6 0.1
30S 0.4c 3 0.02 0.6

of the intrinsic state (C), while the ground band is also
approximately written by the |K| = 0 states projected from
the state (C). That is, the 2+

2 state can be interpreted as the
triaxial side band. As we mentioned, the state (C) has the
larger triaxiality of the proton shape than the neutron part,
and therefore, proton contribution should be dominant but the
neutron one is minor in the 2+

2 → 0+
1 .

We should comment again that the K = 0 components
of the triaxial state (C) have large overlaps with those of
the prolate state (A). In fact, the overlap between the 0+
states projected from (A) and (C) is 55%. This is because
the deformation parameter γ is not a coordinate but just an
expectation value, and two states with different γ values
are not orthogonal to each other. Even if a rotational band
is constructed by the angular-momentum projection from an
intrinsic state, the intrinsic shape is not observable but an
interpretation which is useful to interpret the microscopic wave
functions projected from the intrinsic state as the rotational
band members. Therefore, strictly speaking, it is not easy to
clearly distinguish between rotational K = 2 modes of a static
triaxial state and γ -vibrational modes in such the system. Then,
we can consider the alternative interpretation for the 2+

2 state as
the γ vibration on the prolate K = 0 ground band. Again, the
proton dominance can be easily understood by the γ vibration
of the proton structure. In any case, we can conclude that the
proton dominance of the transition 2+

2 → 0+
1 in 30Si originates

in the γ softness of the proton part in the Z = 14 system,
and the difference between proton and neutron structures is
essential.

C. 26Mg and 26Si

In this subsection, we discuss the proton dominance in the
2+

2 → 0+
1 of 26Si in relation to the γ deformation of the proton

structure, in a similar way to the mirror analysis of 30Si and
30S. Before discussing the Mn/Mp ratio of 26Si based on the
mirror analysis, we first investigate the structure of the ground
and excited states of the mirror nucleus 26Mg for which the
existing data is richer than for 26Si.

We apply the AMD method to 26Mg. After energy variation
for parity projected AMD wave functions, two local minimum
solutions (A) and (B) are obtained in 26Mg, similarly to
the case of 30Si. The state (A) shows the triaxiality shape
(βp, γp) = (0.33, 0.08π ) and (βn, γn) = (0.22, 0.13π ) with
a smaller neutron deformation, while the state (B) has a
prolate deformation (βp, γp) = (0.33, 0.07π ) and (βn, γn) =
(0.35, 0.00π ) with a larger neutron deformation. The energy
of the intrinsic state (A) degenerates with the state (B) within
0.1 MeV before the angular momentum projection. After the
angular-momentum projection, the 0+ energy projected from
the state (A) is 1.1 MeV higher than that obtained from the state
(B). In spite of the slightly higher energy of the state (A) than
that of the state (B), we tentatively assign the states projected
from (A) to the experimental Kπ = 0+ ground band and its
side band Kπ = 2+

1 , because the observed level structure and
E2 transition strengths for the Kπ = 0+

1 and Kπ = 2+
1 band

members can be reproduced by the results calculated with the
state (A). The state (B) is inconsistent with the experimental
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FIG. 3. Energy levels of 26Mg. The calculated levels are obtained
by the superposition of the states projected from the states (A) and
(C). The experimental levels are the positive parity bands observed
by the gamma-ray measurements in Ref. [22].

fact that the Kπ = 2+
1 side band exists by the ground band,

and therefore, it would correspond to an excited Kπ = 0+ band
though it is eventually the lowest in the present calculations. In
fact, the state (A) can be the lowest if we tune the interaction
parameters, for instance, with m = 0.62, b = h = 0.125, and
uI = −uII = 3200 MeV. Hereafter, we concentrate only on
the Kπ = 0+ band and its Kπ = 2+ side band constructed
from the state (A), and omit the mixing effect of the
state (B).

