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Two-nucleon electromagnetic charge operator in chiral effective field theory (χEFT) up to one loop
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The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory (χEFT)
up to order e Q [or next-to-next-to-next-to-next-to-leading order (N4LO)], where Q denotes the low-momentum
scale and e is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively,
one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the
nonstatic terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent
potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical
observables will remain unaffected by the nonuniqueness associated with these off-the-energy-shell effects.
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I. INTRODUCTION

The chiral symmetry exhibited by QCD dictates that the
pion couples to baryons, such as nucleons and � isobars, by
powers of its momentum Q. As a consequence, the Lagrangian
describing these interactions can be expanded in powers of
Q/�χ , where �χ ∼ 1 GeV specifies the chiral-symmetry
breaking scale. Thus, classes of Lagrangians emerge, each
characterized by a given power of Q/�χ and each involving a
certain number of unknown coefficients, so-called low-energy
constants, which are then determined by fits to experimental
data (see, for example, the review papers [1] and [2] and
references therein). This approach, known as chiral effective
field theory (χEFT), can be justifiably argued to have put
low-energy nuclear physics on a more fundamental basis by
providing, on the one hand, a direct connection between the
symmetries of QCD—in particular, chiral symmetry—and the
strong and electroweak interactions in nuclei and, on the other
hand, a practical calculational scheme capable, in principle, of
systematic improvement.

The model for the nuclear electromagnetic current—the
spacelike part of the four current—in χEFT up to one loop
was derived originally by Park et al. [3], using covariant
perturbation theory. In the last couple of years, two in-
dependent derivations, based on time-ordered perturbation
theory (TOPT), have appeared in the literature, one by the
present authors [4] and the other by Kölling et al. [5]. There
are technical differences in the implementation of TOPT,
which relate to the treatment of reducible diagrams and
are documented in considerable detail in the above papers.
However, the resulting expressions in Refs. [4] and [5] for the
two-pion-exchange currents (the only ones considered by the
authors of Ref. [5]) are in agreement with each other, but differ
from those of Ref. [3], in particular in the isospin structure of
the M1 operator associated with the one-loop corrections; see
Pastore et al. (2009) [4] for a comparison and analysis of these
differences.

Kölling et al. also provided the first treatment of loop
corrections to the nuclear charge operator—the timelike
part of the four current—associated with two-pion exchange
mechanisms. Of course, there had been earlier studies of the
two-nucleon charge operator, notably those of Refs. [6–8],
but they had been limited to its isoscalar component, and
therefore had only retained tree-level corrections (the two-
pion-exchange loop contributions are isovector). These earlier
studies also included predictions for the charge and quadrupole
form factors of the deuteron, which were in reasonable
agreement with data obtained from measurements of elastic
electron-deuteron scattering cross sections at low-momentum
transfer.

The primary objective of the present work is to extend the
formalism developed in Refs. [4,9] to derive systematically
the two-nucleon electromagnetic charge operator in χEFT,
including up to one loop corrections. As we see below, this
is not a straightforward task, because the derivation of such
an operator necessarily entails the study of nonstatic contribu-
tions to the one-pion-exchange (OPE) and two-pion-exchange
(TPE) potentials. In the OPE sector, this interconnection
between nonstatic contributions and the charge operator was
investigated long ago by Friar [10] in the context of a
Foldy-Wouthuysen reduction procedure and a time-dependent
perturbation theory, which consistently retained corrections
up to order (v/c)2. In particular, Friar showed that (i) the
charge operators so derived depend on the specific, but
arbitrary, off-the-energy extension—that is, on the corrections
beyond the static limit, such as those induced by retardation
effects—adopted for the OPE potential, and that (ii) these
different operators (and corresponding OPE potentials) are
related to each other by a unitary transformation and, therefore,
their intrinsic lack of uniqueness has no consequence on the
predictions for physical observables.
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In this paper, we examine these issues from a χEFT
perspective. We are interested in constructing the charge
operators up to one loop and, hence, need to include nonstatic
corrections not only in the OPE, but also in the TPE potential.
We show that the resulting operators, while not unique because
of the off-the-energy-shell ambiguity referred to above, are
nevertheless related to each other by a unitary transformation.
Thus, the present study puts Friar’s original considerations
in the modern framework of χEFT and extends them to
the TPE sector. In Sec. II and Appendix A we list those
terms in the chiral Lagrangians (and corresponding interaction
Hamiltonians) that are relevant to our purpose here. In Sec. III
we provide an overview of the derivation of the OPE and TPE
potentials and charge operators. Specifically, we explore the
connection between the amplitude calculated in χEFT and the
strong and electromagnetic potentials, which are derived from
it and are used in quantum-mechanical formulations, based
on the Lippmann-Schwinger or Schrödinger equations. Power
counting allows us to establish a criterion to make this con-
nection precise. Elsewhere [4,9], we have referred to the latter
as “accounting for recoil-corrected reducible contributions.”
The present formulation is especially apt to shed light on the
interdependence between charge operators and potentials (at
the OPE and TPE level), and the associated ambiguity arising
from off-the-energy-shell extrapolations prescribed for the
latter.

In Sec. III we also provide an explicit expression for
the unitary transformation, and show, in particular, that
different (nonstatic) versions of the TPE potential are unitarily
equivalent. As mentioned above, in the OPE sector this result
has been known for a while [10,11].

Section IV contains a summary of the derivation of the
two-nucleon charge operators up to order e Q 0 included, or
next-to-next-to-next-to-leading order (N3LO in short), where e

is the proton electric charge and Q denotes generically the low-
momentum scale. No loops enter at this order. The different
forms of the OPE charge operator at N3LO exhibit the same
unitary equivalence as the nonstatic corrections to the OPE
potential at order Q2 (N2LO)—this too is well known [10,11],
albeit in a different context.

In Sec. V we discuss the static one-loop corrections
to the charge operator at N4LO (e Q). In particular, we
list those corresponding to two different off-the-energy-shell
prescriptions for the OPE and TPE potentials, and show
that they are unitarily equivalent. A fairly detailed account
of their derivation is provided in Appendix B . The loop
integrals entering the individual terms at N4LO are ultraviolet
divergent; however, their sum is finite, in particular it vanishes
in the limit in which the momentum q carried by the
electromagnetic field is zero. This was to be expected, because
(i) symmetry arguments prevent the presence of counterterms
at this order (and therefore the possibility of reabsorbing
ensuing divergencies into them) and (ii) charge conservation
demands that at q = 0 the charge operator merely counts the
number of charged particles (i.e., protons) in the system—a
requirement already fulfilled at LO. Summary and conclusions
are presented in Sec. VI, while, for future convenience, we give
the configuration space representation of the N4LO charge
operators in Appendix C.

II. RELEVANT INTERACTION HAMILTONIANS

Here we only list the interaction Hamiltonians relevant for
the derivation of the nuclear electromagnetic charge operator
up to order e Q (N4LO); see Appendix A for notation and a
summary of the corresponding Lagrangians [12,13]:

HπN =
∫

dxN †
[gA τa

Fπ

σ · ∇πa + τ

F 2
π

· (π × ∂ 0π )
]
N,

(1)

HγN = e

∫
dx N †

{
eN A0 − 2 μN − eN

8 m2
N

[
(∇2A0)

+ σ × (∇A0) · −→∇ − ←−∇ · σ × (∇A0)
]}

N, (2)

Hγπ = e

∫
dx A0 (π × ∂0π )z , (3)

HγπN = e

∫
dx N † σ · (∇A0)

[
gA

2 mNFπ

(τ · π + πz)

+ 1

Fπ

(2 d20 + 2 d21 − d22) (τ × ∂ 0π )z

]
N. (4)

The resulting vertices behave, relative to the low-momentum
scale Q, in the following way: HπN ∼ Q; first term in
HγN ∼ e Q 0, remaining ones ∼e Q2; Hγπ ∼ e Q; first term
in HγπN ∼ e Q, second one ∼e Q2. There is also a contact
interaction,

HCT = 1

2

∫
dx [CS(N †N )(N †N ) + CT (N †σN ) · (N †σN )],

(5)

which enters the derivation of the N4LO charge operator. The
accompanying vertex scales as Q 0.

III. FROM AMPLITUDES TO POTENTIALS

We begin by considering the conventional perturbative
expansion for the two-nucleon (NN ) scattering amplitude

〈 f | T | i 〉 = 〈 f | H1

∞∑
n=1

(
1

Ei − H0 + i η
H1

)n−1

| i〉,
(6)

where | i〉 and |f〉 represent the initial and final two-nucleon
states of energy Ei = Ef , H0 is the Hamiltonian describing
free pions and nucleons, and H1 is the Hamiltonian describing
interactions among these particles (Sec. II). The evaluation of
this amplitude is carried out in practice by inserting complete
sets of H0 eigenstates between successive terms of H1. Power
counting is then used to organize the expansion in powers of
Q/�χ 	 1, where �χ 
 1 GeV is the typical hadronic mass
scale.

