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The experimental observables for the elastic reaction induced by protons scattering from electrons are calculated
in the Born approximation. The differential cross section and polarization observables have been derived assuming
one-photon exchange. Numerical estimates are given for spin correlation coefficients, polarization transfer
coefficients, and depolarization coefficients in a wide kinematical range. Specific attention is given to the
kinematical conditions; that is, to the specific range of incident energy and transferred momentum.
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I. INTRODUCTION

The polarized and unpolarized scattering of electrons by
protons has been widely studied, as it is considered the simpler
way to access information on proton structure. The expressions
which relate the polarization observables to the proton elec-
tromagnetic form factors were derived in Ref. [1], whereas the
unpolarized cross section was given in Ref. [2], assuming that
the interaction occurs through the exchange of a virtual photon.
The importance of the information carried by polarization
phenomena was stressed long ago; see also Refs. [3–6]. In all
these works, the main attention was devoted to high energies
and to the scattering of electrons from protons. In the scat-
tering of protons from electrons at rest (inverse kinematics),
approximations such as neglecting the electron mass no longer
hold. Liquid hydrogen targets are considered as proton targets,
but any reaction with such targets also involves reactions with
atomic electrons, which we will assume to be at rest.

A large interest in inverse kinematics (proton projectile
on electron target) has been aroused due to two possible
applications: the possibility to build beam polarimeters for
high-energy polarized proton beams in the relativistic heavy-
ion collider (RHIC) energy range [7] and the possibility to
build polarized antiproton beams [8], which would open a
wide domain of polarization studies at the GSI Facility for
Antiproton and Ion Research (FAIR) [9,10]. Indeed, assuming
C invariance in electromagnetic interactions, the (elastic and
inelastic) reactions p + e− and p̄ + e+ are strictly equivalent.

Concerning the polarimetry of high-energy proton beams
Ref. [7], analyzing powers corresponding to a polarized proton
beam and an electron target were numerically calculated for
elastic proton-electron scattering, assuming the one-photon-
exchange mechanism and with the dipole approximation for
the proton form factors. It was shown that the analyzing
powers, as functions of the proton beam energy E, reach a
maximum for forward scattering at E = 50 GeV, where the
cross section is small. The authors concluded that the concept
of such a polarimeter is realistic for longitudinal as well as
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transverse proton-beam polarization. On the other hand, in
that paper, explicit expressions for the analyzing powers were
not given.

The possibility of polarizing a proton beam in a storage
ring by circulating through a polarized hydrogen target
was discussed in Refs. [11,12]. Possible explanations of
the polarizing mechanisms were published in a number of
papers [13–15], and more recently in Refs. [16,17]. Motivated
by these works, expressions for the helicity amplitudes and
depolarization and transfer polarization coefficients have been
derived in Refs. [18,19].

In this work, we derive the cross section and the polarization
observables for proton-electron elastic scattering in a rela-
tivistic approach assuming the Born approximation. We derive
relations connecting kinematical variables in direct and inverse
kinematics. Depending on the polarization of the proton
beam, three types of polarization effects are studied: the spin
correlation, due to the polarization of the proton beam and of
the electron target, the polarization transfer from the polarized
electron target to the scattered proton, and the depolarization
coefficients which describe the polarization of the scattered
proton. Numerical estimations of the polarization observables
have been performed over a wide range of proton-beam energy
and for different values of scattering angle.

We discuss the properties of the observables for proton-
electron elastic scattering and compare to the recent and ongo-
ing theoretical and experimental work related to the production
and the properties of high-energy polarized (anti)proton
beams.

II. GENERAL FORMALISM

Let us consider the reaction (Fig. 1)

p(p1) + e(k1) → p(p2) + e(k2), (1)

where particle momenta are indicated in parentheses and
k = k1 − k2 = p2 − p1 is the four-momentum of the virtual
photon.

A general characteristic of all reactions of elastic and
inelastic hadron scattering by atomic electrons (which can be
considered at rest) is the small value of the transfer momentum
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FIG. 1. Feynman diagram for the reaction p(p1) + e(k1) →
p(p2) + e(k2). The transfer momentum of the virtual photon is
k = k1 − k2 = p2 − p1.

squared, even for relatively large energies of colliding hadrons.
Let us first give details of the order of magnitude and the range
which is accessible to the kinematic variables, as they are very
specific for this reaction, and then derive the spin structure
of the matrix element and the unpolarized and polarized
observables.

