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Charge radii and ground state structure of lithium isotopes: Experiment and theory reexamined
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Changes in the nuclear charge radii of lithium isotopes were determined using a combination of precise isotope
shift measurements and theoretical atomic structure calculations. We discuss the choice of the reference isotope
for absolute charge radii determinations in the lithium isotopic chain and report a new value for the charge radius
of 6Li, based on the analysis of the world scattering data. A summary of the lithium nuclear charge radii obtained
in this way is presented. Additionally, new calculations in fermionic molecular dynamics for the lithium isotopes
were performed. We summarize the status of the lithium nuclear charge radii, magnetic dipole and electric
quadrupole moments from experimental investigations and compare them to the results of various microscopic
and three-body nuclear models.
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I. INTRODUCTION

Nuclear ground state properties of stable and short-lived
isotopes of the lightest elements are benchmark tests for
nuclear structure calculations and have as such attracted much
interest for many years. Laser spectroscopy is known to
provide accurate and reliable data of nuclear properties [1,2].
Magnetic dipole and electric quadrupole moments were deter-
mined for light short-lived isotopes by laser spectroscopy and
β-NMR measurements after nuclear polarization by optical
pumping and provided important information about the spin
and structure of halo nuclei [3–7]. From the isotope shift in an
optical transition, the change in the mean square nuclear charge
radius can be extracted based on very general assumptions and
without the necessity to rely on a particular nuclear model.
Hence, this technique is said to be nuclear-model independent.
Optical isotope shift measurements were already used for a
long time to determine changes in the nuclear charge radii
for medium-heavy and heavy short-lived isotopes [1,2,8,9],
when it was still not possible to determine nuclear charge radii
for short-lived isotopes of the lightest elements. This became
feasible only a few years ago, when high-precision atomic
structure calculations [10–14] were combined with sensitive
and accurate isotope shift measurements [15–21] of the most
exotic nuclei in the lower region of the nuclear chart.

While isotope shift measurements in an optical transition
are very sensitive to structural changes in the nuclear charge
distribution along the isotopic chain and can even be applied
for very short-lived species online, they cannot provide
absolute charge radii. To calculate rms charge radii Rc along
the isotopic chain, at least one reference radius—usually of a
stable isotope—has to be known. Complementary approaches
are elastic electron-scattering or muonic-atom spectroscopy
[22,23], since they provide absolute nuclear charge radii, but
have only limited accuracy and are only applicable to stable
isotopes so far.

In recent years it has become possible to perform ab
initio calculations for light nuclei based on realistic nucleon-
nucleon and three-nucleon interactions up to about A ≈
12. Examples are Green’s function Monte Carlo (GFMC)
calculations [24,25] and the no-core shell model (NCSM)
[26–28]. Very recently a new approach has been presented that
solves chiral effective field theory directly on the lattice [29].
Ab initio calculations are computationally very expensive
and face many challenges, especially for exotic nuclei. The
NCSM for example is not very well suited for weakly bound
clustered nuclei as the harmonic oscillator basis has the wrong
asymptotics.

Other microscopic and nonmicroscopic models have been
developed to address the special properties of light nuclei
employing effective interactions. Among them are fermionic
molecular dynamics (FMD) [30], the stochastic variational
multi-cluster model (SVMC) [31], the tensor-optimized shell
model (TOSM) [32], and other three-body models (3BM).

This paper consists of three parts. First, we report on the ex-
traction of a consistent set of nuclear charge radii for all lithium
isotopes based on the combination of laser-spectroscopic iso-
tope shift measurements reported in [15,16,18,21]. Therefore,
the world data on elastic electron scattering of 6Li, performed
about 40 years ago [33–35], is analyzed to obtain a reference
radius as accurate as possible, including reliable uncertainties.
Using this reference radius, a summary of nuclear charge radii
of all lithium isotopes is presented.

In the second part we present calculations in the fermionic
molecular dynamics (FMD) approach for 6−9Li. We discuss
how the evolution of the charge radii reflects the change in
the structure from 6Li and 7Li, where we find pronounced
clustering in the wave function, to 8Li and 9Li where the
structure is closer to the mean-field picture. Whereas we did
not succeed in a consistent description of 11Li in the FMD
approach we can still draw some conclusions by analyzing
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the (p1/2)2 and (s1/2)2 configurations. In addition we use the
FMD calculations to evaluate the spin-orbit contribution to the
nuclear charge radius for the different isotopes.

Finally, we compare the measured ground-state properties
of the lithium isotopes to the results of FMD and other theoreti-
cal approaches. In case of 11Li the results of three-body models,
the stochastic variational multi-cluster model (SVMC) and
the tensor-optimized shell model (TOSM) will be discussed.
One interesting question here is whether the contributions from
the center-of-mass effect and core polarization contributions
to the charge radius can be disentangled.

II. EXPERIMENTAL DETERMINATION OF LITHIUM
CHARGE RADII

A. Extraction of δ〈r2
c 〉 from isotope shift measurements of

lithium isotopes

An extensive description of the experimental technique
and details of the mass shift calculations are presented
in a previous paper [21] and will not be discussed here.
Instead, we will shortly summarize how charge radii of light
isotopes are obtained by combining high-accuracy isotope shift
measurements and atomic mass shift calculations. The isotope
shift

δν
A,A′
IS = νA′ − νA (1)

is the difference in transition frequency between two isotopes
in an electronic transition. The addition or removal of neutrons
causes a change in the nuclear mass [mass shift (MS)] and a
change in the nuclear charge distribution [field shift (FS)]

δν
A,A′
IS = δν

A,A′
MS + δν

A,A′
FS . (2)

The mass shift includes all nuclear mass-dependent terms and
can be written as

δν
A,A′
MS = KMS · MA′ − MA

MAMA′
, (3)

with the mass-shift constant KMS. The field shift can be
factorized into an electronic part F and the change in the
mean square nuclear charge radius δ〈r2

c 〉A,A′

δν
A,A′
FS = F · δ

〈
r2

c

〉A,A′
(4)

= 2πZe

3
� |�(0)|2 · [

R2
c (A′) − R2

c (A)
]
. (5)

If the mass shift and the electronic factor F , determined by the
change of the electron probability at the nucleus � |�(0)|2
in the optical transition, can both be provided by theory
with sufficient accuracy, one can easily obtain the change
in the mean square nuclear charge radius from an accurate
spectroscopic determination of the isotope shift

δ〈r2
c 〉A,A′ = δν

A,A′
IS,Exp − δν

A,A′
MS,Theory

FTheory
. (6)

In principle, this ab initio approach can be used for all
elements. Unfortunately, up to now theory can provide the
required accuracy only for two- and three-electron systems
in the case of atomic systems with low Z. This is caused by

the fact that the correlations between all electrons have to be
taken into account to obtain high accuracy for the mass shift
contribution. But the complicated correlation integrals can be
solved only in these few-electron cases. At the same time,
the light elements are those, for which the highest accuracy
is required to determine the nuclear charge radius, because
the field shift is only a 10−4 correction to the dominant mass
shift. In lithium for example, the field shift factor F is about
1.5 MHz/fm2, i.e., the field shift is of the order of 1 MHz while
the mass shift between neighboring isotopes is of the order of
10 000 MHz. However, atomic theory has now developed the
required tools to calculate the mass shift to an accuracy of about
10 kHz and better [12,13,21]. In parallel, new experimental
techniques were developed to measure isotope shifts of the
lightest elements with accuracies of 100 kHz and better.