In the perturbative series, Eq. (6), a generic (reducible
or irreducible) contribution is characterized by a certain
number, say N , of vertices, each scaling as Qαi × Q−βi/2

(i = 1, . . . , N ), where αi is the power counting implied by
the relevant interaction Hamiltonian and βi is the number
of pions in and/or out of the vertex, a corresponding N − 1
number of energy denominators, and possibly L loops [9]. Of
these N–1 energy denominators, NK of them will involve only
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(a) (b) (c)

T (0)

(j ) (k) (m) (n)(l)

T (1)

(d) (e) (f ) (h) (i)(g)

FIG. 1. Time-ordered diagrams illustrating the contributions to
the T (0) [panels (a)–(c)] and T (1) [panels (d)–(n)] NN scattering
amplitudes. Nucleons and pions are denoted by solid and dashed
lines, respectively. Pion lines (pion lines with crossed circles) indicate
that only the leading Q−1 (next-to-leading Q 0) term in the expansion
of energy denominators [Eq. (8)] is retained in the corresponding
amplitudes. See text for explanation.

nucleon kinetic energies, which scale as Q2, and the remaining
N − NK − 1 will involve, in addition, pion energies, which
are of order Q. Loops, however, contribute a factor Q3

each, because they imply integrations over intermediate three
momenta. Hence, the power counting associated with such a
contribution is(

N∏
i=1

Qαi−βi/2

) [
Q−(N−NK−1) Q−2NK

]
Q3L. (7)

Clearly, each of the N − NK − 1 energy denominators can be
further expanded as

1

Ei − EI − ωπ

= − 1

ωπ

[
1+ Ei − EI

ωπ

+ (Ei − EI )2

ω2
π

+ · · ·
]
,

(8)

where EI denotes the kinetic energy of the intermediate two-
nucleon state, and ωπ the pion energy (or energies, as the case
may be)—the ratio (Ei − EI )/ωπ is of order Q.

The Q scaling of the interaction vertices and the consider-
ations above show that T admits the following expansion:

T = T (0) + T (1) + T (2) + · · · , (9)

where T (n) ∼ Qn. For example, the time-ordered diagrams
contributing to T (0) and T (1) are illustrated in Fig. 1, where the
pion line (pion line with a crossed circle) indicates that only
the leading −1/ωπ [next-to-leading −(Ei − EI )/ω2

π ] term is
retained in the expansion of the associated energy denominator
[Eq. (8)]. Except for Appendix B , this notation is not used any
further below, but it is understood that energy denominators
involving pions are expanded as in Eq. (8).

Our objective is to derive a two-nucleon potential v which,
when iterated in the Lippmann-Schwinger (LS) equation,

v + v G0 v + v G0 v G0 v + · · · , (10)

leads to the T matrix in Eq. (9), order by order in the
power counting. In practice, this requirement can only be

satisfied up to a given order n∗, and the resulting potential,
when inserted into the LS (or Schrödinger) equation, will
generate contributions of order n > n∗, which do not match
T (n). In Eq. (10), G0 denotes the free two-nucleon propagator,
G0 = 1/(Ei − EI + i η), and we assume that

v = v(0) + v(1) + v(2) + · · · , (11)

where the yet-to-be-determined v(n) is of order Qn. We also
note that, generally, a term such as v(m) G0 v(n) is of order
Qm+n+1, because G0 is of order Q−2 and the implicit loop
integration brings in a factor Q3. Having established the above
power counting, we obtain

v(0) = T (0), (12)

v(1) = T (1) − [v(0) G0 v(0)], (13)

v(2) = T (2) − [v(0) G0 v(0) G0 v(0)]

−[v(1) G0 v(0) + v(0) G0 v(1)], (14)

v(3) = T (3) − [v(0) G0 v(0) G0 v(0) G0 v(0)]

− [v(1) G0 v(0) G0 v(0) + permutations]

− [v(2) G0 v(0) + v(0) G0 v(2)]

− [v(1) G0 v(1)], (15)

where v(n) is the “recoil-corrected” two-nucleon potential
explicitly constructed in Refs. [4,9] up to order n = 2, or
N2LO. The LO term, v(0), consists of (static) OPE and contact
interactions, while the NLO term, v(1), vanishes, because the
contributions of diagrams (d) and (e) in T (1), illustrated in
Fig. 1, add up to zero, while the remaining diagrams represent
iterations of v(0), whose contributions are exactly canceled
by [v(0) G0 v(0)]—complete or partial cancellations of this
type persist at higher (n � 2) orders. The N2LO term, which
follows from Eq. (14), contains TPE and contact (involving
two gradients of the nucleon fields) interactions. It is derived
in Ref. [4]. However, there is a recoil correction of order n = 2
to the OPE potential, which was ignored in that paper. In
momentum space, it is given by

v(2)
π (ν = 0) = v(0)

π (k)
(E ′

1 − E1)2 + (E ′
2 − E2)2

2 ω2
k

, (16)

where v(0)
π is the LO OPE potential,

v(0)
π (k) = − g2

A

F 2
π

τ 1 · τ 2
σ 1 · k σ 2 · k

ω2
k

, (17)

k = p1 − p′
1 = p′

2 − p2 is the momentum transfer, and pj and
Ej (p′

j and E ′
j ) are the initial (final) momentum and energy of

nucleon j . Obviously, on the energy shell Ei = Ef implicit in
Eq. (14), the above expression is equivalent to one in which,
for example,

v(2)
π (ν = 1) = −v(0)

π (k)
(E ′

1 − E1) (E ′
2 − E2)

ω2
k

. (18)

In fact, there is an infinite class of v(2)
π (ν) corrections—labeled

by the parameter ν [10,11,14]—which, while equivalent on the
energy shell, are different off the energy shell, and therefore
lead to different potentials v(3)(ν) in Eq. (15). Indeed, for the
choices of v(2)

π (ν) in Eqs. (16) and (18) the corresponding
corrections to the TPE term (from direct and crossed box
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diagrams), v
(3)
2π (ν), read

v
(3)
2π (ν = 0) = − g4

A

2 F 4
π

(3 + 2 τ 1 · τ 2)
∫

q1

(σ 1 · q2)(σ 1 · q1)

× (σ 2 · q1)(σ 2 · q2)

(
E1 − Ẽ1 + E′

2 − Ẽ′
2

ω4
1 ω2

2

+E′
1 − Ẽ1 + E2 − Ẽ′

2

ω2
1 ω4

2

)
, (19)

and

v
(3)
2π (ν = 1) = v

(3)
2π (ν = 0) + 1

2

∫
q1

v(0)
π (q2) v(0)

π (q1)

× (E1 + E2 − Ẽ1 − Ẽ2)

(
1

ω2
1

+ 1

ω2
2

)
, (20)

where, as indicated in panel (a) of Fig. 4 (Appendix B),
q1 and q2 (ω1 and ω2) are the momenta (energies) of the
two exchanged pions (with q2 = k − q1), Ẽj and Ẽ ′

j are the
intermediate nucleon energies, and∫

s
≡

∫
ds

(2π )3
. (21)

Friar [10,14], and later Adam et al. [11], have argued that
the different off-the-energy-shell extrapolations v(2)

π (ν) are uni-
tarily equivalent. (See also Ref. [15] for the implication of the
unitary equivalence on the TPE three-nucleon potential.) We
show below that, as a matter of fact, this unitary equivalence
remains valid for v

(3)
2π (ν) (as well as for the electromagnetic

charge operators at one loop), thus extending the results of the
authors of Refs. [11,14] to the TPE sector. Up to order n = 3
(i.e., Q3), the two-nucleon Hamiltonian in the center-of-mass
(c.m.) frame can be written in momentum space as

H (ν; p′, p) = K (−1)(p′, p) + v(0)
π (p′ − p) + v

(2)
2π (p′ − p)

+ v(2)
π (ν; p′, p) + v

(3)
2π (ν; p′, p), (22)

limiting our considerations to OPE and (box) TPE potentials
only. There are, of course, v(3) terms originating from higher-
order chiral Lagrangians [12,13], but these have no relevance
for the discussion to follow, and are therefore ignored below.
In Eq. (22), K (−1) denotes the kinetic energy term of order
n = −1,

K (−1)(p′, p) = (2π )3 δ(p′ − p) p2/mN, (23)

mN is the nucleon mass, and v(2)
π (ν) has been given in

Refs. [11,14] as

v(2)
π (ν; p′, p) = (1 − 2 ν)

v(0)
π (p′ − p)

(p′ − p)2 + m2
π

(p′ 2 − p 2)2

4 m2
N

,

(24)

which the ν = 0, 1 expressions listed above reduce to (in the
c.m. frame). These Hamiltonians are related to each other via

H (ν) = e−iU (ν) H (ν = 0) e+iU (ν), (25)

where up to NLO the operator i U (ν) is

i U (ν; p′, p) 
 i U (0)(ν; p′, p) + i U (1)(ν; p′, p), (26)

with

i U (0)(ν; p′, p) = −ν
v(0)

π (p′ − p)

(p′ − p)2 + m2
π

p′ 2 − p 2

2 mN

, (27)

i U (1)(ν; p′, p) = −ν

2

∫
s

v(0)
π (p′ − s)v(0)

π (s − p)

(p′ − s)2 + m2
π

. (28)

The unitary equivalence up to order n = 3 implies

H (ν) = H (ν = 0) + [K (−1) + v(0)
π , i U (0)(ν)]

+ [K (−1), i U (1)(ν)], (29)

because each commutator brings in an additional factor
Q 3 owing to the implicit momentum integrations. A direct
evaluation with ν = 1 shows that H (ν = 1) ensues, including
v(2)

π (ν = 1) and v
(3)
2π (ν = 1), as given in Eqs. (18) and (20); note

that in the c.m. frame q1 = p − s, q2 = s − p′, Ẽ1 + Ẽ2 =
s2/mN , and s is the loop momentum. Both these ν-dependent
corrections are relevant for the derivation of the nuclear charge
operator up to N4LO, to which we now turn our attention.

