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Quantum-electrodynamics corrections in pionic hydrogen
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We investigate all pure quantum-electrodynamics corrections to the np → 1s, n = 2–4 transition energies of
pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order
α5. These values are needed to extract an accurate strong interaction shift from experiment. Many small effects,
such as second-order and double vacuum polarization contribution, proton and pion self-energies, finite size and
recoil effects are included with exact mass dependence. Our final value differs from previous calculations by up
to ≈11 ppm for the 1s state, while a recent experiment aims at a 4 ppm accuracy.
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I. INTRODUCTION

Pion-nucleon scattering lengths are quantities of funda-
mental importance in low-energy hadronic physics. For the
1s state of pionic hydrogen (πH), the low energy scattering
lengths at threshold aπ−p→π−p and aπ−p→π0n are connected to
ε1s and �1s , the hadronic shift and broadening, through Deser
formula [1]

ε1s

E1s

= − 4

rB
aπ−p→π−p(1 + δε), (1)

�1s

E1s

= 8Q0

rB

(
1 + 1

P

)
[aπ−p→π0n(1 + δ�)]2, (2)

where E1s is the 1s biding energy. The Bohr radius rB is given
by

rB = 1

μαZ
, (3)

where α ≈ 1/137.036 is the fine structure constant and Z

the atomic number. The quantities δε and δ� are corrections
due to the distortion of the pion wave function by the strong
interaction, Q0 = 0.142 fm−1 is the momentum of the π0 in the
center-of-mass system and P = 1.546 ± 0.009 is the Panofski
ratio of scattering amplitudes aπ−p→π0n and aπ−p→γ n, which
is derived from experiment [2].

Determination of accurate values of the scattering length
allow for tests of chiral perturbation theory—the low energy
approach to QCD—in particular for the extraction of chiral
symmetry breaking parameters [3–6] as well as for tests of
the other approaches [7–10]. The strong interaction shift ε1s

is obtained by comparing theoretical, pure QED transition
energies to the measured np → 1s ones. There are many
issues involved in the derivation of the physically meaningful
scattering amplitudes from the experimentally measurable
parameters ε1s and �1s . These issues are mainly connected to
the accuracy with which one can disentangle QED and QCD
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contributions (see, e.g., [6,11] for recent reviews). In the case
of aπ−p→π−p, the QED/QCD separation is present in both the
extraction of ε1s from experimental transition energies and in
the evaluation of δε . The strong interaction shift is a correction
of order α3 to the usual Coulomb binding energy of the 1s

level. It was evaluated in leading order in chiral perturbation
theory [3] and in next to leading order in [5]. The ground state
energy shift is written as [3]

ε1s = −2α3μ2A{1 − 2α(ln α − 1)μA} + · · · (4)

in terms of the π−p → π−p scattering amplitude at threshold
A. Here 1

μ
= 1

mπ
+ 1

mp
is the reduced mass, mπ , mp denoting

the charged pion and proton masses, respectively. The scatter-
ing amplitude at threshold is connected to the isospin-invariant
amplitudes a+

0+ and a−
0+ as

A = a+
0+ + a−

0+ + ε, (5)

where ε is the isospin-symmetry breaking term due to the
electromagnetic interaction. The evaluation of ε is required to
derive a+

0+ and a−
0+ from experiment. The scattering length a+

0+
and a−

0+ are calculated in an isospin-symmetric theory with no
electromagnetic interaction and identical masses for the up
and down quarks. With this convention one obtains at order
O(p2) [3]

ε = mp

8π (mp + mπ )F 2
π

{
8c1

(
m2

π − m2
π0

) − 4e2f1 − e2f2
}
, (6)

where mπ0 is the mass of the neutral pion, e the electric
charge, Fπ =92.4 MeV the pion decay constant, and c1,
f1, f2 are the low-energy constants of the phenomenologi-
cal chiral pion-nucleon interaction Lagrangian. Two of the
low-energy constants c1 = −0.9+0.2

−0.5 GeV−1 [6] and e2f2 =
−(0.97 ± 0.38) MeV [6] can be derived from experiment. The
determination of f1 value, however, is more problematic and
leads to the largest uncertainty in the determination of a+

0+
and a−

0+ from ε1s [5,6]. An uncertainty of 100 MeV represents
a contribution to ε1s of 0.015 eV. Both c1 and f1 however,
are also present in the pionic deuterium energy shift and can
be eliminated in the determination of the isospin symmetric
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scattering length [11,12]. The deuterium shift was measured
in several experiments [13–15].