To see the γ softness of the N = 14 neutron structure in
26Mg, we construct an intrinsic state (C) by the alternative
energy variation that we vary the centers of the single-
particle Gaussian wave functions only for protons but freeze
the neutron configuration so that it has the same neutron
structure as that of the oblate ground state of 28Si. This means
energy variation with the constraint of the oblate neutron
structure. Thus obtained state (C) of 26Mg has an triaxial proton
structure of (βp, γp) = (0.32, 0.10π ) with the almost oblate
neutron deformation (βn, γn) = (0.26, 0.28π ). The state (C)
is 2 MeV higher than the state (A) before and after the
angular momentum. In Fig. 3, we show the energy levels
obtained by the superposition (A + C). The calculated energy
levels are in reasonable agreement with the experimental data
except for underestimation of the level spacing in the ground
band. In the case of 26Mg, the mixing of the state (C) gives
minor contributions and the energy levels in the (A + C)
calculations are qualitatively the same as those obtained by
the single intrinsic state (A) without mixing of the state (C).
This indicates that the Kπ = 2+

1 band can be interpreted as the
side band of the Kπ = 0+

1 ground band constructed from the
triaxial shape of state (A).

Let us show the quadrupole transition properties calculated
by the superposition (A + C) and discuss the proton and
neutron matrix amplitudes based on the mirror analysis. We
first show the calculated values of the B(E2) and Q moments
of 26Mg in Table III. The present results are in reasonable
agreement with the experimental data. Next we discuss the
Mn/Mp ratio for the transitions 2+

1 → 0+
1 and 2+

2 → 0+
1 in

26Si, shown in Table IV. Here we assume the mirror symmetry
that Mn and Mp of 26Si are equal to Mp and Mn of 26Mg,
respectively. The experimental values of Mp are obtained
from the B(E2) values of 26Si and 26Mg. The experimental
Mn/Mp ratio for the ground-band transition 2+

1 → 0+
1 is 0.94

TABLE III. E2 transition strengths for the in-band and inter-band
transitions in 26Mg. The experimental data are taken from (a) [21]
and (b) [22].

Exp. Cal.

B(E2) Mp B(E2) Mp

Inband (K = 0+
1 )

2+
1 → 0+

1 13.4 ± 0.4a 17.5 12.9 17.2

4+
2 → 2+

1 14 ± 3a 24 16.1 25.7

Inband (K = 2+
1 )

3+
2 → 2+

2 9.2+7.9
−4.5

b 17 22.5 26.8

4+
4 → 3+

2 5.2+6.1
−2.1

b 15 9.5 19.8

Inter-band

2+
2 → 0+

1 0.35 ± 0.07a 2.8 0.1 1.5

Exp. Cal.

Q μ Q μ

2+
1 −13.5 ± 2 0.884 −14.2 0.92

which is close to 1, while that for the 2+
2 → 0+

1 is 0.5. The
quenched Mn/Mp for the transition 2+

2 → 0+
1 indicates proton

dominance. The present calculations reproduce this feature of
the proton dominance.

Here we remind the reader that the 2+
2 state of 26Mg is

constructed from the triaxial neutron shape of the state (A). In
other words, the 2+

2 state of the mirror nucleus 26Si is given
by the rotation of the triaxial proton shape. Consequently, the
proton contribution is dominant in the excitation from the 0+

1
state to the 2+

2 state resulting in the small value of Mn/Mp for
the transition 2+

2 → 0+
1 in 26Si.

IV. Mn/Mp RATIOS IN p-SHELL NUCLEI

In the previous section, we discuss the the proton domi-
nance in the transition 2+

2 → 0+
1 between the side band and

the ground band of Si isotopes with N = Z ± 2. The proton

TABLE IV. The calculated and theoretical B(E2) values and the
proton transition matrix for the transitions 2+

2 → 0+
1 and 2+

1 → 0+
1

in 26Si and 26Mg. The experimental values of the Mn/Mp ratio are
evaluated based on the mirror analysis in which Mn of 26Si is assumed
to be equal to Mp of 26Mg. The experimental B(E2) values are taken
from Ref. [21].

Exp. Cal.

B(E2) Mp Mn/Mp B(E2) Mp Mn/Mp

2+
1 → 0+

1
26Si 15.4 ± 1.5 18.8 0.94 6.4 12.1 1.4
26Mg 13.4 ± 0.4 17.5 12.9 17.2

2+
2 → 0+

1
26Si 1.6 ± 0.5 6.0 0.5 1.4 5.6 0.26
26Mg 0.35 ± 0.07 2.8 0.09 1.5
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FIG. 4. The experimental energy levels of the 0+
1 , 2+

1 , and 2+
2

states and Mn/Mp ratios for the 2+
1 → 0+

1 and 2+
2 → 0+

1 of 26Si, 30Si,
10C, and 16C [20,21,23,24]. The experimental values of the neutron
matrix amplitude (Mn) are deduced from the corresponding B(E2)
values of the mirror nucleus. The values in the parentheses are the
present calculations.

dominance can be described by the triaxial shape of the proton
structure. This feature originates in the oblate trend of the
Z = 14 proton configuration.