A. Kinematics

The following formulas can be partly found in Ref. [20].
One can show that, for a given energy of the proton beam, the
maximum value of the four-momentum-transfer squared in the
scattering from an electron at rest is

(−k2)max = 4m2(E2 − M2)

M2 + 2mE + m2
, (2)

where m (M) is the electron (proton) mass. Being proportional
to the electron mass squared, the four-momentum-transfer
squared is restricted to very small values, where the proton
can be considered pointlike. Comparing the expressions for
total energies in two reactions: sI = m2 + M2 + 2mE, where
E is the proton energy in the elastic proton-electron scattering,

and sD = m2 + M2 + 2Mε, where ε is the electron energy in
the electron-proton elastic scattering, one finds the following
relation between the proton energy and the electron energy (in
order to have the same total energy sI = sD):

E = M

m
ε ∼ 2000 ε. (3)

The four-momentum-transfer squared is expressed as a func-
tion of the energy of the scattered electron, ε2, as

k2 = (k1 − k2)2 = 2m(m − ε2), (4)

where

ε2 = m
(E + m)2 + (E2 − M2) cos2 θe

(E + m)2 − (E2 − M2) cos2 θe

, (5)

and θe is the angle between the proton beam and the scattered-
electron momenta.

From energy and momentum conservation, one finds the
following relation between the angle and the energy of the
scattered electron:

cos θe = (E + m)(ε2 − m)

| �p1|
√(

ε2
2 − m2

) , (6)

which shows that cos θe � 0 (the electron can never be
scattered backward). One can see from Eq. (5) that, in the
inverse kinematics, the available kinematical region is reduced
to small values of ε2:

ε2,max = m
2E(E + m) + m2 − M2

M2 + 2mE + m2
, (7)

which is proportional to the electron mass. From momentum
conservation, one can find the following relation between the
energy and the angle of the scattered proton E2 and θp:

E±
2 =

(E + m)(M2 + mE) ± M(E2 − M2) cos θp

√
m2

M2 − sin2 θp

(E + m)2 − (E2 − M2) cos2 θp

, (8)

which shows that, for one proton angle there may be two values
of the proton energy, (and two corresponding values for the
recoil-electron energy and angle as well as for the transferred
momentum k2). This is a typical situation when the center-of-
mass velocity is larger than the velocity of the projectile in
the center of mass (c.m.), where all the angles are allowed for
the recoil electron. The two solutions coincide when the angle
between the initial and final hadron takes its maximum value,
which is determined by the ratio of the electron and scattered-
hadron masses, sin θh,max = m/M . Hadrons are scattered from
atomic electrons at very small angles, and the larger is the
hadron mass, the smaller is the available angular range for the
scattered hadron. Let us introduce the invariant

ν = k · p1 = E(m − ε2) + |�k2| | �p1| cos θe

= k2

2m

(
E − | �p1| cos θe

√
1 − 4

m2

k2

)
, (9)

where �k2 is the three-momentum of the scattered electron. One
elastic event is represented in the k2-ν plane by two points,
which correspond to the intersections of the straight line k2 +
2ν = 0 with the quadratic expression (9).

B. Unpolarized cross section

In the one-photon-exchange approximation, the matrix
element M of reaction (1) can be written as

M = e2

k2
jμJμ, (10)

where jμ(Jμ) is the leptonic (hadronic) electromagnetic
current:

jμ = ū(k2)γμu(k1),
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FIG. 2. (Color online) Differential cross section as a function of
−k2 for different incident energies: E = 1 MeV (black solid line),
E = 50 MeV (red dotted line), E = 100 MeV (blue dashed line),
E = 1 GeV (thick green line).

Jμ = ū(p2)

[
F1(k2)γμ − 1

2M
F2(k2)σμνkν

]
u(p1)

= ū(p2)[GM (k2)γμ − F2(k2)Pμ]u(p1). (11)

Here F1(k2) and F2(k2) are the Dirac and Pauli proton elec-
tromagnetic form factors (FFs), GM (k2) = F1(k2) + F2(k2) is
the Sachs proton magnetic FF, and Pμ = (p1 + p2)μ/(2M).

The matrix element squared is:

|M|2 =16π2 α2

k4
LμνWμν, with Lμν =jμj ∗

ν , Wμν =JμJ ∗
ν ,

(12)

where α = 1/137 is the electromagnetic fine structure con-
stant. The leptonic tensor L(0)

μν for unpolarized initial and final
electrons (averaging over the initial electron spin) has the form

L(0)
μν = k2gμν + 2(k1μk2ν + k1νk2μ). (13)

The contribution to the electron tensor corresponding to a
polarized electron target is

L(p)
μν = 2imεμναβkαSβ, (14)

where Sβ is the initial electron polarization four-vector.
The hadronic tensor W (0)

μν for unpolarized initial and final
protons can be written in the standard form through two
unpolarized structure functions:

W (0)
μν =

(
−gμν + kμkν

k2

)
W1(k2) + PμPνW2(k2). (15)

Averaging over the initial proton spin, the structure functions
Wi , i = 1, 2, can be expressed in terms of the nucleon
electromagnetic FFs as

W1(k2) = −k2G2
M (k2),

W2(k2) = 4M2 G2
E(k2) + τG2

M (k2)

1 + τ
, (16)

where GE(k2) = F1(k2) − τF2(k2) is the proton electric FF
and τ = −k2/(4M2).

