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Skyrme-like energy density functionals are built upon new ab initio calculations of nuclear matter which
reproduce the empirical saturation properties. These calculations are performed in the framework of the
Brueckner-Hartree-Fock approximation with consistent two- and three-body forces. The Skyrme parametrizations
are obtained from a simultaneous fit of the spin-isospin components of the potential energy of symmetric nuclear
matter and of the experimental energies and charge radii of a number of closed-shell and closed-subshell nuclei.
These parametrizations are tested on the energies and charge radii of the Sn isotopic chain and on the 208Pb giant
resonances, showing a substantial improvement of the LNS functional obtained in a previous fit. The comparison
with standard Skyrme forces can give some hints on how to reconcile nuclear matter and finite nuclei.
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I. INTRODUCTION

The experimental data already accumulated and still ex-
pected from exotic beams challenge the theoretical descrip-
tion of the nuclear structure based on Hartree-Fock (HF)
calculations with energy density functionals (EDF). The
determination of an EDF easy to use, and at the same time
capable of predicting nuclear properties in extended regions
of the nuclear chart is a longstanding goal. Among the
various choices the Skyrme-type parametrizations belong to
the most widely used functional because of their simple local
structure. As for the predictive power this is more difficult
to assess because the phenomenological parametrizations are
by essence adjusted in the regions of known nuclei, and
the calculated nuclear properties may extrapolate diversely
when going away from these regions. This is the motivation
for attempting to build parametrizations which incorporate
theoretical guidelines such as the equation of state (EoS)
of neutron matter from variational calculations [1] in the
case of the SLyn model [2], or the Brueckner-HF (BHF)
EoS of nuclear matter [3] in further Syrme-type parametri-
zations [4,5].

In Ref. [5] BHF calculations of the nuclear-matter energy
and effective mass were fitted with a Skyrme-type EDF,
and a new Skyrme parametrization, named LNS, was ob-
tained. The effective mass was involved in the fit because
it is associated with finite-range corrections included in the
Skyrme interaction. The LNS force was tested by means of
HF calculations of closed-shell and closed-subshell nuclei.
The results for the binding energies and charge radii were
considered quite promising, if one takes into account that there
were no parameters adjusted on nuclei except the spin-orbit
parameter W0. However, LNS was not able to reproduce
nuclear properties with a quality comparable to other Skyrme
forces. It seems that within the EDF approach (not restricted to
the Skyrme-type ansatz: see, for instance Ref. [6]), in addition
to the bulk component taken from BHF calculations, it is

necessary to introduce a purely phenomenological finite-range
component to get a good description of nuclear properties.

In this paper the limits of a Skyrme parametrization based
on BHF ab initio calculations are investigated and overcome
by performing a simultaneous fit of nuclear matter and finite
nuclei. The new fitting procedure is not applied to the total
potential energy per particle U , but to its components UT S in
spin-isospin space. The reason is that U results from a strong
cancellation of the four components UT S . This also amounts
to constrain independent observables, such as spin and isospin
symmetry energies. From such a choice of the fit one can expect
a strong reduction of the class of Skyrme parametrizations that
reproduce the nuclear-matter EDF.

We take advantage of the new BHF calculations [7]
performed with a nucleon-nucleon interaction in which two-
and three-body forces are consistently treated, in the frame-
work of a meson-exchange model. The main result is a
better description of the saturation properties of symmetric
and asymmetric nuclear matter. In particular, the empirical
saturation point is pretty well reproduced.

The paper is organized as follows. In Sec. II the BHF
theory with consistent two- and three-body interactions is
reviewed and the main results on the saturation properties of
nuclear matter are reported. Section III is devoted to describe
the fitting procedure, and the new Skyrme parametrizations
are discussed. The latter are tested on the ground-state and
pairing properties of the Sn isotopic chain, and on selected
giant resonance energies obtained using fully self-consistent
HF plus random phase approximation (RPA) calculations, in
Sec. IV. Concluding remarks are drawn in Sec. V.

II. EQUATION OF STATE OF NUCLEAR MATTER
FROM BHF CALCULATIONS

The Brueckner theory with three-body forces repro-
duces the empirical saturation properties of nuclear matter.
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But the Brueckner predictions extend far below and above the
saturation density; therefore, one can try to build up an EDF
from ab initio Brueckner calculations.