The values for the nuclear charge radii of the lithium
isotopes have been slightly changing since the first publication
on charge radii measurements on lithium isotopes in 2004
[15]. This has led to some confusion about the most reliable
set of charge radii and was even misinterpreted as a model
dependence of the technique [36]. We want to stress that, apart
from a small contribution of nuclear polarizability correction,
the extraction of the change in the mean square nuclear
charge radius is model independent. The main reasons for
varying δ〈r2

c 〉 values are an improved accuracy in the atomic
structure calculations, improved mass measurements, and,
lately, a discussion about the most appropriate reference charge
radius. These issues will be shortly addressed in the following
sections.

B. The history of high-precision mass-shift
calculations in lithium

Mass-shift calculations for lithium isotopes were continu-
ously improved since the first high-accuracy calculations by
Yan and Drake in 2000 [10]. The published values during the
last decade are summarized in Table I and plotted in Fig. 1.
To demonstrate the influence of the improvements on Rc, we
have also listed the change in the nuclear charge radius of 11Li
relative to 6Li according to

�R(6,11)
c =

√
R2

c (6Li) + δ〈r2
c 〉6,11 − Rc(6Li) (7)

using Rc( 6Li) = 2.59 fm (see Sec. II C), the experimental
isotope shift δν

6,11
IS,Exp = 36555.176(108) MHz [21] and the

electronic factor F = 1.570 MHz/fm2 [37].
While the accuracy of the mass-shift calculations was

stepwise increased, as can be seen from the reduction of
the estimated uncertainty, there are a few jumps of the
calculated value that are clearly larger than the assigned
error bar. Firstly, the 11Li mass value changed considerably
by improved experiments and therefore the calculated mass
shift changed accordingly: The first direct mass measurement
at MISTRAL [40,41] yielded a two-neutron binding energy
S2n of 378(5) keV, more than 3σ larger than the previously
used value of 300(20) keV from the Atomic Mass Evaluation
(AME) in 1995 and 2003 [38,43]. The MISTRAL value
was later confirmed and improved in accuracy to S2n =
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TABLE I. Accuracy and corrections of the lithium isotopic mass shift calculations. δν6,11
MS,Theory are the published values for the mass-dependent

part of the isotope shift between 11Li and 6Li. The 11Li masses used in the respective isotope shift calculations are listed as well as the influence
on the change of the charge radius �R(6,11)

c between 6Li and 11Li according to Eq. (7) using Rc = 2.59 fm for 6Li, the experimental isotope
shift δν

6,11
IS,Exp = 36555.176(108) MHz [21] and the electronic factor F = 1.570 MHz/fm2 [37].

Year Ref. δν
6,11
MS,Theory (MHz) 11Li mass (amu) �R6,11

c (fm)

2000 Yan & Drake [10] 36 555.34(21) 11.043798(21) [38] +0.020
2002 Yan & Drake [39] 36 555.11(21) 11.043798(21) [38] −0.008
2006 Sánchez et al. [18] 36 554.82(18) 11.043714(5) [40] −0.044
2006 Puchalski et al. [12] 36 554.295(30) 11.043714(5) [40] −0.111
2008 Yan et al. [13] 36 554.291(24) 11.043714(5) [40] −0.111
2008 Puchalski & Pachucki [37] 36 554.323(11) 11.04372361(69) [42] −0.107
2010 Nörtershäuser et al. [21] 36 554.324(9) 11.04372361(69) [42] −0.107

369.15(65) keV at the TITAN facility at TRIUMF [42].
Compared to the result obtained with the AME value in
[10,39], the new measurements cause a change in the charge
radius of 11Li by as much as 0.04 fm [18], which is about 2%
of the total charge radius.

In addition, Puchalski and Pachucki [12] improved the
calculations of Yan and Drake by identifying a strong cancel-
lation between reduced mass, mass polarization, and the direct
electron-nucleus Breit interaction in the relativistic recoil
correction. Their value for the relativistic recoil corrections
turned out to be more than ten times smaller than the previous
value, resulting in a correction of about –380 kHz in the mass
shift and a reduced uncertainty. A numerical instability in the
previous calculations by Yan and Drake was the reason for this
discrepancy and soon corrected by the authors [13].

Finally, measurements at RIKEN determined a strong low-
lying dipole strength [44] of the 11Li nucleus. Puchalski and
Pachucki [12] pointed out that this has some influence on
the isotopic shift due to the associated nuclear polarizability
that makes the nucleus sensitive to the electric field of the
electrons. This, in turn, leads to a shift of the electron energies
that is not negligible at the level of accuracy of the atomic
calculations. However, the total amount of the polarizability

FIG. 1. Calculated mass shifts between 6Li and 11Li during the
last decade. See Table I for references.

shift is only 35(8) kHz, which is four times smaller than the
experimental uncertainty in the isotope shift measurement and
corresponds to a change in the nuclear charge radius of 11Li
by only 0.007 fm.

Since 2008, the calculations of the two groups are in
accordance with each other within the estimated uncertainty
and could even be further improved [21]. Now, agreement on
the 1 kHz level (relative uncertainty 3 × 10−7) is demonstrated,
which is two orders of magnitude more accurate than the
experimentally determined isotope shift.

C. Reference radii of stable lithium isotopes

If the charge radius of at least one reference isotope A is
known, absolute nuclear charge radii for all isotopes A′ of
the isotopic chain can be determined from the isotope shift
investigations according to

Rc(A
′
Li) =

√
R2

c (ALi) + δ
〈
r2

c

〉A,A′
. (8)

Elastic electron-scattering is known to provide reliable nuclear
charge radii of stable isotopes. In previous publications on the
lithium isotopes [15,16,18], a value of Rc(7Li) =

√
〈r2

c 〉7 =
2.39(3) fm was used as reference radius. This value is the
weighted average of elastic electron scattering from [33,34].

In this publication, we use the radius of 6Li as absolute
reference for the following reasons: For 6Li, additional precise
data in the region of maximal sensitivity to the rms-radius
are available [35] and elastic scattering could be very well
separated from inelastic scattering. In 7Li, the first excited
state at 0.478 MeV could not be resolved in the experiments
[33,34]. Moreover, the contribution of C2 scattering from the
quadrupole distribution, which could not be separated, is neg-
ligible for 6Li while it makes a significant contribution for 7Li,
and its subtraction would introduce substantial uncertainties.

In order to obtain the most accurate radius, we have
performed a new analysis of the world data [33–35] for 6Li.
The cross sections, which were initially measured relative
to the then available data for scattering from the proton or
carbon [45,46], were renormalized to state-of-the-art fits to the
world data [47,48]. A phase-shift code was used to account for
the Coulomb distortion.

024307-3
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We have performed two types of analyses. First, one of the
standard parametrizations of the charge density for 6Li was
used [33,35]. This parametrization allows for a good fit of
the data. The resulting radius has a model dependence that is
difficult to quantify. In particular, the effect of the large-radius
tail of the charge density is rather uncertain, which is important
due to the low deuteron and proton separation energy.

In the second, more trustworthy, analysis we parametrized
the interior part of the charge density using the “model-
independent” approach of [48]. The shape of the density
at large radii was taken from the Green’s function Monte
Carlo (GFMC) calculation of [49]. This calculation reproduces
accurately the 6Li binding energy and thus has a density at large
r that has the correct shape. In a single-particle model the
large-r density would be proportional to a Whittaker function
W 2

−η,1/2(2κr)/r2. For 6Li, such a single-particle picture would
be too simpleminded, however, given the (partial) α-d cluster
structure, which would lead to a different large-r behavior. The
GFMC calculation, which corresponds to an exact solution
of the Schrödinger equation for a realistic nucleon-nucleon
potential, automatically accounts for the various wave function
components and does not require a priori assumptions on the
single particle/cluster nature.