The differential cross section is related to the matrix element
squared (12) by

dσ = (2π )4|M|2
4
√

(k1 · p1)2 − m2M2

d3�k2

(2π )32ε2

d3 �p2

(2π )32E2

× δ4(k1 + p1 − k2 − p2), (17)

where p2(E2) is the momentum (energy) of the final proton.
From this point on, formulas will differ from the elastic
electron-proton scattering, because we introduce a reference
system where the electron is at rest. In this system, the
differential cross section can be written as

dσ

dε2
= 1

32π

|M|2
m �p 2

, (18)

where �p is the momentum of the proton beam. The average
over the spins of the initial particles has been included in the
leptonic and hadronic tensors. Using Eq. (4) one can write

dσ

dk2
= 1

64π

|M|2
m2 �p 2

. (19)

The differential cross section over the solid angle can be
written as

dσ

d�e

= 1

32π2

(
1

mp

) ( �k3
2

−k2

)
|M|2
E + m

, (20)

where d�e = 2πd cos θe (due to azimuthal symmetry). We
used the relation

dε2 = p

E + m

�k3
2

m(ε2 − m)

d�e

2π
. (21)

The expression of the differential cross section for unpolarized
proton-electron scattering, in the coordinate system where the
electron is at rest, can be written as

dσ

dk2
= πα2

2m2 �p 2

D
k4

, (22)

with

D=k2(k2 + 2m2)G2
M (k2) + 2[k2M2 + 2mE(2mE + k2)]

× [F 2
1 (k2) + τF 2

2 (k2)]. (23)

It can be written in terms of the Sachs FFs as

D = k2(k2 + 2m2)G2
M (k2)

+ 2

[
k2M2 + 1

1 + τ

(
2mE + k2

2

)2
]

× [
G2

E(k2) + τG2
M (k2)

]
. (24)

This expression is consistent with Ref. [7]. The differential
cross section diverges as k4 when k2 → 0. This is a well-known
result, which is a consequence of the one-photon-exchange
mechanism.

III. POLARIZATION OBSERVABLES

Let us focus here on three types of polarization observables
for elastic proton-electron scattering:
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(i) The polarization transfer coefficients which describe the
polarization transfer from the polarized electron target to
the scattered proton, p + �e → �p + e.

(ii) The spin correlation coefficients when both initial particles
have arbitrary polarization, �p + �e → p + e.

(iii) The depolarization coefficients which define the depen-
dence of the scattered proton polarization on the polariza-
tion of the proton beam, �p + e → �p + e.

The first case is the object of a number of recent papers [8] in
connection with the possibility to polarize proton (antiproton)
beams. The second case was considered in Ref. [7] in
view of using polarized proton-electron scattering to measure
the longitudinal and transverse polarizations of high-energy
proton beams.

Let us calculate the hadronic tensor when the initial or final
proton is polarized. The contribution of proton polarization to
the hadronic tensor is

Wμν(ηj ) = −2iGM (k2)[MGM (k2)εμναβkαηjβ

+F2(k2)(Pμεναβγ − Pνεμαβγ )p1αp2βηjγ ], (25)

where the four-vector ηj (j = 1, 2) stands for the initial (final)
proton polarization. One can see that all the correlation coeffi-
cients in �p�e collisions are proportional to the proton magnetic
FF. This is a well-known fact for �e �p scattering [20]. The
dependence of the different polarization observables, namely,
the spin correlation (the polarization transfer) coefficients, on
the polarization four-vector of the initial (scattered) proton
is completely determined by the spin-dependent part of the
hadronic tensor Wμν(ηj ), j = 1 (j = 2).

A. Polarization transfer coefficients Ti j in p + �e → �p + e
reaction

These polarization observables describe polarization trans-
fer from the polarized target to the ejectile. The transfer
coefficients are also called Ti00j in the notations from Ref. [21].
Here the four subscripts denote, respectively, ejectile, recoil,
projectile, and target. The indices i, j correspond to n, t , �,
according to the direction of the polarization vectors of each
particle.

The dependence of the scattered proton polarization on
the polarization state of the initial electron is obtained
by contraction of the spin-dependent leptonic tensor L

(p)
μν

[Eq. (13)] and the spin-dependent hadronic tensor [Eq. (25)].
The following formula holds in any reference system and can
be used to obtain the polarization transfer coefficients:

DT (S, η2) = 4mMGM (k2)[GE(k2)(k · Sk · η2 − k2S · η2)

− k2F2(k2)P · SP · η2]. (26)

In the frame where the initial electron is at rest, the polarization
four-vectors of the electron Sμ and of the scattered proton η2μ

have the following components:

S ≡ (0, �ξ ),

η2 ≡
(

1

M
�p2 · �S2, �S2 + �p2( �p2 · �S2)

M(E2 + M)

)
, (27)

where �ξ and �S2 are the unit three-vectors of the initial electron
and scattered proton polarizations in their rest systems,
respectively. In the laboratory system (inverse kinematics) one
can write �p = �k2 + �p2 and m + E = E2 + ε2.