A. Brief review of the Brueckner theory

The Brueckner theory with two- and three-body forces
is described elsewhere [3,7,8]. Here we simply give a brief
review of the BHF approximation which is the starting point
of the present calculations. The main quantity is the reaction G

matrix, which satisfies the Brueckner-Bethe-Goldstone (BBG)
equation:

G(ω) = υNN + υNN

∑
k1k2

|k1k2〉Qk1,k2〈k1k2|
ω − εk1 − εk2

G(ω), (1)

where ki ≡ (�ki, σi, τi) denotes the single-particle (s.p.) mo-
mentum, the spin and isospin variables, respectively, and ω is
the starting energy. The G matrix, the Pauli operator Q and
the s.p. energies εk = k2/2m + Uk depend separately on the
neutron and proton densities. The auxiliary potential Uk is
chosen as

Uk =
∑
k′

〈k, k′|G(εk + εk′)|k, k′〉Aθ (kF − k′), (2)

where the subscript denotes antisymmetrization. The interac-
tion υNN is

υNN = V bare
2 + V eff

3 , (3)

where V bare
2 is the bare nucleon-nucleon force and V eff

3 is an
effective two-body force obtained from the three-body force
W3 by averaging on the third particle according to〈�r1�r2

∣∣V eff
3

∣∣�r ′
1 �r ′

2

〉 = 1

4
Tr

∑
n

∫
d�r3d�r ′

3 φ∗
n(�r ′

3 )ψ(r ′
13)ψ(r ′

23)

×W3(�r ′
1 �r ′

2 �r ′
3 |�r1�r2�r3)φn(r3)ψ(r13)ψ(r23).

(4)

In this equation ψ(r) = 1 − η(r) is the correlated two body
wave function and η(r) the defect function. The latter is
determined from the G matrix according to

η12 = 〈�r| Q

H0 − εk1 − εk2

G|k1, k2〉, (5)

so that V eff
3 must be calculated self-consistently with the G

matrix and the s.p. potential Uk on the basis of the BBG
iterative procedure. It is clear from Eq. (4) that the effective
force arising from the 3BF in nuclear medium is density
dependent via the defect function. A detailed description and
justification of the method can be found in Refs. [8,9].

The three-body force used in nuclear matter calculations is
based on a meson-exchange model, including virtual particle-
hole excitations of the vacuum (relativistic corrections) and
the low-energy virtual excitations of nucleons, �(1232) and
N∗(1440) [9]. The corresponding diagrams are shown in Fig. 1.
Adopting a two-body force described in terms of meson
exchange the same meson parameters (masses, coupling
constants, and cutoffs) can also be used in the three-body force.
This makes the whole interaction fully consistent and realistic,

FIG. 1. Three-body force diagrams included in the BHF calcula-
tions. On the left: NN virtual excitations. On the right: � and Roper
resonance excitations (see text).

because the meson parameters are fixed so as to reproduce the
experimental phase shifts of the nucleon-nucleon scattering. At
this point one should observe that the use of phenomenological
three-body forces together with realistic two-body forces
[6] somehow breaks the ab initio nature of the Brueckner
approach.

Recently, we have adopted for the two- and three-body
forces the parameters of the Bonn-B potential V bare

2 [10].
Details and results using this interaction are presented in
Refs. [7,11]. The main merit of this choice is that it improves
the agreement with the empirical saturation properties of
nuclear matter, including the values of symmetry energy and
compression modulus.

From the EoS of symmetric nuclear matter the saturation
density is estimated to be about ρ0 � (0.16–0.17) fm−3,
with a corresponding energy E/A = −16 MeV and the
compression modulus K∞ = 220 MeV. From the EoS of
isospin-asymmetric matter one can extract the density de-
pendent symmetry energy. Its value at the saturation point
is about 30 MeV. Along with with the energy per particle,
the effective mass (k mass), self-consistently calculated in
BHF approximation, is to be considered. As recalled in the
Introduction, it is associated with the nonlocality correction to
the energy functional. In the density domain 0.11 � ρ � 0.2
fm−3 its range is 0.60 � m∗/m � 0.69.

B. Nuclear matter potential energy in spin
and isospin subspaces

In the homogeneous nuclear medium the spin S and isospin
T of the interacting pairs of nucleons are conserved quantum
numbers (the Coulomb interaction does not appear), and the
energy per particle can be decomposed into a kinetic part plus
the T S components of the interaction part:

E

A
= K

A
+

∑
T S

UT S. (6)

The individual contributions UT S have a direct relation with
global nuclear matter properties. It is well known that, in a
broad range of densities, the energy per particle of isospin-
asymmetric nuclear matter (isospin-ANM) is quadratic in the
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FIG. 2. (Color online) Spin-isospin components of the BHF
potential energy in comparison with a few standard Skyrme forces:
SLy4 [2], SGII [15], SKM∗ [14], SKP [16], and LNS [5].