To obtain the large-r (relative) charge density, the GFMC
point density [50] was folded with the intrinsic proton and
neutron charge densities. From GFMC, we thus obtained the
(relative) charge density at radii r � 2.8 fm, where the density
has fallen to less than 4% of its central value. The density,
parametrized using the sum-of-Gaussians (SOG) approach,
was fitted to the (e, e) cross sections and the (relative) large-r
GFMC density. The statistical uncertainty of the resulting
radius was obtained from the error matrix, while the systematic
one was obtained by changing the data by their quoted
systematic uncertainty, refitting, and by adding quadratically
the resulting changes.

When fitting the data up to a momentum transfer of q =
2.4 fm−1 (where the quadrupole form factor still contributes
negligibly) we find a χ2 of 113 for 90 degrees of freedom. The
ratio of the experimental and fitted cross sections are shown in
Fig. 2 for the parametrization with the relative charge density
at r � 2.8 fm given by GFMC calculations. The resulting rms
radius is

Rc(6Li) = 2.589 ± 0.039 fm, (9)

where the uncertainty covers both the statistical and systematic
uncertainties. The radius is slightly larger than the most reliable
previous value [35] of 2.56(5) fm, because the model densities
used in [33,35] had a too steep (Gaussian) fall-off at very
large r .

The uncertainty we obtain for the 6Li radius is somewhat
larger than the one previously quoted for 6Li or 7Li, obtained
by averaging published values from individual experiments.
This is a consequence of the fact that the present radius is not
dependent on specific models used to parametrize the densities,
and the fact that we do account in a rather conservative
fashion for the systematic errors (normalization errors) of the
individual data sets.

FIG. 2. (Color online) Ratio of experimental and fit cross sections
for the parametrization with the relative charge density at r � 2.8 fm
given by Green’s function Monte Carlo (GFMC) calculations (see
text).

D. Nuclear charge radii of unstable lithium isotopes

The measured isotope shifts reported in [21] can now be
combined with the mass-shift calculations using Eq. (6) to
calculate δ〈r2

c 〉 and with the absolute charge radius of 6Li
to obtain charge radii Rc for all lithium isotopes according
to Eq. (8). Results are summarized in Table II and discussed
below together with nuclear model predictions. Please note
that the isotope shifts reported in [21] were slightly changed
compared to the first report in [18] because of an additional
small correction for the differential second-order Doppler shift
and a reanalysis of all systematic uncertainties.

III. FERMIONIC MOLECULAR DYNAMICS
CALCULATIONS FOR THE LITHIUM ISOTOPES

To obtain a better understanding of the physics behind
the evolution of the charge radii along the isotope chain
we performed calculations using the fermionic molecular
dynamics (FMD) approach. FMD allows to consistently
describe nuclei with a mean-field dominated structure and
nuclei featuring cluster and halo structures. The FMD wave
functions will also allow us to explicitly evaluate the spin-orbit
contribution to the charge radii.

FMD has been used successfully for light nuclei in the p

and sd shells. It was used for example to study the structure
of the Hoyle state in 12C [51], the properties of the beryllium
isotopes [52] and to explain the evolution of the charge radii
in neon isotopes [53]. Recently a calculation of the radiative
capture reaction 3He(α,γ )7Be with a consistent description
of bound and scattering states [54] was achieved. A general
discussion of the FMD approach is given in [30].

A. Fermionic molecular dynamics

FMD uses intrinsic many-body basis states that are Slater
determinants

|Q〉 = A{|q1〉 ⊗ . . . ⊗ |qA〉} (10)
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TABLE II. Experimental isotope shifts δνIS,Exp., calculated mass shifts δνMS,Theory, extracted field shift contributions δνFS, field shift
coefficient F , and changes in the mean square nuclear charge radii δ〈r2

c 〉6,A. All shifts are given relative to 6Li and values are taken from [21].
Absolute charge radii Rc are calculated using Eq. (8) and the charge radius of 6Li obtained from our analysis of the world scattering data.

ALi δνIS,Exp. δνMS,Theory δνFS F δ〈r2
c 〉6,A Rc

(MHz) (MHz) (MHz) (MHz/fm2) (fm2) (fm)

6Li 0.0 0.0 0.0 0.0 0.0 2.589(39)
7Li 11 453.970(34) 11 452.821(3) 1.149(34) −1.5719(16) −0.731(22) 2.444(42)
8Li 20 089.735(50) 20 087.802(5) 1.933(51) −1.5719(16) −1.230(32) 2.339(44)
9Li 26 787.236(50) 26 784.621(7) 2.615(50) −1.5720(16) −1.663(32) 2.245(46)
11Li 36 555.176(108) 36 554.324(9) 0.852(108) −1.5703(16) −0.543(69) 2.482(43)

built using Gaussian wave packets as single-particle states

〈�x|qk〉 = exp

{
− (�x − �bk)2

2ak

}
⊗ |χ↑

k , χ
↓
k 〉 ⊗ |ξ 〉. (11)

The parameters of the wave packets are the widths ak and
the complex vectors �bk that encode the mean positions and
mean momenta of the wave packets. The spin of the wave
packets can take any direction, the isospin ±1 corresponds
to either protons or neutrons. The wave-packet basis is very
flexible—it contains the harmonic oscillator shell model states
and Brink-type cluster states as special limiting cases. The
width parameters ak are also variational parameters and can
be different for each wave packet. This is especially useful for
the description of spatially extended halo states.

The intrinsic states |Q〉 reflect deformation or clustering and
break the symmetries of the Hamiltonian with respect to parity,
rotation and translation. To restore the symmetries the intrinsic
basis states are projected on parity, angular momentum and
total linear momentum

|Q; JπMK; �P = 0〉 = P πP J
MKP

�P=0|Q〉. (12)

In a full FMD calculation the many-body Hilbert space
is spanned by a set of N intrinsic basis states {|Q(a)〉, a =
1, . . . , N}. For light nuclei like the lithium isotopes the
basis states are obtained by variation after parity and angular
momentum projection. Additional basis states can be obtained
by constraints on the intrinsic wave function. In the end the full
many-body state is obtained by diagonalizing the Hamiltonian
in the set of nonorthogonal basis states {|Q(a)〉}.

B. Effective interaction

The FMD basis is well suited to describe long-range
correlations but it is not possible to describe explicitly
short-range correlations as induced by realistic interactions.
Therefore an effective interaction for the FMD model space
is needed. Starting from the realistic Argonne V18 interaction
we use the unitary correlation operator method (UCOM) to
explicitly include short-range central and tensor correlations
[55–57]. The resulting UCOM interaction is a low-momentum
interaction where the bulk of the tensor force has been
transformed into the central force. There is a remaining
long-range part of the tensor force.

First successful ab initio type calculations using FMD wave
functions and the UCOM interaction have been performed for
the 3He(α,γ )7Be and 3H(α,γ )7Li reactions [54]. Although the
properties of the 7Be and 7Li ground states are reproduced
fairly well, the splitting between the 3/2− and 1/2− bound
states is too small when compared to experiment. This
indicates that the spin-orbit strength is too small. In an ab
initio picture additional spin-orbit strength will come from
three-body forces. In this paper, as in previous structure
studies, we choose to employ a phenomenological two-body
correction term that contains a central momentum-dependent
part and an additional spin-orbit part to make up for missing
three-body forces. The parameters of the correction term are
fitted to binding energies and radii of double-closed shell
nuclei.

In this paper we use a slightly weaker spin-orbit correction
term than in previous structure studies. This improves the
description of the spectra of the lithium isotopes and also
provides better results for the electromagnetic properties. On
the other hand the binding energies are now somewhat smaller
and slightly underestimate the experimental binding energies.