Using the P invariance of the hadron electromagnetic inter-
action, one can parametrize the dependence of the differential
cross section on the polarizations of the electron target and of
the scattered proton as follows:

dσ

dk2
(�ξ, �S2) =

(
dσ

dk2

)
un

[1 + T��ξ�S2� + TnnξnS2n

+ Ttt ξtS2t + T�t ξ�S2t + Tt�ξtS2�] , (28)

where Tik , i, k = �, t, n are the corresponding polarization
transfer coefficients, with the following notations: � is the
component of the polarization vector along the momentum of
the initial proton, n is the component which is orthogonal to
the momenta of the initial proton and of the scattered electron
(i.e., orthogonal to the scattering plane), and t is the component
which is orthogonal to the initial proton momentum and lies
in the scattering plane.

At high energy, the polarization transfer coefficients depend
essentially on the direction of the scattered proton polarization.
Let us choose an orthogonal system with the z axis directed
along �p, �k2 lies in the xz plane (θe is the angle between the
initial proton and the final electron momenta), and the y axis is
directed along the vector �p × �k2. Therefore, in this system � ‖
z, t ‖ x, and n ‖ y. The explicit expressions for the polarization
transfer coefficients are given in Appendix A.

B. Polarization correlation coefficients Ci j in �p + �e → p + e
reaction

In the reaction involving a polarized proton beam and a
polarized electron target, one can derive explicit expressions
for the spin correlation coefficients. These coefficients are
also called double analyzing powers and denoted A00ij in the
notations from Ref. [21].

The contraction of the spin-dependent leptonic L
(p)
μν and

hadronic Wμν(η1) tensors, in an arbitrary reference frame,
gives

DC(S, η1) = 8mMGM (k2)[(k · Sk · η1 − k2S · η1)GE(k2)

+ τk · η1(k · S + 2p1 · S)F2(k2)]. (29)

All spin correlation coefficients for the elastic �p�e collisions
can be obtained from this expression and are, therefore,
proportional to the proton magnetic FF.

In the frame considered, where the target electron is at
rest, the polarization four-vector of the initial proton has the
following components:

η1 =
( �p · �S1

M
, �S1 + �p( �p · �S1)

M(E + M)

)
, (30)

where �S1 is the unit vector describing the polarization of the
initial proton in its rest system.

Applying the P invariance of the hadron electromagnetic
interaction, one can write the following expression for the
dependence of the differential cross section on the polarization
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FIG. 3. (Color online) Differential cross section as a function
of incident energy E for different angles: θe = 0 (black solid line),
10 mrad (red dashed line), 30 mrad (green dotted line), 50 mrad (blue
dash-dotted line).

of the initial particles:

dσ

dk2
(�ξ, �S1) =

(
dσ

dk2

)
un

[1 + C��ξ�S1� + Ctt ξtS1t

+CnnξnS1n + C�tξ�S1t + Ct�ξtS1�] , (31)

where Cik , i, k = �, t, n are the corresponding spin correlation
coefficients which characterize �p�e scattering. Here also one
expects a large sensitivity of these observables to the direction
of the proton-beam polarization. Small coefficients (in abso-
lute value) are expected for the transverse component of the
beam polarization at high energies. This can be seen from the
expression of the components of the four-vector of the proton
beam polarization at large energies, E � M:

η1μ = (0, �S1t ) + S1�

(
p

M
,

�p
M

E

p

)
∼ S1�

p1μ

M
. (32)
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FIG. 4. Total unpolarized cross section as a function of incident
proton kinetic energy T .
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FIG. 5. (Color online) Polarization transfer coefficients as a
function of E for different angles. Notations are the same as in
Fig. 3.

The effect of the transverse beam polarization appears to be
smaller by a factor 1/γ , γ = E/M � 1. This is a consequence
of the relativistic description of the spin of the fermion at large
energies.

The explicit expressions of the spin correlation coefficients
are given in Appendix B. One can see that Cnn = Tnn.

C. Depolarization coefficients Di j in �p + e → �p + e reaction

In this section explicit expressions for the depolariza-
tion coefficients, (also denoted Di0j0 in the notation from
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FIG. 6. (Color online) Same as Fig. 5 but for the spin correlation
coefficients.
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FIG. 7. (Color online) Same as Fig. 5 but for the spin depolariza-
tion coefficients.

Ref. [21]), which define the polarization transfer from initial
to final proton, are derived for the reaction �p + e → �p + e.