isospin asymmetry parameter β = (N − Z)/A [12]. Similarly,
the energy per particle of spin-ANM is quadratic in the spin-
asymmetry parameter σ = (A↑ − A↓)/A [13]:

U (ρ, β) = U (ρ) + β2as(ρ), (7)

U (ρ, σ ) = U (ρ) + σ 2aσ (ρ)· (8)

The two functions as(ρ) and aσ (ρ) govern most properties of
isospin- and spin-polarized nuclear matter, respectively. Since
both parabolic laws are valid in the whole range of spin and
isospin values, it follows that

as(ρ) = U (ρ, β = 1) − U (ρ, β = 0) = −U00 − U10, (9)

aσ (ρ) = U (ρ, σ =1)−U (ρ, σ = 0)=−U00−U01· (10)

In our previous construction of Skyrme-type energy func-
tionals from ab initio calculations leading to the LNS force
the overall potential energy of symmetric nuclear matter was
adjusted, and the spin and isospin ANM energies were put
as constraints [5]. Adjusting simultaneously the individual
T S components seems to be more adequate for the sake
of restricting the class of the equivalent parametrizations, a
desirable ultimate goal of such investigation. The four T S

components of the potential energy per particle calculated by
the BHF approach with two-body and three-body forces are
shown in Fig. 2.

In the same figure, those components the potential energy
calculated with various Skyrme forces are shown for com-
parison. Despite the quite noticeable differences in various
channels between the Skyrme and BHF results, strong com-
pensations give rise to similar behaviors of the symmetric
matter EoS, at least in the saturation region, as seen in Fig. 3.

III. FITTING PROCEDURE

The basic microscopic inputs in our Skyrme fit are the BHF
isospin-spin potential energy components U

(BHF)
T S , discussed in
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FIG. 3. (Color online) BHF vs. Skyrme energy per particle in
symmetric nuclear matter.

the previous section. In the Appendix the standard analytic ex-
pressions of U

Skyrme
T S calculated with Skyrme-type interactions

are presented.
Before we discuss the procedure for determining the opti-

mal values of the Skyrme parameters, some comments are in
order. From Fig. 2 we can see how typical Skyrme interactions
compare with the BHF approach. Despite of giving a quite
similar and good reproduction of the saturation properties (as
shown in Fig. 3), the BHF and Skyrme-HF approaches sizeably
deviate, especially with increasing density, when looking at the
separate T S channels.

Figure 2 shows that in the (T , S) = (0, 0) channel U
(BHF)
00 is

small and positive with a slight negative concavity. By looking
at Eq. (A2), we see that U

(Skyrme)
00 depends only on the (t2, x2)

Skyrme parameters. In order to reproduce the sign of U
(BHF)
00

the quantity t2(1 − x2) has to be positive. On the other hand,
since the analytic form of U

(Skyrme)
00 implies that the second

derivative of the function has the same sign as the function
itself, it is impossible to reproduce at the same time the sign
and the concavity of U

(BHF)
00 . This means that the analytical

structure of the Skyrme force makes it quite hard to fit the
U

(BHF)
T S channels separately, at least as far as the U

(BHF)
00 is

concerned. A similar comment can be made for U
(BHF)
11 as well.

The fitting procedure adopted in this paper consists in
minimizing the quantity

χ2 =
Np∑
i=1

(
U

(BHF)
T S (i) − U

(Skyrme)
T S (i, t, x)

δU (i)

)2

+
N∑

i=1

(
E(Exp)(i) − E(SHF)(i, t, x)

δE(i)

)2
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+
N∑

i=1

(
r

(Exp)
c (i) − r (SHF)

c (i, t, x)

δr (i)

)2

+ (P (x, t)|ρ=ρ0/δP )2. (11)

Here, E(Exp) (r (Exp)
c ) and E(SHF) (r (SHF)

c ) are, respectively,
the experimental and Skyrme HF (SHF) total binding energies
(charge radii) of the doubly closed shell nuclei included in
the fit, namely 16O, 40Ca, 48Ca, 56Ni, 78Ni, 100Sn, 132Sn, and
208Pb. The number of fitted nuclei is N = 8 while Np = 40
since we fit ten values of energy per particle, for ten different
values of the density in the density range 0 < ρ � 2ρ0 fm−3

in the four T S channels. The last term in Eq. (11) indicates
the constraint on the pressure, P = 0, at the saturation density
ρ0 = 0.16 fm−3. With the simplified notation (t , x) we denote
the set of Skyrme parameters (ti and xi with i = 0, . . . , 3). The
spin-orbit parameter W0 is determined so as to reproduce the
splitting of the p 1

2
− p 3

2
states in 16O. The exponent σ in

the density-dependent term is kept fixed at the value σ = 1
6 .