The most accurate present experimental values from pionic
hydrogen are ε1s = −7.108 ± 0.013(stat.) ± 0.034(syst.) eV
and �ns = 0.868 ± 0.040(stat.) ± 0.038(syst.) eV [16,17]. A
recent experiment [18] at the Paul Scherrer Institute aims at a
≈4 ppm accuracy (≈0.01 eV) on transition energies, leading
to a determination of the strong interaction shift to better than
1%, if compared to accurate QED results. In this work, we
evaluate all QED contributions to the 1s and np, n = 2–4
level energies up to order α4 and all contributions to order α5

that correspond to purely electromagnetic interaction.
This paper follows the approach used in [19] for muonic

hydrogen. All formulas are valid for any state and could be
applied to any spin-1/2–spin-0 system, composed of two finite
sized particles with masses of the same order of magnitude,
in which case both particles must be treated on the same
footing, with exact mass dependence. We start from the Breit-
Pauli Hamiltonian, which includes the main relativistic and
recoil corrections, and accounts for the anomalous magnetic
moment of the proton. In addition we calculate leading,
double and second order vacuum polarization contributions,
relativistic corrections to the leading vacuum polarization
term, mixed finite size-vacuum polarization diagrams, parti-
cles self-energies, and the part of the two-photon exchange that
can be safely traced back to pure electromagnetic interaction.
The main limitation in accuracy of the present work is due
to uncertainties in the rms charge radius of the proton and
pion, and in the pion mass. The fundamental constants and
the proton mass are taken from Ref. [20], while the pion mass
[139.57018(35) MeV] and charge radius [0.672(8) fm] come
from [21]. The situation in what concerns the proton radius
is at the moment complicated. There is a recent very accurate
value from muonic hydrogen 0.84184(67) fm [22], that is 5
standard deviations away from the one obtained from hydrogen
0.8768(69) fm [20] and from the most recent electron-proton
elastic scattering 0.879(8) fm [23]. Here we use the muonic
hydrogen value, as the pion and muon mass are close, and
whatever effect is at play in this large discrepancy, must
be more likely to be identical between muonic and pionic
hydrogen.

II. QED CALCULATION

A. Breit equation including Darwin term and magnetic moment

The Breit-Pauli Hamiltonian for our system is [24,25]
HBP = H0 + δH + V BP with

H0 = p2

2μ
− Zα

r
, δH = − p4

8m3
π

− p4

8m3
p

, (7)

V BP = πZα

2

1

m2
p

δ3(r) − Zα

2mpmπ

pi 1

r

(
δij + rirj

r2

)
pj

+ Zα

r3

(
1 + 2κ

4m2
p

+ 1 + κ

2mpmπ

)
(r × p) · σ (8)

+ 2

3
πZα

(〈
r2
π

〉 + 〈
r2
p

〉)
δ3(r). (9)

FIG. 1. Diagrams corresponding to the Breit-Pauli Hamiltonian.
Dashed lines correspond to the Coulomb interaction, wavy lines to
the magnetic interaction and plain thin and thick lines to the lepton
or proton wave functions, respectively.

Here 〈r2
π 〉, 〈r2

p〉 are the mean square charge radii of the pion
and proton, κ is the proton magnetic moment anomaly, σ are
Pauli matrices and Z is the nuclear charge, which is used to
distinguish proton and pion contributions. The corresponding
QED diagrams are shown in Fig. 1. We note that the pion
Darwin term, 1

m2
π
δ3(r) is absent because the spin of the pion is

zero. The known πZα
2

(2κ)
m2

p
δ3(r) magnetic anomaly correction

to the first term in Eq. (8) is in this case included in the
proton charge distribution (9), when provided by bound-state
measurements [26,27], from which is derived the proton charge
radius [22]. The corresponding energies for each contribution
can be found in Ref. [25] for example.