The part of the hadronic tensor Wμν(η1, η2), which corre-
sponds to polarized protons in initial and final states, can be
written as

Wμν(η1, η2) = A1g̃μν + A2PμPν + A3(̃η1μη̃2ν + η̃1ν η̃2μ)

+A4(Pμη̃1ν + Pνη̃1μ) + A5(Pμη̃2ν + Pνη̃2μ),

(33)

where

g̃μν = gμν − kμkν

k2
, η̃iμ = ηiμ − k · ηi

k2
kμ, i = 1, 2,

and

A1 = G2
M

2
(2k · η1k · η2 − k2η1 · η2),

A2 = −η1 · η2
2M2

1 + τ

[
G2

E(k2) + τG2
M (k2)

]
,

A3 = G2
M (k2)

k2

2
,

A4 = −MGM (k2)
GE(k2) + τGM (k2)

1 + τ
k · η2,

A5 = MGM (k2)
GE(k2) + τGM (k2)

1 + τ
k · η1.

The dependence of the polarization of the scattered proton
on the polarization state of the proton beam is obtained
by contraction of the spin-independent leptonic tensor, not
averaged over the spin of the initial electron; i.e., 2L(0)

μν ,
[Eq. (14)] and the spin-dependent hadronic tensor Wμν(η1, η2),
[Eq. (33)].

One obtains the following formula which holds in any
reference system:

DD(η1, η2) = 2(1 + τ )−1{k · η1k · η2GM (k2)[k2(GM (k2)

−GE(k2)(+2m2(1 + τ )GM (k2)]

+k2(1 + τ )G2
M (k2)(2k1 ·η2k2 ·η1 − m2η1 ·η2)

+4GM (k2)(k · η1k1 · η2 − k · η2k1 · η1)

×[M2τ (GE(k2) − GM (k2))

+mE (GE(k2) + τGM (k2))]

−η1 · η2(G2
E(k2) + τG2

M (k2)([k2(M2

× − 2mE) + 4m2E2]}. (34)

Applying the P invariance of the hadron electromagnetic
interaction, one can write the following expression for the
dependence of the differential cross section on the polarization
of the incident and scattered protons which participate in the
reaction:

dσ

dk2
(η1, η2) =

(
dσ

dk2

)
un

[1 + DttS1t S2t + DnnS1nS2n

+D��S1�S2� + Dt�S1t S2� + D�tS1�S2t ] ,

(35)

where Dik , i, k = �, t, n are the corresponding spin de-
polarization coefficients which characterize �p + e → �p + e

scattering. The explicit expressions of the depolarization
coefficients are given in Appendix C in terms of the hadron
form factors.

IV. NUMERICAL RESULTS

A. Experimental observables

For a given proton-beam energy E the observables are
functions of only one kinematical variable, which we chose
as k2 because it is a kinematical invariant. Transformation to
the scattering electron angle are straightforward. The proton
structure is taken into account through the parametrization of
FFs. We took the dipole parametrization

GE(k2) = GM (k2)/μp = [1 − k2/0.71]−2, (36)

where μp is the proton magnetic moment and k2 is expressed in
GeV2. The normalization to the static point is GE(0) = 1 and
GM (0) = μp. The standard dipole parametrization coincides
with more recent descriptions for −k2 < 1 GeV2. At higher
k2, different choices may affect the cross section and, to
a lesser extent, the polarization observables. However, as
we showed above, the maximum value of k2 which can be
achieved in inverse kinematics justifies the choice of dipole
parametrization and even of constant FFs, where the constants
correspond to the static values.

The differential cross section [Eq. (22)] is plotted as a
function of (−k)2 in Fig. 2. One can see that it is monotonically
decreasing as a function of k2 up to a value of k2

max according
to Eq. (2).

The energy dependence of the cross section for different
angles: θe = 0 (black solid line), 10 mrad (red dashed line),
30 mrad (green dotted line), 50 mrad (blue dash-dotted line)
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TABLE I. Unpolarized cross section and polarized transfer cross sections (in mb) for different incident energies.

T σunp σt� σ�t σ�� σtt σnn

[GeV] [mb] [mb] [mb] [mb] [mb] [mb]

23 × 10−3 4.4 × 108 26 26.7 −125.3 −16.9 −139.3
50 × 10−3 2 × 108 11.5 12.2 −62.8 −7.4 −67
1 2.5 × 107 0.4 0.8 −5.6 −0.2 −2.9
10 1.9 × 107 9.1 × 10−3 10.6 × 10−2 −1.01 −0.6 × 10−2 −0.09
50 1.8 × 107 0.4 × 10−3 2.3 × 10−2 −0.2 −0.3 × 10−3 −0.5 × 10−2

is given in Fig. 3. The unpolarized differential cross section is
divergent at small values of energy; it has an angle-dependent
minimum and then increases smoothly up to large energies.

As shown in Sec. II, Eq. (22), the cross section diverges for
k2 → 0. This condition is obtained when the scattering angle
is small (high energies and large impact parameters), or when
the energy is small.