C. FMD results for 6−9Li

In the present paper we generate the many-body basis states
by variation after projection (VAP) on parity and angular
momentum. For each isotope the variation is performed for the
spins of the three lowest-lying states. In Fig. 3 we show cuts
through the proton- and neutron-densities of the intrinsic states
obtained for the ground state spin. The density distributions
already reflect the 4He plus deuteron and 4He plus triton cluster
structure in 6Li and 7Li, respectively. For the heavier isotopes
8Li and 9Li a more mean-field–like picture emerges. This is
not surprising as we have low cluster thresholds in 6Li and 7Li
that are much lower then the proton or neutron thresholds. In
8Li and 9Li on the other hand the neutron separation thresholds
are much lower than multicluster thresholds. The general trend
of decreasing charge radii can already be deduced from these
intrinsic proton distributions.

For the full calculation we generate additional basis states
by constraining the matter radius of the intrinsic states during
the minimization. For each spin we constrain to five or six
different radii, we therefore have 15–18 intrinsic basis states
for each isotope. In 6Li and 7Li the intrinsic states react to the
radius constraint essentially by a smaller or larger separation
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FIG. 3. (Color online) Cuts through the intrinsic densities of FMD
configurations of 6−9Li obtained in variation after projection (VAP)
on the ground state spin. Proton densities on the left, neutron densities
on the right. Contour lines are in units of half nuclear matter density.

of the clusters. In 8Li and 9Li the constraint mostly affects the
neutron distributions.

The gain in binding energy comparing the full multicon-
figuration mixing calculation with the result from a single
configuration is between 2 and 3 MeV for all isotopes. For
the charge radii the effect decreases significantly from 6Li
and 7Li, where the charge radii are larger by 0.18 fm and
0.17 fm respectively, to 9Li, where the charge radius in
the multiconfiguration mixing calculation is larger by only

0.05 fm. This reflects the softness of the energy surface in 6Li
and 7Li with respect to the cluster separation.

Results for binding energies, charge radii, magnetic and
electric quadrupole moments of the ground states are sum-
marized in Sec. IV A. The binding energies are slightly too
small compared to experiment but follow the experimental
trend. The quadrupole moment of 6Li is very sensitive to
details of the calculation. It becomes positive when the tensor
terms of the interaction are not included although the binding
energy is almost unchanged. Also the quadrupole moment of
8Li becomes significantly smaller when the tensor terms in
the interaction are omitted. Furthermore the level ordering for
some low-lying excited states in 8Li and 9Li becomes wrong
when the tensor force is not included.

Overall the FMD results give a very reasonable description
of the electromagnetic properties of the nuclei 6−9Li. The
charge radii of 7Li and especially 6Li turn out to be somewhat
too small compared to experiment. This could be improved by
adding explicit deuteron and triton cluster configurations to
better describe the tail of the wave functions as has been done
in [54].

D. FMD results for 11Li
11Li is a very peculiar nucleus. It is a so-called Borromean

nucleus as both 10Li and the dineutron are unbound. The two-
neutron separation energy is only 369 keV which makes 11Li
one of the prime candidates for three-body cluster models. In
a microscopic model a nucleus like 11Li is extremely difficult
to describe. We did not succeed yet in a consistent calculation
within the FMD approach. Nevertheless we can draw some
conclusions regarding its structure from first results.

From three-body models we know that there are two
main configurations in the 11Li ground state—a 9Li core plus
two-neutrons in (p1/2)2 or (s1/2)2 configurations. By variation
after projection for 11Li on the ground state spin 3/2− we
easily obtain an intrinsic configuration that corresponds mainly
to a (p1/2)2 configuration. These p orbits are however not
simple harmonic oscillator orbits but have a more extended
tail reflecting the very weak binding. The neutron density
distribution as shown in the upper part of Fig. 4 therefore
extends further out than in 9Li. A second local minimum in the
energy surface can be found for an (s1/2)2 configuration as is
shown in the lower part of Fig. 4. Here we find an intrinsic state
that is very similar to 9Li obtained in variation after projection
plus two neutrons in very extended s orbits. It is interesting
to note that in case of the (s1/2)2 configuration the effect of
the center-of-mass projection is very large—3.6 MeV versus
only 0.7 MeV for the (p1/2)2 configuration. For the (s1/2)2

configuration we therefore perform the variation after parity,
angular momentum and total linear momentum projection.
In all other cases the linear momentum projection is only
performed after the variation.

We compare the results for the two 11Li configurations and
for a single 9Li configuration in Table III. There are some
interesting observations to be made: The binding energy of
the (p1/2)2 configuration with respect to the single 9Li con-
figuration is about 1 MeV, much larger than the experimental
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FIG. 4. (Color online) Cuts through intrinsic densities of FMD
configurations obtained in variation after projection for 11Li in (p1/2)2

(top) and (s1/2)2 (bottom) configurations.

value. This value should be reduced significantly in a more
extended calculation. In 9Li we gain about 2 MeV in binding
energy by multiconfiguration mixing. We expect that in the
(p1/2)2 configuration of 11Li the effect will be smaller as we
are dealing with a closed shell configuration for the neutrons.
The single (s1/2)2 configuration is actually unbound with
respect to the 9Li core and the binding energy is significantly
smaller than for the (p1/2)2 configuration. In a full calculation
we expect two effects which should provide more binding.
(1) Within the core plus two neutron picture we should gain
about 2 MeV by going from the single configuration for the 9Li
core to the corresponding multiconfiguration mixing result.
(2) In addition a better description of the halo neutrons by
going beyond a single configuration should further lower the
energy. Under these assumptions we expect the energies of
the (p1/2)2 and (s1/2)2 configurations to be pretty similar. In
this case of two configurations with almost degenerate energies
significant mixing will occur even if the mixing matrix element
between the two configurations is small. With the present
wave functions the mixing between the (p1/2)2 and (s1/2)2

configurations is indeed very weak. The mixing between the
configurations could also be enhanced via a third configuration
of (d5/2)2 nature or configurations with core polarization.

For our understanding of the electromagnetic observables
it is also interesting to see how these observables change
in the different 11Li configurations when compared to the
9Li results. We observe an increase in the charge radius for
the (p1/2)2 configuration from 2.22 fm to 2.31 fm and for
the (s1/2)2 configuration to 2.46 fm. We also observe sizable
increases in the magnetic and quadrupole moments for the
(p1/2)2 configurations, whereas they are almost unchanged
for the (s1/2)2 configuration. If we further investigate our

TABLE III. Observables for the FMD (p1/2)2 and (s1/2)2 config-
urations in 11Li obtained by variation after projection on the ground
state spin compared with the results for a single 9Li configuration
obtained by variation after projection.

9Li 11Li – (p1/2)2 11Li – (s1/2)2

EB (MeV) 41.89 42.87 41.44
Rc (fm) 2.22 2.31 2.46
μ (μN ) 3.33 3.66 3.36
Qs (mb) −26.7 −28.7 −26.3

wave functions we find that the proton radius with respect
to the center-of-charge increases in the (p1/2)2 configuration
but is unchanged in the (s1/2)2 configuration. This indicates a
certain degree of core polarization in the (p1/2)2 configuration.
A quantification of the core polarization would however
require the calculation of two-nucleon overlap functions or
spectroscopic factors which is not yet implemented in the FMD
code.