A complete relativistic treatment of the pion bound states,
in the nonrecoil approximation, can be done in the framework
of the Klein-Gordon equation. The corresponding energy is
given by the well-known expression

EKG(Z, n, l)

=

⎡
⎢⎣
⎛
⎝1+ (Zα)2

(
n − l − 1

2+
√(

l+ 1
2

)2 − (Zα)2
)2

⎞
⎠

− 1
2

−1

⎤
⎥⎦ μc2,

(10)

which can be expanded in powers of Zα as

EKG(Z, n, l) = − (Zα)2

2n2
μc2 (11)

+
(

3

8n4
− 1

(2l + 1)n3

)
(Zα)4μc2

+O[(Zα)6]. (12)

The two first terms of this expansion are included in the
solutions of Eqs. (7) and (8). We include the sum of all
higher-order terms in our result for completeness.

B. Vacuum polarization corrections

The electron vacuum polarization modifies the effective
electromagnetic interaction. Because of the relatively large
pion mass, diagrams with vacuum polarization loops dominate
among QED corrections, while the self-energy is very small,
in contrast to electronic atoms. The vacuum polarization can
be evaluated by modifying the photon propagator. In leading
order, it corresponds to the replacement:

− gμν

k2
→ −gμν

k2
[1 − ω̄(k2)]. (13)
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FIG. 2. Diagram corresponding to the vacuum polarization at one
loop (Uehling potential). Dashed lines correspond to the Coulomb
interaction, plain lines to the electron wave function, and the cross to
the interaction with the nuclear charge.

At the one-loop level, ω̄ is given by [28]:

ω̄(k2) = α

π
k2

∫ ∞

4
d(q2)

1

q2
(
m2

eq
2 − k2

)u(q2), (14)

with

u(q2) = 1

3

√
1 − 4

q2

(
1 + 2

q2

)
. (15)

This leads to the effective interaction potential (Fig. 2),

Vvp(r) = −Zα

r

α

π

∫ ∞

4

d(q2)

q2
e−meqru(q2), (16)

known as the Uehling potential [29]. The corresponding energy
shift in the first order is

Enl = 〈φnl|Vvp|φnl〉 =
∫

d3r Vvp(r)|φnl(r)|2, (17)

where φnl(r) is the Schrödinger-Coulomb wave function [30],
which depends on the reduced mass μ. Replacing Eq. (16) in
Eq. (17) leads to

Enl = −Zα
α

π

∫ ∞

4

d(q2)

q2
u(q2)

∫
dr e−meqrrR2

nl(r), (18)

where the integral over r is performed analytically and Rnl is
the radial part of φnl . In the case of the 1s level the integral
over q2 can also be evaluated analytically.

The muonic vacuum polarization (in which the e+e− loop
is replaced by a μ+μ− loop) is evaluated by replacing the
electron mass me by the muon mass in Eq. (16).

In order to achieve a few ppm accuracy, we also calculate the
leading relativistic correction to the nonrelativistic electronic
vacuum polarization contribution, which is done, in the
framework of the Breit-Pauli approach, with the exact mass
dependence, representing the interaction between the particles
by the exchange of a massive photon. We integrate over this
mass � which is equivalent, through dispersion relation, to
integrate over q. Following the derivation in Ref. [31] 83 that
provides Eq. (8), but using Vvp(r) = −α

r
e−�r instead of the

Coulomb interaction, we get

V BP
vp (r) = α

π

∫ ∞

4

d(�2)

�2
u

(
�2

m2
e

)
V BP

vp (r) (19)

FIG. 3. Relativistic correction to vacuum polarization diagram.
Dashed lines correspond to the Coulomb interaction, double line to
the nonrelativistic propagator.

with

V BP
vp (r) = Zα

8

1

m2
p

(
4πδ3(r) − �2

r
e−�r

)

− Zα

4mpmπ

�2e−�r

r

(
1 − �r

2

)

− Zα

2mpmπ

pi e−�r

r

(
δij + rirj

r2
(1 + �r)

)
pj

+ Zα

r3

(
1 + 2κ

4m2
p

+ 1 + κ

2mpmπ

)
e−�r (1+�r)(r× p) · σ .