Some attempts have been done to fit Skyrme forces with the
same protocol and keeping σ = 1

3 , without any significant
improvement.

In our procedure we also impose the compression modulus
K∞ and the symmetry energy as to take values between
220–245 MeV and 28–32 MeV, respectively. This was done
by imposing in the χ2 minimization two linear constraints,
corresponding to K∞ and as , of the type

Fm � F (x, t) � FM, (12)

where F (x, t) is a linear combination of the t and x parameters
[see Eqs. (A6) and (A7)]. No constraint is imposed to the
effective mass.

The weights δU and δE in Eq. (11) have a double meaning.
From one side, they can be interpreted as errors (standard
deviations) of the data points. On the other side, by suitably
tuning them, one can increase or reduce the weight of each
point, or each subset of points, in the χ2 minimization. In
particular, reducing the values of δE(i) and δr (i) one can put
more weight on the phenomenological constraints (i.e., the
experimental binding energies and charge radii) with respect
to the microscopic (BHF) ones.

In the fitting procedure, we use for the BHF data different
values of δU in different density regions. For all T S channels
the values of δU (i) are expressed as percentages of the
corresponding UT S values. As already seen in Fig. 2, the
deviations of the Skyrme isospin-spin components from
the BHF results, at least for the considered interactions, are
quite large especially at higher density. Therefore, in order
to obtain a reasonable reproduction of the BHF results also
at higher density (i.e., up to 2ρ0) we choose smaller δU (i)
values when increasing the density. More precisely we use
δU (i) = 10% for ρ < 0.1 fm−3, δU (i) = 5% for 0.1 fm−3 �
ρ � 2.5 fm−3 and δU (i) = 1% for 2.5 fm−3 < ρ � 2ρ0. This
choice is also motivated by the worse numerical stability of
our BHF calculations at lower densities, i.e., ρ � 0.08 fm−3,
where it is more difficult to reach a good degree of convergence
in the BHF iterative procedure. Thus, we prefer to use larger
values of δU (i) for ρ < 0.1 fm−3.

In order to get reasonably small deviations from the
experimental binding energies of nuclei, small values of δE(i)
have to be adopted. For all nuclei we take the same δE , ranging
from δE = 0.5 MeV (LNS5) to δE = 0.1 MeV (LNS1). In the
following we only show the results for these two extreme cases.

Figure 4 shows the errors on the experimental total binding
energies and charge radii corresponding to different values of
δE . As expected, a better agreement is actually found when
reducing δE . For the binding energies, we note that the overall
performance of the force is deteriorated in the case of light
nuclei and it is much better if we exclude them. Otherwise,
looking at Fig. 5 (note that different scales have been used
with respect to Fig. 2), we can see that a less satisfactory
fit of the BHF isospin-spin potential energy components is
found, when δE gets smaller. This is also seen in Table I,
where the root mean square (rms) deviations for the total
binding energies (σE), charge radii (σr ), and potential energies
UT S in the different T S channels (σU ) are shown for the two
sets. However, in the LNS1 case the agreement with the BHF
isospin-spin components is still better than those shown in
Fig. 2 using other Skyrme sets. Moreover, in Fig. 6 we see
that the total energy per particle is not strongly affected by the
different values of δE used in the fit.

In Table II we report the values of the parameters ti , xi , and
W0, corresponding to LNS5 and LNS1, while in Table III the
corresponding main bulk nuclear matter properties are given.
For comparison, in the same table, we also show the results
obtained with the LNS and SLy4 sets and the estimated BHF
values.

In Table IV we compare the experimental and the calculated
total binding energies and charge radii. One can see that the
charge radii do not change very much when reducing δE , while
a quite different behavior is found for the binding energies. In
particular, we see that with LNS5 the deviations are quite large,
of the order of 10 MeV for almost all the considered nuclei, but
they become much smaller with LNS1, the largest deviation
being 5.95 MeV for 40Ca.