IV. COMPARISON OF GROUND-STATE PROPERTIES IN
EXPERIMENT AND THEORY

For comparison of the experimental values with theory, we
have to consider that theoretical approaches treat protons and
neutrons as point-like particles. Charge radii reported by such
models must be converted from mean square (ms) point-proton
radii 〈r2

pp〉 into ms nuclear charge radii R2
c = 〈r2

c 〉. The latter
can be expressed by 〈r2

pp〉, taking into account the finite size
of the nucleons by folding in the proton ms charge radius,
R2

p = 0.769(12) fm2 [58], and the neutron ms charge radius
R2

n = −0.117(4) fm2 [59], according to

〈
r2

c

〉 = 〈
r2

pp

〉 + R2
p + N

Z
R2

n + 3h̄2

4Mp
2c2

+ 〈
r2

c

〉
so. (13)

The term 3h̄2/4M2
pc2 ∼ 0.033 fm2 is the Darwin-Foldy cor-

rection [60] which takes into account the “Zitterbewegung”
of the proton with mass Mp. In addition to [60], the last term
〈r2

c 〉so has been included which is the spin-orbit charge density
introduced in [61]. The contribution of this term in the case of
the lithium nuclei has been discussed in [62,63]. We write the
spin-orbit contribution as

〈
r2
c

〉
so = 1

Z

∑
i

〈
r2

c

〉(i)
so = 2

Z

∑
i

h̄2μi

M2c2
〈�l · �s〉i , (14)

where i runs over all nucleons and μi are the anomalous
magnetic moments of the neutron (μn = −1.91) and the
proton (μp = 2.79 − 1 = 1.79), M is the nucleon mass. The
expectation value of the spin-orbit operator in a single particle
state where orbital angular momentum �l and spin �s are coupled
to total angular momentum �j is

〈�l · �s〉 =
{− 1

2 (l + 1); j = l − 1
2

1
2 l; j = l + 1

2

. (15)
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NÖRTERSHÄUSER, NEFF, SÁNCHEZ, AND SICK PHYSICAL REVIEW C 84, 024307 (2011)

TABLE IV. Proton and neutron spin-orbit contributions to the
nuclear charge radii 〈r2

c 〉so for 6−9Li obtained using full FMD
wave functions. Values are also given for single (p1/2)2 and (s1/2)2

11Li configurations and a corresponding 9Li configuration (VAP).
Values for the configuration-mixed wave functions according to
the tensor-optimized shell model (TOSM) [67,68] and a three-body
model (3BM) [36] are included for 9,11Li (see text).

Isotope Model
〈
r2

c

〉p
so

(fm2)
〈
r2

c

〉n
so

(fm2)

6Li FMD +0.006 −0.006
7Li FMD +0.012 −0.020
8Li FMD +0.011 −0.056
9Li FMD +0.021 −0.084
9Li FMD (VAP) +0.023 −0.089
11Li − (p1/2)2 FMD (VAP) +0.024 −0.003
11Li − (s1/2)2 FMD (VAP) +0.023 −0.088
9Li (free) TOSMa +0.026 −0.091
9Li in 11Li TOSMb +0.026 −0.097
2n halo in 11Li TOSMc +0.052
11Li TOSMd +0.026 −0.045
2n halo in 11Li 3BMe +0.048

aWave function according to [69]: 84.4% 0p-0h, 8.7% 2p-2h

(1s)−2
10 (1p1/2)2

10 (T = 0, n − p), 6.8% 2p-2h (1p3/2)−2
01 (1p1/2)2

01

(T = 1, n − n).
bWave function according to [69]: 89% 0p-0h, 4.9% 2p-2h

(1s)−2
10 (1p1/2)2

10 (T = 0, n − p), 5.9% 2p-2h (1p3/2)−2
01 (1p1/2)2

01

(T = 1, n − n).
cWave function of the halo neutrons according to Table IV (TOSM)
in Ref. [68].
dSum of footnotes b and c.
eWave function of the halo neutrons according to Table 4 in [36]:
(2s1/2)2 ≈ 37%, (1p1/2)2 ≈ 47%, (1p3/2)2 ≈ 9%, and Jhalo > 0 ≈
7%.

Hence, each p3/2 neutron contributes with −0.028 fm2, a p1/2

neutron with 0.056 fm2, and a p3/2 proton has a spin-orbit
contribution of 0.026 fm2. The spin-orbit term for a specific
shell-model configuration can therefore easily be calculated.
In the extreme case of a pure πp3/2νp

4
3/2 configuration for 9Li,

this would give a total spin-orbit contribution of −0.086 fm2.
However, jj coupling is usually not a particularly good
assumption for light nuclei, and LS or intermediate coupling
is often the better choice. Moreover, configuration mixing
becomes important, particularly for the nuclei far away from
stability, and can have relatively large effects on the spin-orbit
term. We have calculated the spin-orbit contribution for the
nuclei 6−9Li using the FMD wave functions. The contributions
from protons and neutrons are listed separately in Table IV.
The FMD values for 6Li are much smaller than expected for a
proton or neutron in a p3/2 orbit in the single-particle picture,
reflecting the cluster structure of this nucleus. The jj -coupling
picture becomes more accurate for the heavier isotopes but
even in 9Li the spin-orbit contributions deviate significantly
from the jj -coupling estimate. The overall contribution to the
charge radii is very small, as proton and neutron contributions
largely cancel each other—in 6Li it is almost zero and
becomes largest in 9Li where the charge radius will change
by −0.014 fm due to the spin-orbit contributions. There is
an interesting effect in 11Li where the change of the charge

radii due to the spin-orbit contributions will be +0.005 fm
and −0.014 fm for the (p1/2)2 and (s1/2)2 configurations,
respectively.

Overall, the spin-orbit contribution has a magnitude
� 0.08 fm2, which is similar to the size of the uncertainty in
the R2

p term, raised by the recent Lamb shift measurement
in muonic hydrogen [64] that provided a value which is
0.096 fm2 smaller than that obtained from the latest reanalysis
of electron-scattering experiments [65,66] and still 0.060 fm2

smaller than the current CODATA value [58]. Since the
spin-orbit contribution to the charge radius is strongly model
dependent and rather small in size it is neglected when using
Eq. (13) to convert point proton radii results of nuclear-
structure calculations into nuclear charge radii. However, the
spin-orbit contribution to the charge radius was considered to
become particularly important in the case of the halo nucleus
11Li [62,63] and this is therefore discussed in more detail in
Sec. IV B.

A. Summary of nuclear ground state properties
of lithium isotopes

Table V summarizes the electromagnetic properties of the
ground states of the lithium isotopes from experiment and
various nuclear models, including the new results from FMD.

The charge radii are plotted in Fig. 5. Full circles represent
the experimental nuclear charge radii with error bars based
solely on the uncertainty in the isotope shift measurement and
the (negligible) uncertainty in the mass-shift calculations. The
gray band along the isotope chain represents the correlated
uncertainty including the one estimated for the charge radius
of the reference isotope 6Li.

The FMD calculations as presented in Sec. III reproduce the
evolution of the charge radii from 6−9Li quite well. The radii
for 6,7Li are slightly underestimated—the inclusion of explicit
cluster configurations to the model space, as done in [54],
would help in improving the tails of the wave functions. Within
the enlarged model space and employing a slightly different
interaction a charge radius of 2.46 fm was obtained for 7Li.

The magnetic dipole and electric quadrupole moments
agree well with the experimental values for 6−9Li (Fig. 6)
and confirm the picture we have developed for the structure of
the lithium isotopes. Comparing the experimental results for
11Li with the discussion based on single FMD configurations
in Sec. III D it appears that a picture where the (p1/2)2 and
(s1/2)2 configurations have roughly equal weight is consistent
with our calculations. To explain the large increase in the
charge radius a large (s1/2)2 component is needed. The changes
in the magnetic dipole moment and the electric quadrupole
moment can only be explained by the (p1/2)2 component,
which includes a certain degree of core polarization.