In the first case, one introduces a minimum scattering angle,
which is related to the impact parameter, whose classical c and
quantum q expressions are given by [22]

θ (c)
min = 2e2

pβb
, θ (q)

min = h̄

pb
, (37)

where b is the impact parameter and β is the relative velocity.
Let us take as the characteristic impact parameter the Bohr
radius b = 0.519 × 105 fm. We have shown above that there
is a maximum scattering angle for the proton, which does not
depend on the energy, and a corresponding maximum value for
the transferred momentum k2. The condition kmin < kmax from
Eqs. (37) is obtained for E � 1 MeV. When the relative energy
is very low, the electron and proton may be trapped in a bound
system, and elastic scattering based on one-photon exchange
cannot be applied to this process. The Born approximation
corresponds to the first term of an expansion in the parameter
α/v which should be less than unity. The condition α/v = 0.1c

is satisfied for E > 2.5 MeV.
The description of Coulomb effects at low energies require

approximations and is outside the purpose of this paper. We
apply the present calculation for E � 3 MeV. Screening
effects may be important at low energies. They are introduced
multiplying the cross section by the factor

χ = χb

eχb − 1
, χb = −2π

α

β
. (38)

Such a factor is attractive for opposite charges and increases
the cross section for the reaction of interest here. We apply this

factor in our calculation. At the lowest energy (E = 3 MeV)
this correction is of the order of 30%.

The total cross section has been calculated by integration
from a value of k2

min extracted from Eqs. (4), (5), and (37), and
it is given as a function of the incident proton kinetic energy
T = E − M in Fig. 4, for values of T in the MeV range.

The polarization transfer coefficients [Eq. (A1)] are shown
in Fig. 5 as a function of incident energy for θ = 0 (black solid
line), 10 mrad (red dashed line), 30 mrad (green dash-dotted
line), 50 mrad (blue dotted line).

The spin correlation coefficients [Eq. (B1)] are shown in
Fig. 6. The spin depolarization coefficients [Eq. (C1)] are
shown in Fig. 7.

One can see that, in collinear kinematics, in general,
either polarization observables take the maximal values or
they vanish. An interesting kinematic region appears at E =
20 GeV, where a structure is present in agreement with the
results of Ref. [7].

Let us calculate the cross section for an unpolarized proton
beam colliding with a polarized target:

σij =
∫

NDTijPiPj dk2, N = πα2

2m2p2k4
. (39)

Assuming Pi = Pj = 1, the values for different incident
energies are reported in Table I for the total polarized and
unpolarized cross sections and in Table II for the corresponding
integrated polarization coefficients.

The spin transfer cross sections σnn and σ� = (σ�� + σ�t )/2
are illustrated in Fig. 8 in the MeV range.

These values are very sensitive to the incident energy,
and they are consistent with the findings of Refs. [11,13,23].
Although they cannot be compared directly with the previous
calculations because our formalism is derived in the laboratory
system, they allow a more direct comparison to experiment.

TABLE II. Integrated polarization coefficients for different incident energies.

T Tt� T�t T�� Ttt Tnn

[GeV]

23 × 10−3 1.5 × 10−12 1.5 × 10−12 −1.3 × 10−12 −2.6 × 10−12 −3.8 × 10−12

50 × 10−3 7.2 × 10−12 7.5 × 10−12 −6.3 × 10−12 −1.2 × 10−11 −1.8 × 10−11

1 3.3 × 10−9 6.8 × 10−9 −4.8 × 10−9 −6.8 × 10−9 −9.2 × 10−9

10 3.5 × 10−7 3.9 × 10−6 −1.4 × 10−6 −1.1 × 10−6 −1.2 × 10−6

50 5.9 × 10−6 0.3 × 10−3 1.4 × 10−3 −1.4 × 10−5 −0.2 × 10−4
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B. High-energy polarimetry

From Figs. 5, 6, and 7 it appears that polarization coeffi-
cients are in general quite large, except at low energy. Proton
electron scattering can be used, in principle, to measure the
polarization of high-energy beams. The idea to use pe elastic
scattering for beam polarimetry has already been suggested in
Ref. [23]. Let us calculate the figure of merit for measuring
the polarization of a secondary proton beam, after scattering
from atomic electrons.