The Hamiltonian becomes H = H0 + δH + V BP + Vvp +
V BP

vp ≡ H0 + W . We perform a perturbative expansion in W

up to second order and keep only the main terms involving the
massive photon. We get

E(�) = 〈
φnl

∣∣V BP
vp

∣∣φnl

〉
+ 2〈φnl |(δH + V BP)

1

(E0 − H0)′
Vvp|φnl〉, (20)

which corresponds to the diagrams presented in Fig. 3. The
reduced Coulomb Green function terms G′ = 〈r1| 1

(E0−H0)′ |r2〉
are calculated using the code written for [19]. We finally
integrate over the mass �

E = α

π

∫ ∞

4

d(�2)

�2
u

(
�2

m2
e

)
E(�). (21)

C. Two-loop vacuum polarization correction

The double vacuum polarization term (Fig. 4) corresponds
to the shift:

E = 〈φnl|Vvp
1

(E0 − H0)′
Vvp|φnl〉. (22)

FIG. 4. Two-loop vacuum polarization diagram. See Fig. 3 for
explanations of the symbols used.
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FIG. 5. Diagram corresponding to the Vacuum polarization at two
loops (Källén and Sabry potential). See Fig. 3 for explanation of the
symbols used.

Two-loop vacuum polarization (Fig. 5), known as the
Källén and Sabry contribution [32], involves a modified photon
propagator, in the same way as the one-loop one (14):

ω̄(2)(− p2) =
(

α

π

)2 ∫ ∞

4
d(q2)

− p2

q2
(
m2

eq
2 + p2

)u(2)(q2), (23)

where the potential u(2)(q2) is given by [32]. We can proceed
in a similar fashion as for the leading term, using Eq. (17),
with

V (2)
vp (r) = −Zα

r

(
α

π

)2 ∫ ∞

4

d(q2)

q2
e−meqru(2)(q2). (24)

We obtain

E = 〈
φnl

∣∣V (2)
vp

∣∣φnl

〉 =
∫

d3r V (2)
vp (r)|φnl(r)|2. (25)

D. Finite size effects

The leading size correction due to the proton or the pion,
for a ns level, from Eq. (9) is given in, e.g., [20] Eq. (51) as

ENS(Zα, n) = 2

3

(
μr

mπ

)3 (Zα)4

n3
mπ

〈
r2
p + r2

π

〉
λ2

C

,

= 87.07547(58)
Z4

〈
r2
p + r2

π

〉
n3

meV, (26)

where λC = 1.4138189 fm is the pion Compton wavelength.
The contribution of the proton to the shift is 61.710(99) meV
using the proton charge radius from [22], 66.9(11) meV using
[20] and 67.3(12) meV using [23]. The contribution from the
pion is 39.32(94) meV, and largely dominates the uncertainty
on this correction. This is to be compared with the uncertainty
due to the pion mass, which represents, e.g., 5.3 meV on the
2p − 1s transition.

The main corrections to the leading finite-size contribution
are due to vacuum polarization, as illustrated by diagrams (a)

FIG. 6. Vacuum polarization correction to finite size effect dia-
grams. See Fig. 3 for explanations of the symbols used.

FIG. 7. Diagrams corresponding to the self-energies of pion and
proton.

and (b) in Fig. 6, and are given by

Ea = −2

3

α

4π
Zα

〈
r2
p + r2

π

〉 ∫ ∞

4

d(q2)

q2
u(q2)

×
∫ ∞

0
drR2

nl(r)[r(meq)2e−meqr − δ(r)], (27)

Eb = 2

(
2

3
πZα

)〈
r2
p + r2

π

〉
×

∫
d3r φnl(r)Vvp(r)G′(r, 0)φnl(0). (28)

E. Self-energy

Except for an unpublished internal report [33], we are not
aware of any calculation of the pion self-energy. We include it
here. This correction correspond to the diagrams in Fig. 7. In
this calculation, the part due to the high-energy contribution
(which corresponds to the particle form factor) is included in
the finite size, as explained for the proton case in [34]. This part
must not be included in the self-energy shift to avoid double
counting. The remaining low-energy part is known [28] and
does not depend on the particle spin value:

EπSE = 4

3πn3
α(Zα)4 μ3

m2
π

×
{
− ln[k0(n, l)] + δl,0 ln

mπ

μ(Zα)2

}
, (29)

FIG. 8. Diagrams corresponding to the exchange of two photons.
See previous figures for explanations.
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TABLE I. Contributions to pionic hydrogen level energies (meV), sorted by size. F is the total angular momentum. Numbers in parentheses
represent uncertainty in the last digits. When absent, the uncertainty is smaller than 1 in the last digit. The nonrelativistic energy is not shown.
The proton and pion size corrections are given in Eq. (26).