The electromagnetic interactions are treated in first order
in the perturbative expansion of Eq. (6), and the transition
operator can be expanded as

Tγ = T (−3)
γ + T (−2)

γ + T (−1)
γ + · · · , (30)

where T (n)
γ is of order e Qn (e is the electric charge). The

nuclear charge, ρ, and current, j, operators follow from
vγ = A0 ρ − A · j, where Aμ = (A0, A) is the electromagnetic
vector field, and it is assumed that vγ has a similar expansion
as Tγ . The requirement that, in the context of the LS equation,
vγ matches Tγ order by order in the power counting implies
the following relations:

v(−3)
γ = T (−3)

γ , (31)

v(−2)
γ = T (−2)

γ − [
v(−3)

γ G0 v(0) + v(0) G0 v(−3)
γ

]
, (32)

v(−1)
γ = T (−1)

γ − [
v(−3)

γ G0 v(0) G0 v(0) + permutations
]

− [
v(−2)

γ G0 v(0) + v(0) G0 v(−2)
γ

]
, (33)

v(0)
γ = T (0)

γ − [
v(−3)

γ G0 v(0) G0 v(0) G0 v(0) + permutations
]

− [
v(−2)

γ G0 v(0) G0 v(0) + permutations
]

− [
v(−1)

γ G0 v(0) + v(0) G0 v(−1)
γ

]
− [

v(−3)
γ G0 v(2) + v(2) G0 v(−3)

γ

]
, (34)

v(1)
γ = T (1)

γ − [
v(−3)

γ G0 v(0) G0 v(0) G0 v(0) G0 v(0)

+ permutations
]

− [
v(−2)

γ G0 v(0) G0 v(0) G0 v(0) + permutations
]

− [
v(−1)

γ G0 v(0) G0 v(0) + permutations
]

− [
v(0)

γ G0 v(0) + v(0) G0 v(0)
γ

]
− [

v(−3)
γ G0 v(2) G0 v(0) + permutations

]
− [

v(−3)
γ G0 v(3) + v(3) G0 v(−3)

γ

]
, (35)

where v(n)
γ = A0 ρ(n) − A · j(n), v(n) are the NN potentials

constructed in Eqs. (12)–(15) (with the ν dependence of v(2)

and v(3) suppressed for the time being), and use has been made
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(b) (c)(a) (d) (e)

FIG. 2. Diagrams illustrating one- and two-body charge operators
entering at LO (e Q−3) [panel (a)], N2LO (e Q−1) [panels (b), (c),
and (d)], and N3LO (e Q0) [panel (e)]. There are no NLO contri-
butions. Nucleons, pions, and photons are denoted by solid, dashed,
and wavy lines, respectively. The square in panel (b) represents the
(Q/mN )2, or (v/c)2, relativistic correction to the LO one-body charge
operator, whereas the solid circle in panel (e) is associated with a γπN

charge coupling of order e Q (see text). Only one among the possible
time orderings is shown in panels (c), (d), and (e).

of the fact that v(1) vanishes. In the propagator G0, the initial
energy Ei includes the photon energy ωγ (itself of order Q2),
that is, Ei = E1 + E2 + ωγ = E ′

1 + E ′
2, and the intermediate

energy EI may include, in addition to the kinetic energies of
the intermediate nucleons, also the photon energy, depending
on the specific time ordering being considered.

The current operators j(n) up to order n = 1, that is, e Q,
have been derived in Ref. [4]. In that case, the derivation
is fairly straightforward as j(−3) vanishes: The lowest order
(n = −2) contributing to j consists of the single-nucleon
convection and spin-magnetization currents. The situation
for the charge operator is considerably more complicated,
however, because n = −3 is the lowest order contributing to
it; in momentum space, it is given by

ρ(−3)(q) = e eN,1 (2π )3δ(p1 + q − p′
1) + 1 � 2, (36)

where eN,i = (1 + τi,z)/2 is the proton projection operator, q
is the momentum carried by the external field, and the counting
e Q−3 follows from the product of a factor e Q0 associated with
the γNN vertex, and a factor Q−3 owing to the momentum-
conserving δ function implicit in a disconnected term of this
type [see panel (a) in Fig. 2]. Therefore, the operators ρ(0) and
ρ(1), obtained from Eqs. (34) and (35), depend on the off-the-
energy-shell extensions adopted for v(2) and v(3). In particular,
it appears that all of these extensions lead to a ρ(1) operator
which (i) is free of divergencies, as required by the absence
of counterterms at this order (e Q), and (ii) satisfies ρ(1)(q =
0) = 0. This last condition follows from charge conservation,

ρ(q = 0) =
∫

dx ρ(x) = ρ(−3)(q = 0), (37)

implying ρ(n�−2)(q = 0) = 0. In Sec. V and Appendix B ,
we show explicitly that the off-the-energy-shell prescriptions
adopted for v(2)(ν) and v(3)(ν) corresponding to ν = 0, 1 do
ensure that ρ(1)(ν; q) obeys requirements (i) and (ii). Indeed,
we also show that the unitary equivalence extends to the OPE
ρ(0)(ν; q)—a fact already known [10,14]—and TPE ρ(1)(ν; q)
charge operators.

IV. CHARGE OPERATORS UP TO N3LO

The LO contribution to the two-nucleon charge operator in
panel (a) of Fig. 2, resulting from the first term of the γN

interaction Hamiltonian in Eq. (1), has already been given in
Eq. (36). There are no NLO (e Q−2) contributions, whereas at
N2LO there is (i) a relativistic correction of order (Q/mN )2 to
the LO charge operator, panel (b), given by

ρ(−1) = − e

8 m2
N

(2 μN,1 − eN,1)

× (q2 + 2 i q · σ 1 × K1) + 1 � 2, (38)

(ii) a pion-in-flight term, panel (c), which, however, turns
out to vanish when the contributions of the six time-ordered
diagrams, evaluated in the static limit, are summed up, (iii) a
OPE contribution, panel (d), which vanishes owing to an exact
cancellation between static irreducible and recoil-corrected
reducible amplitudes [9]. In Eq. (38) and what follows, q
denotes the momentum carried by the external field, and ki

and Ki are defined as

ki = p′
i − pi , Ki = (p′

i + pi)/2, (39)

where pi and p′
i are the initial and final momenta, respectively,

of nucleon i. Hereafter, momentum conserving δ functions
(q = ki) in ρ(−3) and ρ(−1) (and k1 + k2 = q in the following
expressions of two-body charge operators) will be dropped
for brevity. We note that the power counting is different for
the electromagnetic current operator, for which the LO term
is of order e Q−2 (in the two-nucleon system); that is, it is
suppressed by an extra power of Q relative to ρ(−3) and
where there are NLO (e Q−1) corrections involving seagull
and in-flight contributions associated with OPE, which have
no counterpart in the present case.

The N3LO contribution illustrated in panel (e) of Fig. 2 is
associated with the γπN coupling of order e Q originating
from the first term in Eq. (4); it gives rise to the vertex

i
e gA

2 mNFπ

σ · q√
2ωk

(τa + δaz) (40)

for absorption (or emission) of a pion of momentum k,
energy ωk , and isospin component a, where (2ωk)−1/2 is the
normalization factor entering the normal modes expansion of
the pion field. The two-body charge operator follows easily
by evaluating (in the static limit) the contributions of the two
time-ordered diagrams:

ρ(0)
e = e

2 mN

g2
A

F 2
π

(τ 1 · τ 2 + τ2z)
σ 1 · q σ 2 · k2

ω2
k2

+ 1 � 2.

(41)

In the present χEFT context, ρ(0)
e was derived first by Phillips

in 2003 [7]. However, it is worthwhile to point out that the
presence of an operator of the form given in Eq. (41) has been
known for some time—see the 1989 review paper by Riska [16]
and references therein. It was obtained by considering the low-
energy limit of the relativistic Born diagrams associated with
the virtual-pion photoproduction amplitude. Subsequently,
calculations based on realistic wave functions for the A = 2–4
nuclei showed that this operator plays an important role in
yielding predictions for the A structure function and tensor
polarization of the deuteron [17], and charge form factors of the
trinucleons and α particle [18], that are in excellent agreement
with the experimental data at low and moderate values of
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the momentum transfer (q � 1 GeV/c). These calculations
also showed that the contributions owing to ρ(0)

e are typically
an order of magnitude larger than those generated by the
Darwin-Foldy and spin-orbit relativistic corrections—that is,
the operator ρ(−1) above—or by vector-meson exchanges.

There are also N3LO contributions originating from non-
static contributions in diagrams of types (c) and (d), resulting
from expanding the energy denominators involving pions as
in Eq. (8). We obtain

ρ(0)
c = i

e

mN

g2
A

F 2
π

(τ 1 × τ 2)z
σ 1 · k1 σ 2 · k2

ω2
k1

ω2
k2

× (k1 · K1 − k2 · K2) . (42)

The contributions from diagrams of type (d) depend on
the off-the-energy-shell prescription adopted for v(2)

π (ν)
[10,11,14]. For ν = 0 and ν = 1, we find by direct evaluation
of the relevant diagrams,

ρ
(0)
d (ν = 0) = − e

4 mN

g2
A

F 2
π

σ 1 · k2 σ 2 · k2

ω4
k2

× [(τ 1 · τ 2 + τ2,z)q · k2 + 2 i (τ 1 × τ 2)z
× k2 · (K1 + K2)] + 1 � 2, (43)

ρ
(0)
d (ν = 1) = −i

e

mN

g2
A

F 2
π

(τ 1 × τ 2)z
σ 1 · k2 σ 2 · k2

ω4
k2

× k2 · K2 + 1 � 2, (44)

and it is easily seen that they are related to each other by the
unitary transformation U (0)(ν); that is,

ρ
(0)
d (ν) = ρ

(0)
d (ν = 0) + [ρ(−3) , i U (0)(ν)]

= ρ
(0)
d (ν = 0) + i e [eN,1 U (0)(ν; p′ − q/2, p)

−U (0)(ν; p′, p + q/2) eN,1] + 1 � 2, (45)

and p and p′ are the initial and final relative momenta. We
observe that ρ(0)

c + ρ
(0)
d (ν) = 0 in the limit q = 0, as required

by charge conservation. We also point out that the isovector
term proportional to (τ 1 × τ 2)z in Eq. (43) vanishes in the
Breit frame, where p1 + p2 = −q/2 and p′

1 + p′
2 = q/2.