The differential figure of merit is defined as

F2(θp) = ε(θp)A2
ij (θp),

where Aij stands for a generic polarization coefficient and
ε(θp) = Nf (θp)/Ni is the number of useful events over the
number of the incident events in an interval �θp around θp.
Because it is related to the inverse of the statistical error on the
polarization measurement, this quantity is useful for a proton
beam with degree of polarization P :(

�P (θp)

P

)2

= 2

Ni(θp)F2(θp)P 2

= 2

Ltm (dσ/d�) d�A2
ij (θp)P 2

, (40)

where tm is the time of measurement. The correlation co-
efficient squared, weighted by the differential cross sections
A2

t�(k2)(dσ/dk2) and A2
��(k2)(dσ/dk2), are shown in Fig. 9 for

different electron angles.
The integrated quantity

F 2 =
∫

dσ

dk2
A2

ij (k2)dk2 (41)

as a function of the incident energy is shown in Fig. 10.
In Ref. [24] it was suggested to use the scattering of
a transverse-polarized proton beam from a longitudinally
polarized electron target. From Fig. 10, one can see that
F 2 takes its maximum value for T 	 10 GeV. Assuming a
luminosity of 1032 cm−2 s−1 for an ideal detector with an
acceptance and efficiency of 100%, one could measure the
beam polarization with an error of 1% in a time interval of
3 min.

T[MeV]
0 5 10 15 20 25

[b
]

pσ

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

FIG. 8. (Color online) Spin transfer cross section σ� = (σ�� +
σ�t )/2 (black solid line) and σnn (red dashed line) as a function of
proton kinetic energy T .
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FIG. 9. (Color online) Variation of differential quantities
A2

t�(k
2)(dσ/dk2) (left) and A2

��(k2)(dσ/dk2) (right) as a function
of incident energy for a polarized proton beam scattering from
a polarized electron target ( �p + �e → p + e) at different angles.
Notations are the same as in Fig. 3.

If one detects the outgoing proton, which seems more
challenging because its kinematical characteristics are close
to those of the beam (for the high-energy solution) one could
in principle build a polarimeter based on the scattering of
the polarized beam (the polarization of which should be
known) from an unpolarized target. In this case, from the
azimuthal distribution, one can reconstruct the components of
the polarization which are normal to the scattering plane.

V. CONCLUSIONS

The elastic scattering of protons from electrons at rest
was investigated in a relativistic approach in the one-photon-
exchange (Born) approximation. This reaction, where the
target is three-orders-of-magnitude lighter than the projec-
tile, has specific kinematical features due to the “inverse
kinematics” (i.e., the projectile is heavier than the target).

T[GeV]
0 50 100 150 200

2 tl
 F4

10

3

4

5

6

7

8

9

10

11

FIG. 10. Variation of the quantity F 2 as a function of proton
kinetic energy T for a transverse-polarized proton beam scattering
from a longitudinally polarized electron target ( �p + �e → p + e).
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For example, the proton is scattered at very small angles
and the allowed momentum transfer does not exceed the
MeV2 scale, even when the proton incident energy is of
the order of GeV. The differential cross section and various
double-spin-polarization observables have been calculated in
terms of the nucleon electromagnetic FFs. Note that, for the
values of transferred momentum involved, any parametrization
of FFs is equivalent and is very near to the static values. The
spin transfer coefficients to a polarized scattered proton were
calculated for two cases: when the proton beam is polarized
or when the electron target is polarized. The correlation
spin coefficients when the proton beam and the electron
target are both polarized were also calculated. Numerical
estimates showed that polarization effects may be sizable in
the GeV range and that the polarization transfer coefficients
for �p + e → �p + e could be used to measure the polarization
of high-energy proton beams. This result confirms previous
estimates from [23]. The calculated values of the scattered
proton polarization for the reaction p + �e → �p + e at proton-
beam energies lower then a few tens of MeV show that it is not
possible to obtain sizable polarization of the antiproton beam in
an experimental setup where antiprotons and electrons collide
with small relative velocities. The present results confirm that
the polarization of the scattered proton has large values at high
proton-beam energies (in the GeV range). Thus, one could

consider an experimental setup where high-energy protons
collide with a polarized electron target at rest. The low values
of momentum transfer which are involved ensure that the cross
section is sizable.
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APPENDIX A: POLARIZATION TRANSFER
COEFFICIENTS, Ti j , for p + �e → �p + e

The explicit expressions for the polarization transfer coef-
ficients for p + �e → �p + e are

DTnn = 4mMk2GE(k2)GM (k2),

DTtt = 4mMk2 GM (k2)

1 + τ

{
(1 + τ )GE(k2) −

(
E + M + k2

2m

)−1 (
1 − k2

k2
max

)

×[(E + M + 2Eτ )GE(k2) − τ (E + M + 2Mτ )GM (k2)]

}
,

DTt� = −2mpk2 GM (k2)

1 + τ

(
E + M + k2

2m

)−1 [
−k2

(
1 − k2

k2
max

)]1/2

×
{

M

m

m + M

E − M
[(1 + 2τ )GE(k2) − τGM (k2)] +

(
1 − 2m

E + m

s

k2

k2
max

)
[GE(k2) + τGM (k2)]

}
,

DT�t = −4mpk2 GM (k2)