We add some more comments on the details of Fig. 4, in
which the relative energy deviations (upper panel) and charge
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FIG. 4. (Color online) Energy deviations (upper panel) and
charge radii deviations (lower panel), calculated with LNS5 and
LNS1, are compared with the results of SLy4 and LNS.
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FIG. 5. (Color online) Spin-isospin components of the potential
energy from the BHF calculations compared with the results from
LNS5 and LNS1.

radii deviations (lower panel) are shown. Comparing the LNS
and LNS5 results, we see that the latter are in better agreement
with the experimental energies only heavy nuclei (100Sn, 132Sn
and 208Pb), while a worse behavior is found for the others. On
the contrary, the LNS1 set gives results systematically better
than LNS except for the two Ca isotopes where the agreement
is nearly the same. For medium-heavy nuclei, i.e., from 56Ni
up to 208Pb, we see that the binding energies obtained for LNS1
are of the same quality as the SLy4 ones, while the latter are
better for 16O and for the two Ca isotopes. As far as the charge
radii are concerned we see that both results corresponding to
LNS1 and LNS5 are much better than the LNS ones and in
many cases also better than the SLy4.

In conclusion, as mentioned above, we find that the new
results obtained with LNS1 and LNS5 present a more natural
trend than those obtained with LNS, namely they are better for
medium-heavy nuclei and worse for light nuclei, as it can be
expected if an ab initio calculation of infinite matter plays a
key role in the fit.

IV. APPLICATIONS

A. The Sn isotopic chain

The Skyrme parametrizations obtained in the last section
can be tested on nuclei not used in the fitting procedure. Here
we specifically select the chain of Sn even isotopes. A complete
treatment of these nuclei would require a HF-Bogoliubov

TABLE I. Root mean square deviations of total binding energies
(σE), charge radii (σr ) of nuclei, and UT S potential energies (σU ),
calculated with LNS5 and LNS1.

σE [MeV] σr [fm] σU [MeV]

LNS5 9.08 0.0342 0.86
LNS1 3.54 0.0226 2.53
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FIG. 6. (Color online) Energy per particle for symmetry nuclear
matter: BHF vs. Skyrme parametrizations of Table II.

(HFB) calculation. But, since our aim here is just to see
whether the present interactions can reasonably compare with
other Skyrme forces as far as the overall trend with N -Z
is concerned, we limit ourselves to the HF-Bardeen-Cooper-
Schrieffer (HF-BCS) framework. We adopt the pairing force

V = V0

(
1 − ρ(�r1 + �r2)

ρ0

)
δ(�r1 − �r2). (13)

The HF-BCS equations are solved setting the systems in a
large box with a radius R = 20 fm. We employ a radial mesh
of 0.1 fm, and the BCS equations are solved, as usual, within a
pairing window: only the levels up to the N = 126 neutron
shell are considered. Among the unbound levels we keep
only those corresponding to single-particle resonances. They
are determined increasing the box radius up to 25 fm, and

TABLE II. LNS5 and LNS1 Skyrme parameters obtained in the
fits. The exponent σ (last line) is fixed.

LNS5 LNS1

t0 (MeV fm3) −2194.776 −2215.322
t1 (MeV fm5) 482.518 532.536
t2 (MeV fm4) 138.137 67.761
t3 (MeV fm3(1+σ )) 10784.169 10931.718
x0 0.134 0.463
x1 −0.097 0.128
x2 −1.399 −2.174
x3 0.171 0.615
W0 (MeV fm5) 105.674 116.789
σ 1/6 1/6
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TABLE III. Bulk nuclear matter properties obtained with the
different Skyrme sets. In the last column the estimated BHF values
are given. L is the density slope of as(ρ) times 3ρ0.

LNS5 LNS1 LNS SLy4 BHF

ρ0 (fm−3) 0.1599 0.1616 0.1746 0.160 0.16–0.17
E/A (MeV) −15.57 −15.86 −15.32 −15.97 � −16
K∞ (MeV) 240.06 244.18 210.85 229.90 � 220.00
as (MeV) 29.21 29.91 33.41 32.00 � 30
L (MeV) 50.17 30.94 61.45 45.96 � 58.20
m∗
m

0.603 0.604 0.825 0.70 � 0.633

including in the pairing window only the states whose energies
do not change significantly (i.e., by less than 1 MeV).

In Eq. (13) ρ0 = 0.16 fm−3 while the V0 parameter is
determined by requiring a reasonable agreement with the
experimental mean neutron gap along the whole series of
isotopes under study. The values of V0 thus obtained for
LNS5, LNS1, and LNS are 820 MeV fm−3, 760 MeV fm−3,
and 780 MeV fm−3, respectively. In case of SLy4, V0 =
680 MeV fm−3 was adopted as in Ref. [19].