Contribution Eq. 1s 2p 3p 4p

VP one loop (17) −3240.802(16) −35.79480(28) −11.406601(86) −4.920557(37)
Breit-Pauli interaction (7)–(8) F = 1/2 −178.46117(32) −11.655153(37) −4.220937(13) −1.942614(6)

F = 3/2 −4.048290(4) −1.967051(3) −0.991756(2)
Finite charge radius (9) p 61.710(99) 0 0 0

π− 39.32(94) 0 0 0
VP two loops (Källén & Sabry) −24.36484(11) −0.346025(3) −0.107956 −0.046283
Pion self energy (29) 5.656122(9) 0.003034 0.001144 0.000530
VP second order (22) −4.110407(25) −0.008161 −0.002472 −0.001034
Relativistic corr. to VP (21) F = 1/2 −0.432480(2) −0.026426 −0.008588 −0.003710

F = 3/2 0.007631 0.002362 0.001008
VP corr. (b) to finite size (28) p 0.29779(48) 0 0 0

π− 0.1898(46) 0 0 0
Proton & pion polarization −0.62(62) 0.000000 0.000000 0.000000
Muonic VP (18) −0.279306(2) 0.000000 0.000000 0.000000
Hadronic VP (31) −0.1874(42) 0.000000 0.000000 0.000000
Proton self energy (29) 0.159247(2) 0.000067 0.000025 0.000012
VP corr. (a) to finite size (27) p 0.14573(24) −0.000396 −0.000131 −0.000057

π− 0.0929(23) −0.000253(7) −0.000083(2) −0.000036
two-photon exchange (30) −0.130157 −0.003483 −0.000959 −0.000390
Klein-Gordon correction (10) −0.024083 −0.000079 −0.000033 −0.000015
Total correction F = 1/2 −3341.8(16) −47.83168(32) −15.746591(99) −6.914155(43)

F = 3/2 −40.19076(29) −13.481756(89) −5.958579(39)

where k0(n, l) is the Bethe logarithm. The proton self-energy
is obtained by replacing mπ by mp and by multiplying the
right-hand side of Eq. (29) by Z2 [19,34].

The finite size correction to the pion self-energy can be
estimated from Ref. [20], Eq. (54). It is very small, even for
the 1s level, and can be neglected at the present level accuracy.

F. Additional recoil

We can go further, evaluating the pure recoil correction
of order (Zα)5, calculated first by Salpeter [24], which
correspond to two-photon exchange (Fig. 8). In our case,
there is no theoretical framework for dealing with diagrams
at this level of the perturbative expansion with overlapping
strong and electromagnetic interactions. Since the strong
interaction overlap with the electromagnetic one only at short
distances [6], we have to exclude local interactions but keep

leading logarithmic parts of the contributions that would not
overlap with the strong interaction. One can apply the formula
from [35] which expresses the leading logarithmic term and
an additional recoil term:

E = (Zα)5

πn3

μ3

mpmπ

{
− 2

3
ln(Zα)δl,0

− 8

3
ln[k0(n, l)] − 7

6
n3

〈
P

(
1

(μαr)3

)〉
nl

}
. (30)

P is a distribution function that subtracts the singularity at the
origin [35].

G. Hadronic QED corrections

Hadronic degrees of freedoms also contribute to the QED
energy of the atom. Vacuum polarization loops with pions, for

TABLE II. Theoretical F -averaged energies of the emitted photon for np → 1s transitions in pionic hydrogen (n = 2–4) (eV). Numbers
in parentheses: total uncertainty due to the uncertainties in the proton and pion charge radii (0.098 meV and 0.94 meV, respectively) and in
the pion mass, combined quadratically. The transition energies from Ref. [7] are corrected for the pion mass value [21] (a ≈ 4 meV change).
Our values include the contribution from the atom recoil when it emits the photon.