1 + τ

(
E + M + k2

2m

)−1 [
−k2

(
1 − k2

k2
max

)]1/2

×
{

(1 + τ )GM (k2) + E − M

2M
[GM (k2) − GE(k2)] − m

E + m

s

1

k2
max

[
k2(GE(k2) + τGM (k2))

+ 2M(E + M)(GE(k2)(1 + 2τ ) − τGM (k2))

]}
,

DT�� = 4mMk2 GM (k2)

1 + τ

{
(1 + τ )

[
E

M
+ xk2

2m
(E + M + 2m) − (E + m)2

s

k2

k2
max

(1 + xk2

2m
(m − M))

+ 1

s
(m + M)(E + m)xp2 k2

k2
max

]
GE(k2) + τ

[
xp2 M + m

m

(
1 − 3

m(E + m)

s

k2

k2
max

)
+ (E + m)2

s

k2

k2
max

(
1 − xk2

2m
(m + M)

)
− E + m

m

]
[GM (k2) − GE(k2)]

}
, (A1)

where x−1 = M(E + M + k2

2m
) and s = m2 + M2 + 2mE is the total energy in the proton-electron elastic scattering.
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APPENDIX B: POLARIZATION CORRELATION COEFFICIENTS, Ci j , for �p + �e → p + e

The explicit expressions of the spin correlation coefficients as a function of the Sachs FFs can be written as

DCnn = 4mMk2GE(k2)GM (k2),

DCtt = 4mMτk2 GM (k2)

1 + τ

[(
1 − 4M2

k2
max

)
GE(k2) +

(
k2

k2
max

− 1

)
GM (k2)

]
,

DCt� = 8mMp

[
−k2

(
1 − k2

k2
max

)]1/2
GM (k2)

1 + τ

{
τ

[
GM

(
k2

) − GE

(
k2

)] − k2

k2
max

m(E + m)

s
[τGM (k2) + GE(k2)]

}
,

DC�t = −2mM
k2

p

(
E

M
− M

m

) [
−k2

(
1 − k2

k2
max

)]1/2
GM (k2)

1 + τ
[τGM (k2) + GE(k2)],

DC�� = 4k2 GM (k2)

1 + τ

{
(mE − τM2)GE(k2) + τ (M2 + mE)GM (k2) − (M2 + mE)

k2

k2
max

m(E + m)

s
[τGM (k2) + GE(k2)]

}
.

(B1)

APPENDIX C: DEPOLARIZATION COEFFICIENTS, Di j , for �p + e → �p + e

The depolarization coefficients from the polarized beam to the ejectile for �p + e → �p + e are expressed in terms of the hadron
form factors as

DDtt = −R1 − k2

(
1 − k2

k2
max

) {
m

M
(R3 − R4) − xR1 +

(
1 − xk2 m + M

2m

)
R2

}
,

DDnn = −R1,

DD�� = R1

M

{
p

M

(
p + k2

2m

E + m

p

)
− E

[
1 + x

(
p + k2

2m

E + m

p

)2
]}

+R4
m

M

k2

2m

{
1

M

(
p − E

E + m

p

)(
p + k2

2m

E + m

p

)
+ E + m

−p

(
p + k2

2m

E + m

p

) [
1

M
− x

(
E − m + k2

2m

)]}
+ R2

1

M

(
k2

2m

)2 (
p − E

E + m

p

)

×
{(

p + k2

2m

E + m

p

) [
1

M
− x

(
E − m + k2

2m

)]
− E + m

p

}
+R3

m

M
p

{
k2

2m

E + m

p
+

(
p + k2

2m

E + m

p

) [
m

M
− 1

M

k2

2m
+ x

k2

2m

(
E − m + k2

2m

)]}
+R3

m

M2

(
p + k2

2m

E + m

p

) [
mp + 1

p

k2

2m
(M2 + mE)

]
,

DDt� = 1

p

[
−k2

(
1 − k2

k2
max

)]1/2
{

x

[
p2 + k2

2m
(E + m)

]

×
[
R1 + k2

2m
(m + M)R2 + m

Mx
(R4 − R3)

]
− k2

2m
(E + m)R2

}
,

DD�t = 1

M2p

[
−k2

(
1 − k2

k2
max

)]1/2
{

− mp2 [MR4 + (M + 2m)R3] + k2

2
(M2 + mE)

(
R4 − R3 − M

m
R2

)

+xk2

2m
M(m + M)

[
mp2(R3 + R4) + (M2 + mE)

k2

2m
R2

]
+ xMR1

[
k2

2m
(M2 + mE) − Mp2

]}
, (C1)

where

R1 = −2

[
m2k2G2

M + G2
E + τG2

M

1 + τ
(M2k2 + 2mEk2 + 4m2E2)

]
,
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R2 = 2
GM

1 + τ
[2m2(1 + τ )GM + k2(GM − GE)],

R3 = 2k2G2
M,

R4 = 2(k2 + 4mE)GM

GE + τGM

1 + τ
. (C2)
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