The deviations of the calculated energies from the exper-
imental values are depicted in Fig. 7. With SLy4 the pairing
effects reduces the deviations by 2% at most, and tends to
zero for the heaviest nuclei. In the case of LNS1 and LNS5
the deviation changes from positive to negative values from
lighter to heavier isotopes, and this points to a stronger isospin
dependence. The calculations show that the charge radii of Sn
isotopes are not strongly affected by pairing.

Figure 8 summarizes the results for binding energies and
charge radii of the Sn isotopes with the old LNS, the new sets,
LNS1 and LNS5, and the reference set SLy4. From the figure it
can be concluded that LNS1 and LNS5 represent a substantial
improvement with respect to LNS.

TABLE IV. Binding energies in MeV (first line) and the charge
radii in fm (second line) from LNS5 and LNS1 are compared with the
experimental values. Experimental energies are taken from Ref. [17]
and charge radii from Ref. [18].

Exp LNS5 LNS1

16O 127.62 −137.27 −131.52
2.73 2.758 2.745

40Ca −342.05 −354.55 −348.00
3.49 3.551 3.521

48Ca −415.99 −427.13 −421.03
3.48 3.485 3.500

56Ni −483.99 −484.97 −482.41
3.75 3.768 3.751

78Ni −642.40 −653.81 −645.24
3.961 3.973

100Sn −825.78 −823.69 −825.81
4.446 4.457

132Sn −1102.90 −1108.23 −1104.9
4.694 4.700

208Pb −1636.44 −1625.41 −1633.41
5.50 5.531 5.531
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FIG. 7. (Color online) Deviations from experimental values of
the Sn isotopes energies calculated with and without pairing: SLy4
parametrization (upper panel), LNS1 and LNS5 parametrizations
(lower panel).

B. Self-consistent RPA calculations of the giant resonance
energies in 208Pb

The ground-state properties such as those discussed above
play a primary role to assess the quality and the predictive
power of a Skyrme force (or, more generally, of any EDF).
But the properties of the excited states in finite nuclei, to
which often less attention is paid, should be also considered.
In particular, there exist states, like the giant resonances,
whose properties carry general and relevant nuclear structure
information. The random phase approximation (RPA) is
closely linked to the HF mean field [20] and it is therefore
appropriate to apply the RPA to cases where pairing effects
are absent, such as in doubly-closed shell nuclei. In what
follows, we discuss the predictions for some giant resonance
states in 208Pb, obtained by means of fully-self consistent HF
plus random phase approximation (RPA) calculations that have
been done by employing the Skyrme sets introduced in the
present work.

RPA is certainly a suitable theory to describe the nuclear
giant resonances (although it cannot account for their spread-
ing width). In self-consistent RPA, the residual interaction
is derived as the functional derivative (with respect to the
density) of the ground-state mean field. This, in turn, is the
functional derivative of the total energy. Therefore, the RPA
results depend only on the parameters of the effective Skyrme
Hamiltonian.
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FIG. 8. (Color online) Energy (upper) and charge radii (lower)
deviations with pairing correction from LNS,LNS1 and LNS5.

In the case of the RPA equations on a HF basis, the
general theory is well known from textbooks [20]. In our
spherical implementation (see also Refs. [21,22]), we first
solve the HF equations in the coordinate space to construct
the single-particle HF basis. In the present case all the radial
quantities are computed up to a maximum radius of 24 fm for
208Pb, using a mesh of 0.15 fm. The unoccupied single-particle
states, including those at positive energies, are obtained by
putting the system in a spherical box of 24 fm radius, i.e.,
the continuum is discretized. A basis of one particle-one
hole (1p-1h) configurations is then built using all occupied
states, as well as the lowest unoccupied states with increasing
values of the principal quantum number n, for each allowed
value of (l, j ). The RPA matrix equations are then solved
in this basis, which has been checked to be large enough
to ensure that the appropriate energy-weighted sum rules
are satisfied up to about 97–99 %. We should also mention
that in our scheme there is no approximation in the residual
interaction, in that all terms are taken into account, including
those coming from the two-body Coulomb and spin-orbit
forces.

After solving the RPA equations, we obtain the full set of
eigenvalues and eigenvectors and from them the strength func-
tion S(E) associated with a given operator F̂ . The moments
of the strength function are defined as mk = ∫

dE S(E)Ek .
The centroid energy can be defined as E0 = m1/m0 or E−1 =√

m1/m−1 (more precisely, the former energy is the centroid

energy whereas for the latter the name of constrained energy
should be preferred).