V. CHARGE OPERATOR AT N4LO

First, we note that there are nonstatic N4LO contributions
from diagrams of types (c)–(e) in Fig. 2, though those relative
to panel (e) cancel out when the two time orderings are taken
into account. There is also a nonstatic contribution of order
(Q/mN )4 to the LO ρ(−3) charge operator, which we ignore
in the present section. Here we only deal with static N4LO
corrections from one-loop diagrams of the type represented
in Fig. 3, because those induced by the second term in the
interaction HγπN (proportional to the time derivative of the
pion field) vanish. Thus, up to N4LO included, there are no
unknown low-energy constants entering the electromagnetic
charge operator.

The pion-in-flight contributions illustrated in panels (a)
and (b) of Fig. 3 involve irreducible diagrams only, and

(d e)

31

2

1
3

2

21

(a) (b) (c)

2

1

1
3

2

2

1

1

1

2

1

2

(g) (h) (i)(f ) (j )

1

FIG. 3. Diagrams illustrating one-loop charge operators entering
at N4LO (e Q), notation is as in Fig. 2. Only one among the possible
time orderings is shown for each contribution.

they are obtained by direct evaluation, in the static limit,
of the corresponding amplitudes. We find that the “football”
contribution—panel (a)—vanishes, while the “triangle” pion-
in-flight operator—panel (b)—reads

ρ
(1)
b = e

2 g2
A

F 4
π

τ2,z

∫
q1 · q2

ω2
1 ω2

2

+ 1 � 2, (46)

where the qi and ωi = (q2
i + m2

π )1/2 denote the momenta
(with the flow as indicated in the figure) and energies of the
exchanged pions, respectively, and the integration is on any
one of the qi’s, the remaining qj ’s with j �= i being fixed by
momentum-conserving δ functions; as noted in the previous
section, an overall (2π )3δ(k1 + k2 − q) has been dropped.

Diagrams illustrated in panels (c)–(j) of Fig. 3 have both
reducible and irreducible pieces. As discussed in Sec. III, the
evaluation of the amplitudes is carried out retaining recoil
corrections to the reducible diagrams (up to N4LO accuracy
in this particular instance), along with the static (N4LO)
irreducible contributions. We find that recoil-corrected re-
ducible contributions partially cancel static irreducible terms
at the same order. This is discussed in considerable detail
in Appendix B. Consequently, at N4LO the charge opera-
tor associated with diagrams of type (c) shown in Fig. 3
reads

ρ(1)
c = −e

2 g4
A

F 4
π

∫
1

ω2
1 ω2

2 ω2
3

[2(τ1,z + τ2,z)

× (q2 · q1 q2 · q3 − σ 1 · q2 × q1 σ 2 · q3 × q2)

− (τ 1 × τ 2)z(q1 · q2 σ 2 · q3 × q2

+ q2 · q3 σ 1 · q2 × q1)], (47)

while that arising from contributions of type (d) diagrams
vanishes, because the integrand is an odd function of the loop
momentum q1. For type (e) diagrams, we find

ρ(1)
e = e

2g2
A

F 2
π

(τ1,z + τ2,z)
∫

1

ω2
1 ω2

2

[ CS q1 · q2

+CT (σ 1 · q1 σ 2 · q2 + σ 1 · q2 σ 2 · q1

− q1 · q2 σ 1 · σ 2)]. (48)

The ρ
(1)
f operator vanishes owing to an exact cancellation

between the static irreducible and recoil-corrected reducible
amplitudes associated with the diagrams illustrated in panel (f).
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For type (g)–(j) diagrams, we find

ρ(1)
g = −e

2 g2
A

F 4
π

τ2,z

∫
q1 · q2

ω2
1 ω2

2

+ 1 � 2, (49)

ρ
(1)
h (ν = 0) = −e

2 g4
A

F 4
π

∫
ω2

1 + ω2
2

ω4
1 ω4

2

[τ2,z (q1 · q2)2

+ τ1,z σ 2 · q2 × q1 σ 1 · q2 × q1]

+ e
g4

A

F 4
π

(τ 1 × τ 2)z

∫
ω2

1 − ω2
2

ω4
1 ω4

2

q1 · q2

× σ 1 · q2 × q1 + 1 � 2, (50)

ρ
(1)
h (ν = 1) = ρ

(1)
h (ν = 0) +

(
i e

g4
A

2 F 4
π

(τ 1 × τ 2)z

×
∫ {

ω2
1 + ω2

2

ω4
1 ω4

2

[σ 1 · q2 × q1 σ 2 · q2 × q1

− (q1 · q2)2] − i
ω2

1 − ω2
2

ω4
1 ω4

2

q1 · q2

× (σ 1 + σ 2) · q2 × q1

}
+ 1 � 2

)
, (51)

ρ(1)
i (ν = 0) = ρ(1)

i (ν = 1) = 0, (52)

ρ
(1)
j = e

2 g2
A

3 F 2
π

τ1,z (3 CS − CT σ 1 · σ 2)

×
∫

q2
1

ω4
1

+ 1 � 2, (53)

and a fairly detailed overview of their derivation is in
Appendix B .

A few comments are now in order. First, the loop integrals
entering the expressions above are ultraviolet divergent.
However, the total charge operator at N4LO is finite, because
the divergencies associated with contributions (b) and (g), (c)
and (h), and (e) and (j) cancel out. This is in line with the fact
that there are no counterterms at this order. In particular, we
observe that the constraint imposed by charge conservation
is satisfied, because ρ

(1)
b + ρ(1)

g = 0 and ρ(1)
e + ρ

(1)
j = 0 in the

limit q = 0 (or k1 = −k2), while the contribution associated
with diagram (c) in Fig. 3 can be written as (because q1 = −q3

at q = 0)

ρ(1)
c (q = 0) = e

2 g4
A

F 4
π

∫
q1,q2

1

ω4
1 ω2

2

[2 τ2,z (q2 · q1)2

+ 2 τ1,z σ 1 · q2 × q1 σ 2 · q2 × q1

− (τ 1 × τ 2)z q2 · q1 σ 1 · q2 × q1]

× (2π )3 δ(q1 − q2 − k1) + 1 � 2. (54)

It is then seen that, in this limit, the expression above is
opposite in sign to that of diagram (h) in Eq. (50) for ν = 0. For
ν = 1, in Eq. (51) the extra terms proportional to (τ 1 × τ 2)z
vanish by themselves at q = 0. For completeness, we list
the configuration-space representation of these operators in
Appendix C.

Second, the charge operators ρ
(1)
h for ν = 0, 1 are related

to each other by the unitary transformation U ; that is, a
relation similar to Eq. (45) holds with U (0)(ν) being replaced

with U (1)(ν), defined in Eq. (28). This is easily verified by
expressing U (1)(ν) as

i U (1)(ν; p′ − p)

= −ν
g4

A

4 F 4
π

(3/2 − τ 1 · τ 2)
∫

s

(
ω2

+ + ω2
−

ω4+ ω4−
{[(p′ − p)2 − s2]2

− 4[σ 1 · (p′ − p) × s][σ 2 · (p′ − p) × s]}

− 2 i
ω2

− − ω2
+

ω4+ ω4−
[(p′ − p)2 − s2](σ 1 + σ 2) · (p′ − p) × s

)
,

(55)

where

ω± ≡
√

(p′ − p ± s)2 + 4 m2
π . (56)

The commutator [ρ(−3) , U (1)(ν)] is seen to be identical to the
(τ 1 × τ 2)z term on the right-hand side of Eq. (51), when the
pion momenta q1,2 are expressed as q1,2 = q/2 + p − p′ ± s
and s is the loop momentum.

Third, we compared the operators given above with those
derived by Kölling et al. [5] in TOPT with the Okubo method
[19], to decouple, in the Hilbert space of pions and nucleons,
the states consisting of nucleons only from those including,
in addition, pions. We find that the expressions for operators
(a), (b), (c), (g), and (h, ν = 0) are identical to those reported
in Ref. [5]; the terms involving contact interactions in panels
(d), (e), (i, ν), and (j) were not considered by the authors of
that paper. We should note that in ρ

(1)
h (ν = 0) the additional

isovector piece, that is, the term multiplied by (τ 1 × τ 2)z in
Eq. (50), is missing in Ref. [5]. However, evaluation of the
loop integral shows that it vanishes. Indeed, consider∫

q1

q1 · (k2 − q1) σ 1 · (k2 × q1)(
q2

1 + m2
π

) [
(k2 − q1)2 + m2

π

]2 =
∫ 1

0
dx 2 x (1 − 2 x)

×
∫

q1

q1 · k2 σ 1 · (k2 × q1)[
q2

1 + m2
π + k2

2 x (1 − x)
]3 = 0, (57)

after making use of Feynman’s parametrization, and shifting
the integration variables as q1 − x k2 → q1. Thus, the type (h)
charge operator derived in Ref. [5] corresponds to the ν = 0
off-the-energy-shell extension. However, the framework used
by these authors leads to vanishing nonstatic corrections to
the OPE potential [20] (see also the discussion by Phillips [8]
in connection to this issue), which would imply the choice
ν = 1/2 in Eq. (24). This suggests that pion retardation effects
may not have been treated consistently in Ref. [5]. We conclude
by observing that for clarity’s sake we have kept the (vanishing)
isovector terms in ρ

(1)
h (ν) [Eqs. (50) and (51)].