The ab initio Green’s function Monte Carlo calculations
with two- and three-body forces provide overall a good
description of the binding energies and the electromagnetic
properties of the lithium isotopes up to 9Li [25,70]. The values
listed in Table V include statistical error bars. Unfortunately
no results for 11Li are available. The GFMC calculations
predict the right trend in the charge radii and the radii of
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TABLE V. Ground state properties observed by laser spectroscopy (charge radius Rc, magnetic dipole moment μ, and spectroscopic electric
quadrupole moment Qs) compared to the results of nuclear model calculations. Experimental dipole and quadrupole moments of Li isotopes
are taken from [6], results on 11Li are from [7]. Point-proton radii from theory are converted into charge radii according to Eq. (13) using the
CODATA value for the proton radius [58] but neglecting the spin-orbit contribution. Using the proton radius from [64] will shift these values
by about −0.012 fm. Nuclear models are GFMC: Green’s function Monte Carlo (AV18/IL3), FMD: fermionic molecular dynamics, NCSM:
no-core shell model, TOSM: tensor-optimized shell model, SVMC: stochastic variational multicluster model (see text), 3BM: three-body wave
function fitted to experimental data [36]. Masses, binding energies and the 11Li two-neutron separation energy S2n are discussed in the text.

6Li 7Li 8Li 9Li 11Li Ref

Nuclear charge radii Rc (fm)
Exp. 2.59(4) 2.44(4) 2.34(5) 2.25(5) 2.48(4) this work
FMD 2.52 2.41 2.36 2.26 – this work
GFMCa 2.58(1) 2.46(1) 2.25(1) 2.16(1) – [25,70]
NCSM(CDB2k) 2.40(6) 2.36(7) 2.31(8) 2.25(10) 2.26(13) [27]
TOSM – – – 2.23 2.44 [68]
SVMCa – 2.41 2.32 2.23b/2.25c 2.53/2.26d [31,71]
3BM – – – – 2.466e [36]
Magnetic dipole moment μ (μN )
Exp. 0.822 047 3(6) 3.256 427(2) 1.653 560(18) 3.43678(6) 3.6712(3) [6,7,72]
FMD 0.87 3.19 1.57 3.33 – this work
GFMC 0.800(1)f 3.168(13)f 1.12(1) 2.54(2) – [49,70,73]
NCSM(CDB2k) 0.843(5) 3.01(2) 1.24(6) 2.89(2) 3.56(4) [27]
TOSM – – – 3.69 3.77 [68]
SVMC – 3.15 1.17 3.43b/3.40c 3.23/3.21d [31,71]
3BM – – – – 3.671 [36]
Spectroscopic electric quadrupole moment Qs (mb)
Exp. −0.806(6) −40.0(3) +31.4(2) −30.6(2) (−)33.3(5) [6,7,74]
FMD −0.61 −39.3 +29.0 −28.7 – this work
GFMC −3.5(6) −34(1) +32(1) −27(1) – [25,70]
NCSM(CDB2k) −0.66(40) −32.0(2.2) +27.8(1.2) −26.6(2.2) −28.1(2.7) [27]
TOSM – – – −26.5 −28 [68]
SVMC – −36.5 +22.3 −27.4b/−33.7c −37.1/−35.2d [31,71]
3BM – – – – −33.24 [36]
Mass M (amu), binding energyEB (MeV)
Exp. M (amu) 6.015122794(16) 7.0160034256(45) 8.02248624(12) 9.02679020(21) 11.04372361(69) [42,43,75]
Exp. EB (MeV) 31.99 39.25 41.28 45.34 45.71 [42,43,75]
Exp. S2n (MeV) 0.36915(65) [42]
FMD EB (MeV) 31.20 38.38 40.13 43.86 – this work
GFMC EB (MeV) 32.2(1) 39.3(2) 41.2(3) 46.7(5) – [49,70]
NCSM (CDB2k)EB (MeV) 29.07(41) 35.56(23) 35.82(22) 37.88(82) 37.72(45) [27]
NCSM (INOY)EB (MeV) 32.33(19) 39.62(40) 41.27(51) 45.86(74) 42.50(95) [27]
TOSM – – – 45.3 S2n = 0.31 [68]
SVMC – – 41.09g 44.83b,g/45.16c,h S2n = 0.34/0.12d [31,71]

aPoint-proton radii converted to charge radii according to Eq. (13) using the CODATA value for the proton radius [58] but neglecting the
spin-orbit contribution.
bFull calculation in SVMC, Minnesota potential (u = 1.0), Table III [71].
cTruncated model space in SVMC, Minnesota potential (u = 1.0285), Table III [71]. This is the basis for 11Li calculations in SVMC.
dResult of a frozen-core calculation.
eBased on Rc−2n = 5.55 fm (Table 5 in [36]) and the experimental value for 9Li (this work).
fIncluding contributions from meson exchange currents in AV18/IL2 [73].
gCalculated using the experimental value of 36.778 MeV for the α + t threshold.
hCalculated using the experimental value of 39.25 MeV for the 9Li + 2n threshold.

6,7Li are in excellent agreement with experiment, however
the radii of 8,9Li are both about 3% too small. For the
calculation of the magnetic moments of 6,7Li the contributions
of meson-exchange currents have been included [73]: They add
about 10% to the magnetic moment of 7Li, while in 6Li the
contribution is less than 2% and negative. The results for 6,7Li

agree very well with the experimental data, those for 8,9Li (as
all other models without including meson exchange currents)
underestimate them. The quadrupole moments from GFMC
are all somewhat too small, especially in the case of 7Li.

The ab initio no-core shell model (NCSM) [26,76] is
represented in Figs. 5 and 6 by calculations with the
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FIG. 5. (Color online) Charge radii Rc of the lithium isotopes
as extracted from the isotope shift measurements (•). Error bars are
based on the isotope shift uncertainty only. The additional systematic
uncertainty caused by the reference charge radius uncertainty is
indicated by the gray area (see text). Nuclear charge radii obtained
from nuclear models are also shown: GFMC: Green’s function Monte
Carlo calculations [25,70], SVMC: stochastic variational multicluster
model [31,71] (full triangles: assuming a frozen 9Li core), FMD:
fermionic molecular dynamics (this work), NCSM: no-core shell
model with Bonn CD2K interaction [27], TOSM: tensor-optimized
shell model [68], and 3BM: three-body model (for 11Li only) [36].
A typical uncertainty for the NCSM calculations is indicated for 6Li.
The other isotopes have similar uncertainties.

two-nucleon CD-Bonn 2000 (CDB2k) interaction as reported
in [27]. While the INOY interaction gives binding energies
closer to the experimental values (compare Table V), the
CDB2k results for the electromagnetic observables show
overall a better agreement with the experimental values. In
the available model spaces the NCSM results are not yet
converged and have to be extrapolated. The uncertainties due
to extrapolation and the dependence on the oscillator constant
are given in Table V for all isotopes but indicated in Fig. 5
only for 6Li, as a representative for all isotopes. The NCSM
results show declining values for the charge radii going from
6Li to 9Li. While the values for 6,7Li are significantly too
small, the charge radii for 8Li and 9Li are in good agreement
with experiment. The magnetic dipole moments up to 9Li
are, with the exception of 6Li, somewhat too small compared
to experiment. A similar behavior is found for the electric
quadrupole moments. The calculated charge radius of 11Li is
almost unchanged from the 9Li value. The magnetic moment
and the quadrupole moment on the other hand increase in
11Li compared to 9Li. These results seem to indicate that
the NCSM 11Li wave function corresponds to an almost pure
(p1/2)2 configuration. Within the harmonic oscillator basis it is
extremely difficult to describe the loosely bound halo neutrons
in the (s1/2)2 configuration of 11Li. In the future it might be
possible to get a fully microscopic ab initio calculation for
11Li by combining the NCSM with the cluster model [77,78].
Similar results as with the CDB2k and INOY interactions were

µ
µ

FIG. 6. (Color online) Magnetic dipole moment μ (upper graph)
and spectroscopic electric quadrupole moment Qs (lower graph) of
the lithium isotopes as determined by laser spectroscopic measure-
ments (•) and calculated by nuclear models: GFMC: Green’s function
Monte Carlo calculations [49,70,73], SVMC: stochastic variational
multicluster model [31,71] (full triangles: assuming a frozen 9Li
core), FMD: fermionic molecular dynamics (this work), NCSM:
no-core shell model with Bonn CD2K interaction [27], TOSM:
tensor-optimized shell model [68], and 3BM: three-body model [36].
Experimental error bars are indicated but always smaller than the
symbols. All values and references are listed in Table V.

obtained in NCSM calculations for 6,7Li using the UCOM
force [57].