In the case of the isoscalar monopole strength, the operator
reads

F̂ =
A∑

i=1

r2
i , (14)

where the sum runs over all nucleons. The strength function
is dominated by a main peak, namely the isoscalar giant
monopole resonance (ISGMR), so that centroid energy and
constrained energy are quite similar with each other. In Fig. 9
we report the value of E−1, that can be compared with the
experimental finding of 14.17 MeV [23]. The fact that our
results agree with experiment can be viewed as a consequence
of the nuclear incompressibility values associated with our
forces, K∞ = 220 MeV, a range indicated as the preferable
one in Refs. [24,25]. The correlation between the ISGMR
and the nuclear incompressibility had been first pointed out in
Ref. [26].

The isovector giant dipole resonance (IVGDR) is the collec-
tive motion of neutrons against protons and carries information
about the symmetry energy. Relationships between the dipole
and the symmetry energy have been discussed in Refs. [28–30].
The associated operator, with the subtraction of the center of
mass, is

F̂ = Z

A

N∑
n=1

rnY1M (r̂n) − N

A

Z∑
p=1

rpY1M (r̂p), (15)

where the first (second) sum runs over neutrons (protons). The
value of the centroid energy is shown in Fig. 9, in comparison
with the experimental finding. The new parametrizations LNS1
and LNS5 slightly overestimate the data, probably not because
of any drawback related with the symmetry energy, but rather
owing to the low value of the effective mass. This interpretation
is reinforced by the opposite result obtained with LNS, for
which m∗/m is about 0.82. Looking at the L values in Table III

ISGMR IVGDR ISGQR GTR

10

15

20

E
ne

rg
y 

(M
eV

)

Experiment
LNS1
LNS5
LNS
SLy5

208
Pb

Giant resonance energies

FIG. 9. (Color online) GR energies in 208Pb.: E−1 for monopole,
centroid energies for dipole and quadrupole, and peak values for
Gamow-Teller. Notice that LNS1 and LNS5 values overlap for GMR
and GQR, whereas SLy5 and experimental values overlap for GMR
and GDR.
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and L = 48.27 MeV for SLy5, one may observe a correlation
between the IVGDR energy and the density slope of the
symmetry energy, but this cannot be easily disentangled by
the effective mass. A correlation with the symmetry energy at
density 0.1 fm-3 should be expected [30].

In the case of the isoscalar giant quadrupole resonance
(ISGQR) it was first noticed [26,27] that the resonance energy
is especially correlated with the square root of the effective
mass value, that is,

√
m/m∗. The ISGQR operator is

F̂ =
A∑

i=1

r2
i Y2M (r̂). (16)

In Fig. 9 we show, for this operator either, the centroid energy.
The fact that theory overestimates the experimental result
should be once more attributed to the low effective mass.

Finally, in addition to operators that correspond only to
density modes, it is useful to consider the excitation of other
degrees of freedom. Spin-isospin modes have been known
for a long time to have relevant collectivity. This is true, in
particular, in the case of the Gamow-Teller resonance (GTR),
characterized by the excitation operator

F̂ =
A∑

i=1

�σ (i)τ−(i). (17)

The centroid energy is shown in Fig. 9. In this case the LNS
prediction is better than the new parametrizations and also
better than SLy5. This unexpected result demands for the
additional investigation on the Skyrme-type fitting of the BHF
particle-hole residual interaction.

V. CONCLUSION

The Skyrme forces represent one of the simplest and more
efficient ways to realize EDF which are alternatives to highly
demanding (or prohibitive) many-body calculations based on
the bare nucleon-nucleon interactions. But it is desirable the
Skyrme parameters to be modeled not only on the properties of
stable nuclei, but also on the properties of nuclear matter that
are derived from realistic interactions. In the present work we
have reexamined the LNS model of Ref. [5] and improved it
in two respects. First, we use for our new set of pseudodata the
results of Ref. [7] where the BHF calculations with two-body
and three-body effects have been carried throughout using the
parameters of the Bonn-B potential. These BHF results give a
somewhat better description of the nuclear matter properties
around the saturation point than the BHF results used in
determining the former LNS model. Second, we have adopted
a new strategy where the main quantities which determine the
new LNS model are the BHF potential energies of symmetric
nuclear matter in the four (T , S) channels. These BHF energies
are supplemented by additional constraints on binding energies
and radii of some selected nuclei.

Then, new parameter sets for EDF of the Skyrme type
can be obtained from least-squares fits. In this work we
present as examples two sets of Skyrme parameters, LNS1
and LNS5, which improve considerably the description of
binding energies and charge radii of stable nuclei as compared

to the former LNS model. They have been tested in the
Sn isotopic chain and in self-consistent RPA calculations
of Jπ = 0+, 1−, 2+ giant resonances as well as Gamow-
Teller resonances. The monopole energies are satisfactorily
predicted, but a tendency to overestimate the isovector
dipole and isoscalar quadrupole resonances seems to indicate
that the predicted non-locality from the effective mass is
too low.