VI. CONCLUSIONS

We have presented a fairly systematic derivation of the
two-nucleon charge operators up to one loop (or N4LO)
in χEFT, based on TOPT with a careful treatment of the
noniterative contributions extracted from reducible diagrams.
The specific form of the N3LO and N4LO charge operators
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depends on the off-the-energy-shell prescriptions adopted for
the nonstatic pieces in the OPE and TPE potentials. This
ambiguity is of no import, however, because these OPE and
TPE (nonstatic) potentials and accompanying charge operators
are related to each other by a unitary transformation. Thus,
provided a consistent set is adopted, predictions for physical
observables, such as the few-nucleon charge form factors,
will remain unaffected by the nonuniqueness associated with
off-the-energy-shell effects.

However, it is important to stress that in the present work
we have only examined those off-the-energy-shell effects
relating to pion retardation [10,14], which arise, in TOPT
amplitudes, from energy denominators containing pion (in
addition to nucleon kinetic) energies. There are, of course,
additional nonstatic corrections originating from the non-
relativistic reduction of interaction vertices (generated by
fully relativistic Lagrangians). Corrections of this type in the
OPE sector for both potentials and charge operators have
been studied in Refs. [10,11,14]. It would be interesting to
extend those considerations to the TPE sector and also explore
the constraints, in the present χEFT setting, that relativistic
covariance and power counting impose on these nonstatic
terms of the potentials and electromagnetic charge and current
operators. As a matter of fact, a study along these lines, but
dealing only with the two-nucleon potential, is that of Ref. [21].

Finally, we note that the charge operators up to N4LO
included contain no unknown low-energy constants. The
N4LO corrections are purely isovector and will not contribute
to isoscalar observables, such as the A structure function and
tensor polarization of the deuteron or charge form factor of
4He. They will produce, presumably tiny, contributions to
the isovector combination of the trinucleon radii and charge
form factors. A quantitative analysis of all these effects is in
progress.
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APPENDIX A: CHIRAL LAGRANGIANS

In the heavy-baryon formalism [12,13], the chiral La-
grangians describing the interactions among nucleons, pions,
and photons are written as

L(1)
πN = N †(i vμDμ + gA Sμuμ)N, (A1)

L(2)
πN = 1

2 mN

N †[vμ vν DμDν − DμDμ − igA Sμvν[Dμ, uν]+

− e μN εμνρσ Fμνvρ Sσ + · · · ]N, (A2)

L(3)
πN = N †

[
i e d20 SμvνFμν[τz , uρ]vρ

+ i e d21 SμFμν[τz , uν] + e d22 Sμ [Dν , F−
μν]

+ e

(
2 d7 + d6 τz − 2 μN − eN

8 m2
N

)
[Dμ , Fμν]vν

− e
2 μN − eN

4 m2
N

(i εμναβ vα Sβ Fμσ vσDν

+ H.c.) + · · ·
]
N (A3)

L(2)
ππ = F 2

π

16
tr[DμU DμU † + m2

π (U + U †)], (A4)

where the fields U and uμ, and the covariant derivatives DμN

and DμU , are given by

U + U † = 2 − 4

F 2
π

π · π + · · · , (A5)

uμ = − 2

Fπ

τ · ∂μπ − 2 e

Fπ

Aμ (τ × π )z + · · · , (A6)

DμN =
[
∂μ + i e eNAμ + i

F 2
π

τ · (π × ∂μπ )

− i e

F 2
π

Aμ [π × (τ × π)]z + · · ·
]
N, (A7)

DμU = 2 i

Fπ

τ · ∂μπ − 4

F 2
π

π · ∂μπ

+ 2 i e

Fπ

Aμ(τ × π)z + · · · , (A8)

F−
μν = 2 e

Fπ

Fμν (τ × π)z + · · · , (A9)

where gA, Fπ (Fπ = 186 MeV), and e are, respectively,
the nucleon axial coupling constant, pion decay amplitude,
and proton electric charge; d6, d7, d20, d21, and d22 are
(unknown) low-energy constants (LECs); [. . . , . . . ]+ denotes
the anticommutator; and vμ and Sμ = (i/2) γ5 σμν vν are the
nucleon’s four-velocity and spin operator, which in its rest
frame reduce to vμ = (1, 0) and Sμ = (0, σ/2). We have also
defined

eN = (1 + τz)/2, κN = (κS + κV τz)/2, μN = eN + κN,

(A10)

where κS and κV are the isoscalar and isovector combinations
of the anomalous magnetic moments of the proton and neutron,
which are related to the LECs c6 and c7 used in Ref. [13] as
κS = c6 + 2 c7 and κV = c6. Note that only electromagnetic
interaction terms have been included in L(3)

πN and that the
terms proportional to the LEC’s d6 and d7 represent corrections
arising from the nucleon substructure (i.e., an electromagnetic
form factor). They are not relevant to our discussion here
and are ignored hereafter, together with the effects owing to
the pion cloud of the nucleon. In the expressions above, the
electromagnetic vector and tensor fields are denoted by Aμ

and Fμν , the isospin doublet of (nonrelativistic) nucleon fields
by N , and the isospin triplet of pion fields by π . In terms of
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these, the Lagrangians are expressed as

L(1)
πN = N †

[
i ∂ 0 − gA

Fπ

τa σ · ∇πa − 1

F 2
π

τ · (π × ∂ 0π)

− eeNA0+ e

F 2
π

A0[π × (τ × π)]z + · · ·
]
N, (A11)

L(2)
πN = 1

2 mN

N †
[
∇2− e gA

Fπ

(τ · π + πz)σ · (∇A0) + · · ·
]
N,

(A12)

L(3)
πN = N †

[
− e (2 d20 + 2 d21 − d22)

Fπ

σ · (∇A0)(τ × ∂ 0π)z

+ e (2 μN − eN )

8 m2
N

[(∇2A0) + σ · (∇A0) × −→∇

+ σ · ←−∇ × (∇A0)] + · · ·
]
N, (A13)

L(2)
ππ = 1

2
∂μπ · ∂μπ − m2

π

2
π · π

− e Aμ (π × ∂μπ)z + · · · , (A14)

where the term proportional to e gA/Fπ in the second line of
Eq. (A12) is obtained [7] (i) by expanding the anticommutator
in Eq. (A2) as

−i
gA

2 mN

N † Sμvν[Dμ , uν]+N

= i
gA

mN Fπ

N † Sμvν[Dμ , τ · ∂νπ − e Aν (τ × π)z]+N ;

(A15)

(ii) by removing the derivative ∂ν acting on the pion field
via partial integration; and (iii) by using the (lowest order)
equation of motion for the nucleon field, that is,

i vν ∂νN = −e eN vνAνN + · · · , (A16)

to re-express the terms, which result from (ii) and involve
i vν ∂νN and its adjoint. In Eqs. (A11)–(A14), we have retained
only linear terms in the vector potential and only contributions
relevant for the derivation of the two-body charge operator up
to order e Q. Application of the standard rules of canonical
quantization leads to the interaction Hamiltonians listed in
Sec. II.

APPENDIX B: DERIVATION OF THE N4LO
CHARGE OPERATOR

In this appendix, we derive the static N4LO corrections at
one loop to the electromagnetic charge operator which follow
from Eq. (35). The derivation of the operators associated
with the irreducible contributions illustrated by panels (a)
and (b) in Fig. 3 is straightforward. However, the analysis
of the reducible diagrams of type (c)–(j) in the same figure is
more delicate, because the corresponding amplitudes contain
(static) contributions originating from two different sources:
one arising from the subclass of irreducible time orderings for
each of the diagrams (c)–(j) and one consisting of the “leftover”
in the reducible time orderings, after the energy-dependent

terms representing iterations in the LS equation have been
properly identified and removed, that is, canceled by terms on
the right-hand side of Eq. (35). The latter is referred to below
as “recoil-corrected” reducible contributions. As mentioned
in Sec. III, to isolate these recoil-corrected pieces from those
embedded into the iterated solution of the LS equation, it
is necessary to identify the formal expressions of the N3LO
contributions to the NN potential. The latter are obtained by
retaining terms beyond the leading one in the expansion of
the energy denominators including pion energies, which enter
both the reducible and the irreducible amplitudes. Note that the
N3LO contributions from higher-order chiral Lagrangians are
of no interest here. The next section is devoted to the derivation
of the N3LO NN potential, while the last two sections deal
with the derivation of the N3LO OPE and N4LO TPE charge
operators.

1. N N potential at N3LO

One-loop contributions to the NN potential considered in
this appendix are shown in Fig. 4. We discuss in depth the
results obtained for the box diagrams shown in panel (a) of
this figure. The remaining corrections can be easily derived
following the steps outlined here, and for them we only provide
a listing of their expressions.