While the cluster structure of light nuclei emerges naturally
in the FMD calculations, it is explicitly introduced in cluster
models. In the stochastic variational microscopic multicluster
model (SVMC) the lithium isotopes 7−9Li are described
using microscopic wave functions built from 4He and 3H
clusters and individual neutrons [31]. The SVMC tries to
solve for the relative motion of the clusters and the neutrons
using a stochastic variational method. The central Minnesota
interaction with the exchange parameter u = 1.0 together
with a spin-orbit force adjusted to reproduce the splitting
between the 3/2− and 1/2− states in 7Li was used. Based
on these results a calculation for 11Li was performed in a
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9Li plus two-neutron model space. To make the calculation
feasible a restricted set of 9Li configurations had to be
employed in this calculation. The exchange parameter of the
Minnesota interaction was changed slightly (u = 1.0285) to
make 10Li unbound. The obtained binding energies for 9Li
and 11Li are close to experiment. The SVMC results show
excellent agreement for the nuclear charge radii of 7−9Li and a
reasonable agreement for magnetic and quadrupole moments.
The relatively large deviation in 8Li might be traced back
to the simplified interaction which does not contain a tensor
component. For 11Li there are results with a frozen 9Li core
in its ground state and a full calculation where the core can
be polarized. The charge radius of 11Li in the full calculation
with the polarized core agrees very well with the experimental
result, whereas the calculation with the frozen 9Li core gives
a charge radius that is too small and very close to that of the
core. The quadrupole moment of 11Li is somewhat too large
but the difference to the value for 9Li in the restricted model
space appears reasonable. On the other hand the quadrupole
moment of 9Li in the full calculation [31] differs quite strongly
from the result in the restricted model space [71]. The magnetic
moments of 11Li in both calculations are smaller than that of
9Li which is in disagreement with experiment and all other
calculations. In summary the SVMC results seem to indicate
that the charge radius in 11Li increases mainly due to core
polarization.

B. Three-body models and the center-of-mass motion in 11Li

Whereas the description of halo nuclei is very demanding in
microscopic approaches these weakly bound systems are good
candidates for potential models. The two-neutron separation
energy in 11Li of 369.15(65) keV [42] is much smaller than
the energy of the first excited state in 9Li (a 1/2− state at
2.69 MeV). It is therefore expected that core polarization
effects are small and a three-body model for 11Li is expected
to work well. To describe the three-body system an effective
core-nucleon interaction is needed, antisymmetrization is
sometimes included in an effective way by employing a
repulsive Pauli potential. The parameters of the core-neutron
interaction are adjusted to reproduce the 10Li resonances.
To reproduce the 11Li binding energy typically an additional
three-body force is added. However, the parameters and results
of these models show a large variation. A particular example
is the amount of s2

1/2 contribution to the ground state of 11Li,
which reaches from 23% [62] up to 80% [79].

The tensor-optimized shell model (TOSM) [32] is essen-
tially such a three-body model that keeps a microscopic picture
of the core and allows for core excitations. It was developed
in particular to study the role of tensor correlations, and
provides only results for 9,11Li [32,67–69]. Starting from a
microscopic picture of the 9Li core, the role of tensor and
pairing correlations in 11Li are investigated in a three-body
model to explain the large (s1/2)2 contribution to the 11Li
ground state, which is a precondition for the halo formation.
To describe the 9Li core an effective interaction based on a
G-matrix interaction is used. The interaction is modified to
reproduce the experimental binding energy and the radius of

9Li. The core-neutron interaction is derived by folding the
9Li wave functions with the MHN force, another effective
interaction. Antisymmetry is taken into account by adding a
Pauli potential. Parameters of the MHN force are adjusted
to reproduce the two-neutron separation energy within the
three-body model. It is obvious from Figs. 5 and 6 that
the TOSM reproduces the charge radius quite well and the
electromagnetic moments with reasonable accuracy.

Recently, Shulgina, Jonson, and Zhukov constructed a
three-body wave function of 11Li not by solving the three-body
Schrödinger equation dynamically but by fitting the parameters
of the three-body wave function directly to reproduce well de-
termined experimental data [36]. Whereas magnetic moment
and quadrupole moment were fitted directly, the charge radius
was constrained to a range given by the direct charge radius
measurements and the slightly smaller value deduced from the
electric dipole strength. The value for the charge radius from
the fit agrees very well with experiment.

To gain deeper insight into the 11Li Borromean system, the
influence of the center-of-mass (c.m.) motion of the 9Li core
must be separated from the 9Li core polarization. While the first
is a pure geometrical consequence of the three-body system,
the latter allows conclusions about the interaction between the
halo-neutrons and the core. In a “pure” three-body model with
a frozen core, a change of the nuclear charge radius can only
occur from c.m. motion. The result of Ref. [36] shows that a
pure three-body wave function of 11Li can in principle account
for all experimentally known properties of the halo isotope
consistently. However, contributions of core excitation cannot
be excluded by this fit.

The effect of the c.m. motion on the nuclear charge radius
can be most easily formulated for a nucleus consisting of
point-like nucleons as

〈
r2

pp(Z,A)
〉 = 〈

r2
pp(Z,A − 2)

〉 + (
2

A

)2 〈
r2

c−2n

〉
(16)

with the distance between the center of mass of the two halo
neutrons and of the core 〈r2

c−2n〉. Equation (13) can be used to
calculate 〈r2

c 〉 from the ms radius 〈r2
pp〉 of the distribution

of point-like protons. The difference in the mean square
nuclear charge radii that is observed in the laser spectroscopic
measurement is obtained by combining Eqs. (16) and (13)

δ
〈
r2

c

〉9,11 = 〈
r2

c (11Li)
〉 − 〈

r2
c (9Li)

〉
=

(
2

11

)2 〈
r2

c−2n

〉 + 2

3
Rn

2 + 〈
r2

c

〉(2n)−halo

so . (17)

The proton radius and the Darwin-Foldy correction drop out
completely in δ〈r2

c 〉. In lowest order, the change in 〈r2
c 〉 is

solely caused by the c.m. motion, but there are contributions
by the mean square charge radius of the halo neutrons ( 2

3Rn
2 =

−0.078 fm2) and the spin-orbit charge density of the halo.
If there is appreciable amount of core excitation it has to be
considered with an additional term 〈r2

c 〉core−excitation in Eq. (17).
The size of the SO contributions in the TOSM model

was obtained for 9,11Li using Eq. (14) and the corresponding
wave-function composition [69] and the results are included in
Table IV. The tensor and pairing correlations lead to a strong
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admixture of almost 50% of the (s1/2)2 state to the 11Li ground
state. The other major contributions have the two neutrons
in the (p1/2)2, (p3/2)2, (d5/2)2, and (d3/2)2 configurations
with relative contributions of 42.7%, 2.5%, 4.1%, and 1.9%,
respectively. The resulting spin-orbit term caused exclusively
by the halo neutrons is 〈r2

c 〉2n−halo
so = 0.052 fm2 and largely

cancels the –0.071 fm2 contribution of the core. The (negative)
contribution of the neutrons in the 9Li core in 11Li is about 7%
larger than for the free 9Li nucleus because the probability
for 2p-2h excitations, which give a positive contribution, is
significantly reduced. This is a direct sign of the influence
of the halo neutrons onto the core and the fact that the total
neutron contribution to the spin-orbit term in 11Li is not zero,
is a clear indication for the N = 8 shell breaking.