Let us consider the proton dominance in the p-shell nuclei.
In C isotopes, the Z = 6 proton configuration has the oblate
trend as is known in 12C. In fact, the oblate proton and prolate
neutron shapes are theoretically suggested in 10C and 16C
in the AMD calculations [2]. In these nuclei, the proton
dominance in the transition 2+

2 → 0+
1 is expected as well as

26Si and 30Si. In this section, we refer to the intrinsic structures
of 10C and 16C investigated in Ref. [2] and discuss the proton
dominance in C isotopes in comparison with Si isotopes.
We use the AMD wave functions calculated in the previous
work [2].

The experimental and theoretical values of the Mn/Mp

ratios are written in Fig. 4, in which the experimental
energy levels are drawn. In both nuclei 10C and 16C, the
proton structure shows the oblate deformation in spite of
the prolate neutron structure. The deformation parameters of
the intrinsic state are (βp, γp) = (0.41, 0.27π ) and (βn, γn) =
(0.53, 0.00π ) for 10C, and they are (βp, γp) = (0.32, 0.26π )
and (βn, γn) = (0.34, 0.00π ) for 16C. This means that the
Z = 6 proton structure is not so much affected by the
neutron structure but it keeps the oblate tendency. As a result,
the decoupling between proton and neutron shapes is more
remarkable in C isotopes than in Si isotopes. This decoupling
is one of the reasons for the enhanced Mn/Mp ratio of
the ground-band transition 2+

1 → 0+
1 in 16C as discussed in

Ref. [2]. For the transition 2+
2 → 0+

1 in 10C and 16C, the
calculated Mn/Mp ratio is quenched and it indicates the proton
dominance. The suggested proton dominance originates in
the oblate proton structure in the Z = 6 systems. This is
a good analogy to the proton dominance in 26Si and 30Si,

which arises from the oblate trend of the Z = 14 proton
structure.

Experimentally, the Mn/Mp ratio for 2+
2 → 0+

1 is unknown.
Inelastic scatterings of 10C and 16C might be a good probe to
evaluate the Mn/Mp ratio.

Note that the shape has large quantum fluctuation in such
light systems and it is not observable. Nevertheless, it is
helpful to interpret the angular-momentum-projected states
in terms of rotation of the intrinsic deformation to get the
semiclassical picture of transition properties. Our argument
is that the Mn/Mp ratios in C isotopes can be qualita-
tively understood by the oblate proton and prolate neutron
shapes.

V. SUMMARY

E2 transitions in 30Si were investigated in relation with the
intrinsic deformation. In the calculation of the AMD method,
the experimental B(E2) values in the Kπ = 0+

1 and Kπ = 2+
1

bands are reproduced by the calculation. Based on mirror
analysis, the transition matrix amplitudes Mp and Mn were
discussed. Particular attention is paid to the Mn/Mp ratio
in the transition from the 2+

2 state to the 0+
1 state, whose

quenching is experimentally known. The Mn/Mp ratio in
26Mg and 26Si was also investigated. We have shown that
the Kπ = 2+

1 band can be interpreted as the triaxial side
band, and the proton contribution is dominant in the transition
2+

2 → 0+
1 . The quenched Mn/Mp, i.e., the proton dominance

in 2+
2 → 0+

1 in 30Si and 26Si, originates in the oblate trend of the
Z = 14 proton structure. The proton dominance in 2+

2 → 0+
1

is suggested also in 10C and 16C, where the oblate proton
structure is favored.

We should comment that the shape has large quantum
fluctuation in light-mass systems and it is not observable.
Strictly speaking, the macroscopic picture may be too simple
for such systems, and therefore, it is not easy to clearly
distinguish between two collective pictures, the rotational
mode of a static triaxial state and the γ -vibrational mode.
Nevertheless, it is helpful to interpret the angular-momentum-
projected states in terms of rotation of the intrinsic defor-
mation to get the semiclassical picture of transition proper-
ties. Our argument is that the quenched Mn/Mp ratios in
2+

2 → 0+
1 of these nuclei can be qualitatively understood

by the oblate trend of proton shapes in the prolate neutron
structures.
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