The classes of diagrams contributing to the N3LO box
amplitude are illustrated in Fig. 5. The type (a) reducible and
types (c) and (d) irreducible diagrams are evaluated by keeping
next-to-leading (or Q 0) terms in the expansions of the energy
denominators which include pion energies [see Eq. (8)]. The
amplitude corresponding to the reducible type (b) diagrams
is obtained by retaining terms of order Q in these energy
denominators, namely one order higher than for diagrams of
types (a), (c), and (d).

We write the N3LO amplitude associated with the box
diagrams as the sum of reducible and irreducible contributions;
that is,

T
(3)

2π (ν) = T
(3)

2π, red(ν) + T
(3)

2π, irr. (B1)

The reducible amplitude consists of LS terms plus a term
contributing to the definition of the NN potential at N3LO.

(c)

(a)

1

2

E1

E1

(d)

1

1

E2E1

(b)

2

1

E2E1 E2
E1

E1

E2 E1 E2

E1 E2

FIG. 4. Diagrams illustrating the T (3) NN amplitudes. The
kinetic energies of intermediate nucleons are as given. Only one
among the possible time orderings is shown. Notation is as in Fig. 2.
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(c) (d)

E2

V2

V4

V3

E2

(a) (b)

V1

E1
E1

1

2

FIG. 5. Diagrams illustrating the recoil-corrected reducible [pan-
els (a) and (b)] and irreducible [panels (c) and (d)] amplitudes
contributing to the NN potential at N3LO. Pion lines with crossed
(solid) circles indicate that only the next-to-leading Q 0 (next-to-
next-to-leading Q 1) term in the expansion of energy denominators
[Eq. (8)] are retained in the corresponding amplitudes. See text for
explanation. In panels (b), (c), and (d), the crossed or solid circles
can be either on pion one (as shown in the figure) or on pion two.
Only one among the possible time orderings is shown. Notation is as
in Fig. 2.

The latter is affected by the choice of the off-the-energy-shell
prescription adopted for the N2LO OPE potential v(2)

π (ν). As
an example, we discuss the results obtained with ν = 0 and
ν = 1. In particular, for ν = 0, we find that the box reducible
amplitude is given by

T
(3)

2π, red(ν = 0) = 2
V1 V2

ω2

1

Ei − Ẽ1 − Ẽ2

× V3 V4

ω3
1

[(E1 − Ẽ1)2 + (E2 − Ẽ2)2]

+ V1 V2

ω3
2

[(Ẽ1 − E ′
1)2 + (Ẽ2 − E ′

2)2]

× 1

Ei − Ẽ1 − Ẽ2
2

V2 V3

ω1

+V1 V2 V3 V4
Ei − Ẽ1 − Ẽ2

ω2
1 ω2

2

, (B2)

where Ei = E1 + E2 = E′
1 + E′

2 is the initial energy of the
system, Ẽj and qi (ωi) denote, respectively, the energies
of the intermediate nucleons and momenta (energies) of the
exchanged pions as indicated in panels (a) and (b) of Fig. 5,
and an integral over an unconstrained pion momentum is
understood. In the equation above, and through the remainder
of this appendix, we denote with Vi the vertices entering
the diagrams. These vertices are implied by the interaction
Hamiltonians listed in Sec. II. For example, the V1 vertex
shown in panel (a) of Fig. 5 is associated with the HπN

Hamiltonian and reads

V1 = −i
gA

Fπ

σ 1 · q2√
2 ω2

τ1,b, (B3)

where b specifies the isospin component of the pion.
The last term in Eq. (B2) is the N3LO recoil-corrected

reducible contribution to the NN potential mentioned earlier,
corresponding to the prescription ν = 0. After resolving the
spin-isospin structure implied by the vertices, one can easily
recognize that the first two terms in T

(3)
2π,red represent iterations

of the LS equation with the static, v(0)
π , and N2LO, v(2)

π (ν = 0),
OPE potentials defined in Eqs. (17) and (16), respectively,

namely,

T
(3)

2π, red(ν = 0) = v(0)
π G0 v(2)

π (ν = 0) + v(2)
π (ν = 0) G0 v(0)

π

+V1 V2 V3 V4
Ei − Ẽ1 − Ẽ2

ω2
1 ω2

2

, (B4)

where, for brevity, the dependence upon nucleon energies and
pion momenta is not explicitly indicated. It can be inferred
from Fig. 5. If the prescription ν = 1 is considered for v(2)

π (ν),
the box reducible amplitude at N3LO reads instead

T
(3)

2π, red(ν = 1) = v(0)
π G0 v(2)

π (ν = 1) + v(2)
π (ν = 1) G0 v(0)

π

+V1 V2 V3 V4

[
2

ω2
1 + ω2

2

ω3
1 ω3

2

+ 1

ω2
1 ω2

2

]
×(Ei − Ẽ1 − Ẽ2), (B5)

with v(2)
π (ν = 1) as given in Eq. (18), provided the relevant

nucleon energies are considered.
To complete the evaluation of the box amplitude, we need

the expression of the irreducible contribution, which is given
by

T
(3)

2π, irr = −V1 V2 V3 V4
Ei − Ẽ1 − Ẽ2

ω2
1 ω2

2

−2 V1 V4 V3 V2

[
E1 − Ẽ1 + E ′

2 − Ẽ ′
2

ω3
1 ω2

+E ′
1 − Ẽ1 + E2 − Ẽ ′

2

ω1 ω3
2

]
, (B6)

where, referring to Fig. 5, the first term is from the (irreducible)
direct diagrams of the type shown in panel (c), while the last
two are generated by the diagrams of the type shown in panel
(d). The sum of the reducible and irreducible pieces can then
be written as

T
(3)

2π (ν) = v(0)
π G0 v(2)

π (ν) + v(2)
π (ν) G0 v(0)

π + v
(3)
2π (ν), (B7)

where v
(3)
2π (ν) for ν = 0, 1 are as given in Eqs. (19) and (20).

An analysis similar to that outlined above leads to the
following expressions for the “triangle” TPE, panel (b) of
Fig. 4, and OPE contact, panels (c) and (d), amplitudes and
corresponding potentials:

T
(3)

2π,� = v
(3)
2π,� = − g2

A

F 4
π

τ 1 · τ 2

∫
1

ω2
1 ω2

2

(q1 · q2

+ i σ 1 · q2 × q1)(E1

+E ′
1 − 2 Ẽ1) + 1 � 2, (B8)

T
(3)

CT, c(ν) = v
(0)
CT G0 v(2)

π (ν) + v(2)
π (ν) G0 v

(0)
CT + v

(3)
CT, c(ν),

(B9)

T
(3)

CT, d = v
(3)
CT, d = 3 g2

A

2 F 2
π

∫
σ 1 · q1 v

(0)
CT σ 1 · q1

ω4
1

× (E1 − Ẽ1 + E′
1 − Ẽ′

1) + 1 � 2, (B10)

where

v
(0)
CT = CS + CT σ 1 · σ 2, (B11)

is the contact potential at LO, while the N3LO potential arising
from the diagrams of panel (c) with the choices ν = 0, 1 for
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1
V1 V2

2

1
Vγπ

(d)(c) (f )(e)(b)(a)

VγN

V2

V1

Ē1
Ē1

FIG. 6. Diagrams illustrating recoil-corrected OPE amplitudes contributing to the charge operator at N3LO. Only one among the possible
time orderings is shown. Notation is as in Figs. 2 and 5.

the OPE potential v(2)
π (ν), is given by

v
(3)
CT, c(ν = 0) = g2

A

2 F 2
π

τ 1 · τ 2

∫
σ 1 · q1 v

(0)
CT σ 2 · q1

ω4
1

× (E2 − Ẽ2 + E′
1 − Ẽ′

1) + 1 � 2, (B12)

v
(3)
CT, c(ν = 1) = v

(3)
CT, c(ν = 0) +

∫
v

(0)
CT v(0)

π

2 ω2
1

(Ei − Ẽ1 − Ẽ2)

+
∫

v(0)
π v

(0)
CT

2 ω2
1

(Ei − Ẽ′
1 − Ẽ′

2), (B13)

and the nucleon energies and pion momenta are defined in
Fig. 4.

2. OPE charge operators at N3LO

Before turning our attention to the N4LO corrections, we
outline the derivation of the N3LO OPE charge operators
whose expressions have been given in Eqs. (42)–(44). As
discussed in Sec. IV, these operators vanish in the static limit
(that is, at N2LO), while at N3LO they are given by amplitudes
associated with the diagrams of the type illustrated in Fig. 6.
In particular, the charge operator in Eq. (42), which we denote
as ρ(0)

γπ for later convenience, is obtained as

ρ(0)
γπ = − 4

V1 V2 Vγπ

ω1 ω2
(E1 − E ′

1 − E2 + E ′
2). (B14)

The vertex Vγπ is proportional to that associated with the
interaction Hamiltonian Hγπ in Sec. II,

− i e εabz

ω1 − ω2√
4 ω1 ω2

, (B15)

where the pion energies are as indicated in panel (a) of Fig. 6.
It is convenient to factor out the energy numerator (ω1 − ω2)
and define Vγπ as

Vγπ = −i e εabz

1√
4 ω1 ω2

. (B16)

Next, we consider the amplitude associated with the diagrams
shown in panels (c)–(f) of Fig. 6:

T
(0)
γ d (ν) = [

v(2)
π (ν) G0 ρ(−3) + ρ(−3) G0 v(2)

π (ν)
] + ρ

(0)
d (ν),

(B17)

where ρ(−3) is the LO charge operator given in Eq. (36), while
ρ

(0)
d (ν) is the N3LO OPE contribution defined in Eqs. (43) and

(44) for ν = 0, 1. The latter is written as

ρ
(0)
d (ν) = ρ

(0)
γN (ν) + ρ

(0)
Nγ (ν) + 1 � 2, (B18)

where ρ
(0)
γN comes from the diagrams shown in panels (c) and

(d) of Fig. 6, while ρ
(0)
Nγ is associated with those of panels (e)

and (f). For ν = 0, we find

ρ
(0)
γN (ν = 0) = V1 V2 VγN

ω3
1

(E ′
1 − E1 + E2 − E ′

2), (B19)

ρ
(0)
Nγ (ν = 0) = −VNγ V1 V2

ω3
1

(E
′
1 − E1 + E2 − E ′

2), (B20)

while for ν = 1 we obtain

ρ
(0)
γN (ν = 1) = 2

V1 V2 VγN

ω3
1

(E2 − E ′
2), (B21)

ρ
(0)
Nγ (ν = 1) = −2

VγN V1 V2

ω3
1

(E2 − E ′
2). (B22)

The energies E1 and E
′
1 are as indicated in panels (c) and (e)

of Fig. 6, respectively, and VγN = e eN,1 is the vertex implied
by the interaction Hamiltonian HγN at LO.