In conclusion, it has been shown that BHF calculations
using realistic meson exchange potentials and including
three-body effects can provide a sound framework for
determining EDF of the Skyrme type. The reason why the latter
are not yet fully competitive with the purely phenomenological
Skyrme forces is still an open problem. Nevertheless the
parametrizations thus obtained can describe nuclear ground
states at a reasonably good quantitative level. They might be
used with more confidence than purely phenomenological
parametrizations for exploring regions of the nuclear chart
far from the stability valley. Finally, we can say that further
improvements of microscopically based parametrizations of
the Skyrme type must await for more accurate descriptions
of the nuclear matter EoS in the density domain below
(0.4–0.5)ρ0. Indeed, this range of densities is important for
finite nuclear systems but its treatment is generally difficult in
microscopic calculations of nuclear matter.
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APPENDIX: POTENTIAL ENERGIES PER PARTICLE IN
TERMS OF SKYRME INTERACTION PARAMETERS

The standard Skyrme interaction (without the spin-orbit
and tensor components, which play no role in homogeneous
matter) is

v = t0(1 + x0Pσ )δ(r)

+ 1
2 t1(1 + x1Pσ )[k′2 δ(r) + δ(r) k2]

+ t2(1 + x2Pσ )k′ · δ(r) k

+ 1
6 t3(1 + x3Pσ )ρ(R)σ δ(r), (A1)

where Pσ is the spin exchange operator, k = (∇1 − ∇2) /2i

acting to the right, and k′ is its adjoint.
The different spin-isospin components U

(Skyrme)
T S of the

nuclear matter energy per particle calculated by using the
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Skyrme force are given by

U
(Skyrme)
00 (ρ) = 3

160

(
3π2

2

) 2
3

t2(1 − x2)ρ
5
3 , (A2)

U
(Skyrme)
11 (ρ) = 27

160

(
3π2

2

) 2
3

t2(1 + x2)ρ
5
3 , (A3)

U
(Skyrme)
10 ρ) = 3

16
t0(1 − x0)ρ + 9

160

(
3π2

2

) 2
3

t1(1 − x1)ρ
5
3

+ 1

32
t3(1 − x3)ρσ+1, (A4)

U
(Skyrme)
01 (ρ) = 3

16
t0(1 + x0)ρ + 9

160

(
3π2

2

) 2
3

t1(1 + x1)ρ
5
3 ,

+ 1

32
t3(1 + x3)ρσ+1. (A5)

The symmetry energy Es(ρ) and the incompressibility
K(ρ) of symmetric nuclear matter are

Es(ρ) = 1

3

h̄2

2m

(
3π2

2

) 2
3

ρ
2
3 − 1

16
(3T +

0 − T −
0 )ρ

− 1

48

(
3π2

2

) 2
3

ρ
2
3 (3T +

1 − 3T −
1 − 9T +

2 + T −
2 )ρ

5
3

− 1

96
(3T +

3 − T −
3 )ρσ+1, (A6)

K(ρ) = −3h̄2

5m

(
3π2

2

) 2
3

ρ
2
3 + 9

32
(T +

3 + T −
3 ) σ (σ + 1)ρσ+1

+ 3

16

(
3π2

2

) 2
3

ρ
2
3 (3T +

1 + 3T −
1 + 9T +

2 + T −
2 )ρ

5
3 ,

(A7)

where T ±
i = ti(1 ± xi).
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Part. Phys. 37, 064015 (2010).

[7] Z. H. Li, U. Lombardo, H. J. Schulze, and W. Zuo, Phys. Rev.
C 77, 034316 (2008).

[8] A. Lejeune, U. Lombardo, and W. Zuo, Phys. Lett. B 477, 45
(2000).

[9] P. Grange, A. Lejeune, M. Martzolff, and J.-F. Mathiot, Phys.
Rev. C 40, 1040 (1989).

[10] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1
(1987); R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

[11] Z. H. Li and H. J. Schulze, Phys. Rev. C 78, 028801 (2008).
[12] I. Bombaci and U. Lombardo, Phys. Rev. C 44, 1892 (1991).
[13] W. Zuo, C. W. Shen, and U. Lombardo, Phys. Rev. C 67, 037301

(2003); C. W. Shen, U. Lombardo, N. Van Giai, and W. Zuo,
Phys. Rev. C 68, 055802 (2003).

[14] J. Bartel, Ph. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
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