The two-neutron core distance Rc−2n = 5.01(32) fm ob-
tained from Coulomb dissociation experiments [44] can be
used to calculate a contribution of δ〈r2

c 〉9,11
CD = 0.78 fm2

(∼70% of the laser spectroscopic value) arising from c.m.
motion. Reevaluation of the experimental data in [62], where
the long high-energy tail of the transition strength was treated
differently than in [44], resulted in δ〈r2

c 〉9,11
CD = 0.88(11) fm2.

This value includes also a spin-orbit contribution of 0.062 fm2.
The difference

δ
〈
r2

c

〉9,11

Exp − δ
〈
r2

c

〉
CD = 1.12(8) − 0.88(11)

= 0.24(14) fm2 (18)

can be attributed to core excitation. Backwards, we can
calculate Rc−2n required to produce the measured δ〈r2

c 〉9,11

in the absence of core excitation and assuming 〈r2
c 〉(2n−halo)

so =
0.05 fm2 and obtain Rc−2n = 5.89(3) fm.

In the TOSM microscopic model the authors determine the
Rc−2n distance to be 5.69 fm. Therefore, the change in the
mean-square charge radius between 9Li and 11Li arising from
the c.m. motion is 0.992 fm2, which increases to 1.044 fm2

if the spin-orbit contribution of the halo neutrons is included
according to the wave function from [68] (see Table IV). This
is already close to the experimental value. Moreover, the full
TOSM calculation delivered

δ
〈
r2

c

〉9,11
TOSM = 2.442 − 2.232 = 0.981 fm2 (19)

indicating a very small amount of core excitation.
Pure three-body models abandon from the beginning any

core excitation and construct 11Li wave functions based on
an inert 9Li core and two neutrons. For the wave function
presented in [36] a separation of Rc−2n = 5.55 fm is reported.
Using this and the experimental value for the charge radius of
9Li, Rc(11Li) = 2.466 fm is obtained, as plotted in Fig. 5. The
agreement with the experimental charge radius is excellent,
which is not so surprising since the experimental values from
laser spectroscopy and Coulomb dissociation were used as
constraints in the fitting of the wave function. The magnitude of
the halo neutron’s spin-orbit term obtained with the three-body
wave function from Table 4 in Ref. [36] and listed in Table IV,
is very similar to that of the TOSM result. It changes the
charge radius by about 0.010 fm and moves it even closer
to the experimental value. The wave function also gives, by
construction, excellent agreement for the nuclear magnetic
moment and the quadrupole moment of the halo nucleus. This

σ

  

 

FIG. 7. (Color online) Constraints on the mean square core-2n

distance R2
c−2n and the mean square neutron-neutron distance R2

n−n

in a three-body model of 11Li obtained from the laser spectroscopic
isotope shift measurements (this work) (IS, dash-dotted lines), the
Coulomb dissociation experiment [44] (CD, dotted lines), and the
matter radius (Rm) according to Eq. (20) based on interaction cross
section measurements σint [80] analyzed either in [80] (hatched)
or [81] (shaded). The results obtained in various three-body model
calculations (3BM) and the tensor-optimized shell model (TOSM) are
also indicated; •: 3BM with 5–50% s-wave contributions according
to Table II in [62], �: 3BM optimized to reproduce all experimental
data available for 11Li [36], �: TOSM calculations [68]. The spin-orbit
contribution was neglected in all cases.

demonstrates that a three-body wave function can in principle
fully account for the small difference between the 9Li and
11Li nuclear spectroscopic quadrupole moments by including
components with JHalo > 0 to the halo wave function.

It was pointed out by Esbensen and coworkers [62] that the
difference in Eq. (18) can be combined with information on
the matter radius to get a better picture of the 11Li geometry.
While the B(E1) strength distribution and the charge radius
are only sensitive to 〈r2

c−2n〉, the matter radius depends also
on the mean square distance between the halo neutrons 〈r2

n−n〉
according to [62]

〈
r2

m(Z,A)
〉 = A − 2

A

〈
r2

m(Z,A − 2)
〉

+ 2 (A − 2)

A2

〈
r2

c−2n

〉 + 1

2A

〈
r2
n−n

〉
. (20)

This is shown in Fig. 7, where 〈r2
c−2n〉 is plotted against

〈r2
n−n〉. The hatched area indicates the range of allowed radii

parameters based on the nuclear matter radii from the Tanihata
measurements [80], the dotted and the dash-dotted lines
represent the 1-σ range for 〈r2

c−2n〉 obtained from Coulomb
dissociation and the charge radius measurements, respectively.
In Ref. [62] it is argued that the Coulomb dissociation result
and the matter radii favor a 23% s-orbital contribution (s23
model), while the difference to the charge radius result is
ascribed to core excitation.

However, this conclusion depends strongly on the 11Li
matter radius. The value reported in [80] became questionable
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because the correlation of the halo neutrons was not considered
in the Glauber-type calculations used to extract the matter
radius. A reanalysis performed in Ref. [81] resulted in a
considerably larger matter radius of Rm = 3.55 (10) fm. This
value is also in accordance with Rm = 3.71 (20) fm obtained
from medium-energy elastic proton scattering in inverse
kinematics performed more recently at GSI [82]. The shaded
area shows the allowed radii parameters according to the value
from [81]. Now the conclusion drawn in [62] is not as obvious
anymore and even the 50% (s1/2)2 calculation is at the edge of
the band while the s23 model is far outside.

The TOSM calculation, which is not a pure three-body
model calculation, as well as the three-body model by Shulgina
and coworkers [36] indicate a clearly larger (s1/2)2 probability
than 23%, reducing the amount of core polarization. In sum-
mary, it must be concluded that an unambiguous separation of
core-excitation and c.m. motion is still not possible.

V. CONCLUSION

We have summarized the results of nuclear charge radius
measurements on the complete chain of lithium isotopes and
extracted absolute charge radii based on a reevaluation of the
world data on elastic electron scattering of 6Li. Furthermore,
new calculations for the ground state properties of 6−9Li using
fermionic molecular dynamics were presented and the contri-
bution of the spin-orbit term to the nuclear charge radius was
estimated for all isotopes based on realistic wave functions.
Results for charge radii and the electromagnetic moments

were compared to the predictions of a variety of nuclear
structure models. While many microscopic models are able
to reproduce the trend of nuclear charge radii from 6−9Li the
description of 11Li presents a tough challenge for microscopic
models. The stochastic variational multicluster model provides
a charge radius close to experiment but the comparison is
less convincing for the magnetic moment and the quadrupole
moment. Surprisingly calculations with a frozen 9Li core give
a much smaller 11Li charge radius. Three-body calculations
with an underlying microscopic picture in the tensor-optimized
shell model also agree well with the experimental 11Li charge
radius. However parameters of the effective interactions had to
be adjusted to reproduce 9Li and 11Li properties. A three-body
wave function fitted to experimental observables is also able
to reproduce all 11Li properties consistently. An unambigu-
ous separation between the center-of-mass motion and core
excitation using the charge radius, the matter radius and infor-
mation from Coulomb dissociation is unfortunately still not
possible.

ACKNOWLEDGMENTS

This work was supported by BMBF (contract no.
06MZ9178I) and by the Helmholtz Association of German
Research Centres (contract no. VH-NG 148). We thank
J. Kluge for many discussions and for supporting the project
for many years, T. Myo for providing unpublished details of his
wave functions, and B. Jonson, R. Neugart, and H. Feldmeier
for valuable discussions.

[1] W. E. Otten, Nuclear Radii and Moments of Unstable Isotopes,
Treatise of Heavy Ion Physics, Vol. 8 (Plenum Press, New York,
1987).

[2] H.-J. Kluge and W. Nörtershäuser, Spectrochim. Acta, Part B
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