3. N4LO charge operators

We can now proceed to sketch the derivation of the charge
operators illustrated in panels (c)–(j) of Fig. 3. The one-loop
corrections of panels (c)–(e) involve a γππ electromagnetic
vertex, while a γNN interaction enters those of panels (f)–(j).
We give details on the derivation of the operators ρ(1)

c and ρ
(1)
h

as representatives of these classes of diagrams.
First, we consider the pion-in-flight term. The diagrams

contributing at N4LO are shown in Fig. 7. As diagrammatically
shown in the figure, the irreducible contributions, panels (d),
(e), (i), and (j), are evaluated in the static limit, while next-to-
leading order terms in the expansion of energy denominators
are retained in the evaluation of the reducible contributions.
We write the total amplitude as a sum of these; that is,

T (1)
γ c = T

(1)
γ c, red + T (1)

γ c, irr. (B23)

The reducible and irreducible contributions are given by

T
(1)
γ c, red = v(0)

π G0 ρ(0)
γπ + ρ(0)

γπ G0 v(0)
π

+ 2 (ω1 − ω3)

ω1 ω2 ω3 (ω1 + ω3)
[V1 V2 , V3 V4] Vγπ ,

(B24)
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T (1)
γ c, irr = − 2 (ω1 − ω3)

ω1 ω2 ω3 (ω1 + ω3)
[V1 V2 , V3 V4] Vγπ

− 8

ω1 ω2 ω3
[V1 V4 , V3 V2] Vγπ , (B25)

where [. . . , . . . ] denotes a commutator and ρ(0)
γπ is the

N3LO OPE charge operator defined in Eq. (B14). In
Eq. (B24), the terms multiplied by the spin-isospin combi-
nations V1 V2 V3 V4 Vγπ and V3 V4 V1 V2 Vγπ come from the
diagrams shown in panels (a)–(c) and (f)–(h), respectively,
whereas in Eq. (B24) the first term results from the evaluation
of the diagrams shown in panels (d) and (i) of Fig. 7 and the
second one is from those illustrated in panels (e) and (j). The
total amplitude is then given by

T (1)
γ c = v(0)

π G0 ρ(0)
γπ + ρ(0)

γπ G0 v(0)
π + ρ(1)

c , (B26)

where

ρ(1)
c = − 8

ω1 ω2 ω3
[V1 V4 , V3 V2] Vγπ , (B27)

which, after resolving the spin-isospin structure implied by the
vertices, reduces to the N4LO charge operator in Eq. (47).

We now turn our attention to the one-loop correction shown
in panel (h) of Fig. 3. For this contribution, we distinguish
among three classes of diagrams depending on whether the
photon is absorbed before pion one, class A, after pion one,
class B, or after pion two, class C. These classes are represented
in Fig. 8; the vertices and kinetic energies of intermediate
nucleons are as indicated in the figure.

We start off by discussing the result obtained for the class
A amplitude. In Fig. 9 we show the diagrams contributing at
N4LO. The irreducible diagrams, panels (f) and (g) of this
figure, are evaluated in the static limit. The N4LO recoil-
corrected contributions associated with the single (double)
reducible diagrams, panels (c)–(e) of Fig. 9 [panels (a) and (b)],
are obtained by retaining Q 0 (Q 1) terms in the expansions of
energy denominators involving pions. The N4LO amplitude is
then written as

T
(1)
γ A(ν) = T

(1)
γ A, red(ν) + Tγ A, irr, (B28)

E1 3

2

1

(a) (b) (c) (d) (e)

1

2

3

(f ) (g) (h) (i) (j )

V2

V3

V3 V4

V1

V2

V1 V4

Vγπ

E1 E2

E2

FIG. 7. Diagrams illustrating the static [panels (d), (e), (i), and
(j)] and recoil-corrected [remaining panels] diagrams associated with
the N4LO contribution shown in panel (c) of Fig. 3. Only one among
the possible time orderings is shown. Notation is as in Figs. 2 and 5.

where

T
(1)
γ A, red(ν = 0)

= [
v(0)

π G0 v(2)
π (ν = 0) G0 ρ(−3)

+ v(2)
π (ν = 0) G0 v(0)

π G0 ρ(−3)

+ v
(3)
2π (ν = 0) G0 ρ(−3) + v(0)

π G0 ρ
(0)
γN (ν = 0)

]
+

[
2

ω3
1 ω2

− 1

ω1 ω2(ω1 + ω2)2
− 1

ω2
1 ω2(ω1 + ω2)

]
×V1 V2 V3 V4 VγN

+
[

1

ω1 ω2 (ω1 + ω2)2
− 2

ω3
1 ω2

− 2

ω1 ω3
2

]
×V1 V4 V3 V2 VγN + 1 � 2. (B29)

The N4LO LS terms arising from the reducible diagrams are
listed in the first two lines of the equation above, where v(0)

π ,
v(2)

π (ν = 0) and v
(3)
2π (ν = 0) are the LO, N2LO, and N3LO

components of the NN potential given in Eqs. (17), (16), and
(19), respectively, while the ρ(−3) and ρ

(0)
γN charge operators

have been defined in Eqs. (36) and (B19). The last two terms in
Eq. (B29) constitute the N4LO recoil-corrected contribution
associated with the reducible diagrams. In particular, the
second term is generated by the direct reducible diagrams
of panels (a)–(c) and (e), while the last one is obtained from
the contributions of type (d).

The irreducible amplitude from diagrams in panels (f) and
(g) of Fig. 9 reads

T
(1)
γ A, irr =

[
1

ω1 ω2(ω1 + ω2)2
+ 1

ω2
1 ω2 (ω1 + ω2)

]
×V1 V2 V3 V4 VγN

+
[

2

ω1 ω3
2

− 1

ω1 ω2(ω1 + ω2)2

]
×V1 V4 V3 V2 VγN + 1 � 2, (B30)

(a)

˜

E2

2

1

˜

E2

˜

E1

V2
V1

V3 V4
Ē1

CLASS A

E∗
1

˜

E2

˜

E1VγN

CLASS B

˜

E2

(b)

Ē1

E∗
1 ˜

E2
˜

E2

CLASS C

(c)

FIG. 8. Classes of diagrams associated with the one-loop contri-
bution illustrated in panel (h) of Fig. 3. Notation is as in Fig. 2.
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(a) (b) (c) (d) (c)(e) (f ) (g)

FIG. 9. Diagrams illustrating the static [panels (f) and (g)] and recoil-corrected [remaining panels] class A diagrams contributing at N4LO.
In panels (b)–(e), the crossed and solid circles can be either on pion one (as shown in the figure) or on pion two. Only one among the possible
time orderings is shown. Notation is as in Figs. 2 and 5.

and combining Eqs. (B29) and (B30) leads to a total amplitude,
which can be written as

T
(1)
γ A(ν) = v(0)

π G0 v(2)
π (ν) G0 ρ(−3)

+ v(2)
π (ν) G0 v(0)

π G0 ρ(−3) + v
(3)
2π (ν) G0 ρ(−3)

+ v(0)
π G0 ρ

(0)
γN (ν) + ρ

(1)
A (ν) + 1 � 2, (B31)

where

ρ
(1)
A (ν = 0) = 2

ω3
1 ω2

V1 V3 [V2 , V4] VγN . (B32)

The derivation of the class C amplitude (see Fig. 8) is
analogous to that described above. We find

T
(1)
γ C (ν) = ρ(−3) G0 v(0)

π G0 v(2)
π (ν)

+ ρ(−3) G0 v(2)
π (ν) G0 v(0)

π + ρ(−3) G0 v
(3)
2π (ν)

+ ρ
(0)
Nγ (ν) G0 v(0)

π + ρ
(1)
C (ν) + 1 � 2, (B33)

where ρ
(0)
Nγ is the OPE charge operator defined in Eq. (B20),

and

ρ
(1)
C (ν = 0) = 2

ω1 ω3
2

VγNV1 V3 [V2 , V4] . (B34)

Class B of box diagrams at N4LO is shown in Fig. 10. The
reducible amplitude, associated with the diagrams in panels
(a)–(d), is found to be

T
(1)
γ B, red(ν = 0)

= v(0)
π G0 ρ(−3) G0 v(2)

π (ν = 0)

+ v(2)
π (ν = 0) G0 ρ(−3) G0 v(0)

π

+ρ
(0)
γN (ν = 0) G0 v(0)

π + v(0)
π G0 ρ

(0)
Nγ (ν = 0)

−
(

2
ω2

1 + ω2
2

ω3
1 ω3

2

+ 1

ω2
1 ω2

2

)
V1V2VγNV3V4 + 1 � 2,

(B35)

while the irreducible amplitude, corresponding to the diagrams
in panels (e) and (f), amounts to

T
(1)
γ B, irr = 1

ω2
1 ω2

2

V1 V2 VγN V3 V4

+ 2
ω2

1 + ω2
2

ω3
1 ω3

2

V1 V4 VγN V3 V2 + 1 � 2, (B36)

and the class B amplitude is then given by

T
(1)
γ B (ν) = v(0)

π G0 ρ(−3) G0 v(2)
π (ν)

+ v(2)
π (ν) G0 ρ(−3) G0 v(0)

π

+ ρ
(0)
γN (ν) G0 v(0)

π + v(0)
π G0 ρ

(0)
Nγ (ν)

+ ρ
(1)
B (ν) + 1 � 2, (B37)

where

ρ
(1)
B (ν = 0) = − 2

ω2
1 + ω2

2

ω3
1 ω3

2

V1 VγN V3 [V4 , V2] . (B38)

Finally, the total amplitude associated with the diagram
shown in panel (h) of Fig. 3 is given by the sum of the A, B,
and C amplitudes; that is,

T
(1)

h (ν) = T
(1)
γ A(ν) + T

(1)
γ B (ν) + T

(1)
γ C (ν)

= {
[ρ(−3) G0 v(0)

π G0 v(2)
π (ν) + permutations]

+ [
ρ(−3) G0 v

(3)
2π (ν) + v

(3)
2π (ν) G0 ρ(−3)

] + 1 � 2
}

+ [
ρ

(0)
d (ν) G0 v(0)

π + v(0)
π G0 ρ

(0)
d (ν)

] + ρ
(1)
h (ν),

(B39)

where ρ
(0)
d is defined as in Eq. (B18), while

ρ
(1)
h (ν) = ρ

(1)
A (ν) + ρ

(1)
B (ν) + ρ

(1)
C (ν) + 1 � 2. (B40)

For ν = 0, ρ(1)
A , ρ(1)

B , and ρ
(1)
C are as given in Eqs. (B32), (B38),

and (B34), respectively, and carrying out the spin-isospin

(a) (b) (c) (d) (e) (f )

FIG. 10. Diagrams illustrating the static [panels (e) and (f)] and recoil-corrected [remaining panels] class B diagrams contributing at N4LO.
In panels (b)–(d), the crossed and solid circles can be either on pion one (as shown in the figure) or on pion two. Only one among the possible
time orderings is shown. Notation is as in Figs. 2 and 5.
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algebra leads to Eq. (50). Similarly, for ν = 1 we find

ρ
(1)
A (ν = 1) = ρ

(1)
A (ν = 0) + 2

ω1 ω3
2

V1 V2 V3 V4 VγN, (B41)

ρ
(1)
B (ν = 1) = ρ

(1)
B (ν = 0), (B42)

ρ
(1)
C (ν = 1) = ρ

(1)
C (ν = 0) − 2

ω1 ω3
2

VγN V1 V2 V3 V4, (B43)

from which it follows that

ρh(ν = 1) = ρh(ν = 0)

+
[

2

ω1 ω3
2

[V1 V2 V3 V4 , VγN ] + 1 � 2

]
,

(B44)

and simplifying the spin-isospin structures leads to the operator
ρ

(1)
h (ν = 1) given in Eq. (51).

Below we list the expressions for the amplitudes associated
with the remaining N4LO one-loop corrections illustrated in
Fig. 3, in particular, referring to panels (d), (e), (g), (i), and
(j) of this figure [type (f) operator vanishes as pointed out in
Sec. V] we obtain

T
(1)

d = [
v

(0)
CT G0 ρ(0)

γπ + ρ(0)
γπ G0 v

(0)
CT

]
, (B45)

T (1)
e = ρ(1)

e , (B46)

T (1)
g = [

v
(3)
2π,� G0 ρ(−3) + ρ(−3) G0 v

(3)
2π,� + 1 � 2

] + ρ(1)
g ,

(B47)

T (1)
i (ν) = {[

ρ(−3) G0 v
(0)
CT G0 v(2)

π (ν) + permutations
]

+ [
ρ(−3)G0 v

(3)
CT,c(ν) + v

(3)
CT, c(ν) G0 ρ(−3)

]+1 � 2
}

+ [
ρ

(0)
d (ν) G0 v

(0)
CT + v

(0)
CT G0 ρ

(0)
d (ν)

] + ρ(1)
i (ν),

(B48)

T
(1)

j =
[
v

(3)
CT, d G0 ρ(−3) + ρ(−3) G0 v

(3)
CT, d + 1 � 2

]
+ ρ

(1)
j ,

(B49)

where ρ(1)
e , ρ(1)

g , and ρ
(1)
j are given in Eqs. (48), (49), and (53),

respectively, while ρ(1)
i with ν = 0, 1 vanishes. In the equations

above the LS terms involve the LO contact [Eq. (B11)] and
N2LO OPE components of the NN potential [Eqs. (16) and
(18)], as well as the N3LO potential v(3), derived in Sec. A of
this appendix. In addition, the ρ(−3) is defined in Eq. (36), while
the N3LO OPE charge operators, ρ(0), are listed in Sec. B.

APPENDIX C: THE N4LO CHARGE OPERATORS
IN r SPACE

The configuration-space representations of the charge
operators at order n = −3, . . . , 0 are well known [18]. Here
we obtain those corresponding to ρ(1) for ν = 0 only. Note that

ρ(1)
a , ρ

(1)
d , and ρ(1)

i (ν = 0) vanish. Next, consider

ρ
(1)
b (q) = e

2 g2
A

F 4
π

τ2,z

∫
k1,k2

eik1·r1 eik2·r2 δ(k1 + k2 − q)

×
∫

q1,q2

q1 · q2

ω2
1 ω2

2

δ(q1 + q2 − k1) + 1 � 2

= −e
2 g2

A

F 4
π

τ2,z eiq·r2 [∇fπ (r)] · [∇fπ (r)] + 1 � 2,

(C1)

where in the second line r denotes the relative position r =
r1 − r2 of the two nucleons, and

fπ (r) =
∫

p
eip·r 1

p2 + m2
π

= 1

4π

e−mπ r

r
. (C2)

Of course, the expression above is ill-behaved in the limit of
vanishing internucleon separations and needs to be regularized.
This can be accomplished by replacing

fπ (r) → f�(r) =
∫

p
eip·r C�(p)

p2 + m2
π

, (C3)

and in applications so far [22] the cutoff function has been
taken as C�(p) = exp(−p4/�4). Similarly, we find

ρ(1)
c = −e

2 g4
A

F 4
π

{2 (τ1,z + τ2,z)

× [εαβγ ελμν σ1,α σ2,λ + δβγ δμν]

− (τ 1 × τ 2)z [δβγ ελμν σ2,λ − εαβγ δμν σ1,α]}
× [∂1,β∂2,μ eiq·Rhπ (r)] [∂γ ∂νfπ (r)], (C4)

ρ(1)
e = −e

2 g2
A

F 2
π

(τ1,z + τ2,z) eiq·R δ(r) I (q), (C5)

ρ(1)
g = e

2 g2
A

F 4
π

τ2,z eiq·r1 [∇fπ (r)] · [∇fπ (r)] + 1 � 2,

(C6)

ρ
(1)
h (ν = 0) = −e

2 g4
A

F 4
π

eiq·R[2 τ1,z εαβγ ελμν σ1,α σ2,λ

+ 2 τ2,z δβγ δμν − (τ 1 × τ 2)z εαβγ δμν σ1,α]

× [∂β∂μf̃π (r)] [∂γ ∂νfπ (r)] + 1 � 2, (C7)

ρ
(1)
j = e

2 g2
A

F 2
π

τ1,z eiq·R δ(r) I (0) + 1 � 2, (C8)

where R = (r1 + r2)/2 denotes the two-nucleon center-of-
mass position, the functions hπ (r) and f̃π (r) are defined as

hπ (r) = 1

8π

∫ 1/2

−1/2
dy ei y q·r e−L r

L
,

f̃π (r) =
∫

p
eip·r 1(

p2 + m2
π

)2 = 1

8π

e−mπ r

mπ

, (C9)

where

L =
√

m2
π + q2 (1/4 − y2), (C10)
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the gradients (or partial derivatives) ∇, ∇1, and ∇2 act on the
variables r, r1, and r2, respectively, and

I (q) =
∫

dx e−iq·x [CS δαβ − CT (2 σ1,α σ2,β

− σ 1 · σ 2 δαβ)][∂αfπ (x)][∂βfπ (x)]. (C11)

Regularized expressions are obtained via the replacements

hπ (r) → h�(r) =
∫ 1/2

−1/2
dy ei y q·r

∫
p

eip·r C�(p)

(p2 + L2)2
, (C12)

f̃π (r) → f̃�(r) =
∫

p
eip·r C�(p)(

p2 + m2
π

)2 , (C13)

δ(r) → g�(r) =
∫

p
eip·r C�(p). (C14)

Last, we observe that (i) ρ(1)
e + ρ

(1)
j is proportional to I (q) −

I (0), and this quantity remains finite for any q value; (ii) the
requirement ρ(1) = 0 at q = 0 is satisfied also when the cutoff
� is included.
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