Transition 2p → 1s 3p → 1s 4p → 1s

Atomic recoil −0.0027 −0.0038 −0.0043
This work 2429.5050(54) 2878.8303(64) 3036.0921(68)
Theor. [7] 2878.812(8) 3036.072(9)
Theor. [17] 2878.808(8)
Exp. [17] 2885.916(13)(33)
Exp. [18,47] 2885.928(8)
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TABLE III. Theoretical QED ground state energy and comparison
with previous calculations.

1s-level QED binding energy

This work −3238.2867(78)
Ref. [3] −3238.250
Ref. [7] −3238.264(9)

example, or the proton polarization have pure electromagnetic
effects that translate into small energy shifts. One must be
careful, however, as in the correction described in Sec. II F,
not to calculate the contribution in the region where the QED
and strong interaction correction overlaps. The hadronic polar-
ization correction has been evaluated for hydrogen [36,37], for
muonic hydrogen by Borie [38,39], and more recently by Friar
and coworkers [37] and Martynenko and Faustov [40–42],
using experimental data from e+ + e− → hadrons collisions.
Here we use the relation

EHadronic
VP = 0.671(15)Eμ

VP (31)

from [37], to get −0.1874(42) meV.
We do not know of any proton polarization calculation for

pionic hydrogen, but it has been calculated by several authors
in muonic hydrogen [19,41–43]. Carlson and coworkers
have very recently calculated this correction for both the
hyperfine structure of muonic hydrogen [44,45] and for
the 2s Lamb shift [46]. The value provided in Ref. [41]
for the 1s state is 0.144 meV and 0.018 meV for the 2s.
Higher-order polarization corrections provided in [42] are
negligible. Using the 2s muonic hydrogen value from
Ref. [46] �E

pp

2s = −36.9 ± 2.4 μeV, scaling it by n3 = 8
gives �E

pp

1s = −295 ± 19 μeV. We obtain the pionic
hydrogen value by doing a scaling with the pion to muon
reduced mass to the third power, we get a shift of order
−0.62 meV that we use with an uncertainty of 50%.
There should be an additional contribution from the pion
polarizability. To account for it we increase the polarizability
error to 100% of the proton value.

III. RESULTS

The numerical values of the corrections evaluated in Sec. II
are presented in Table I, for 1s, 2p, 3p, and 4p states
and relevant hyperfine sublevels. It should be noted that if
hyperfine sublevels are statistically populated, the shift due to
the hyperfine interaction averages to zero for transitions ending
in an s state [48]. Adding the Schrödinger equation solution
from Eq. (11) we obtain the transition energies presented in
Table II, with an accuracy of ≈2.4 ppm, dominated by the
uncertainties on the pion mass (2.2 ppm, for the 3p → 1s

transition) and the charge radii (0.5 ppm). The energy of the
photon emitted by an atom is slightly reduced, compared
to the energy difference between the initial and final state,
due to momentum and energy conservation: the atomic recoil
consumes part of the available energy. Here, this correction is
larger than our goal accuracy, due to the high energy of the
emitted photon and low total mass of the atom. This correction
is also included in Ref. [17]. The corresponding values are
presented in Table II for an atom initially at rest, and added to
the transition energies.

The values of the 1s QED binding energy results are
presented in Table III, together with previous evaluations. In all
three tables, the uncertainties combines uncertainties due to the
pion mass and to the pion and proton radii. These two sources
of uncertainties, being uncorrelated, are added quadratically.

Using the present results and the experimental value from
Ref. [17], Eq. (14), we obtain a strong interaction shift of
−7.085 ± 0.013(stat.) ± 0.034(syst.) eV, instead of 7.108 ±
0.013(stat.) ± 0.034(syst.) eV, using the theoretical value from
Ref. [7]. This does not improve much the shift accuracy
(0.75%), as it is dominated by the uncertainty in the pion mass,
the transition energy being calibrated with electronic K x-ray
transitions in Ar. Using the preliminary value from [18,47],
which is calibrated with pionic oxygen transition energies, we
get a shift of 7.0977(64)(10) eV (instead of 7.120 eV), with
a total relative accuracy of 0.09%. Because of this calibration
method, which use an energy proportional to the pion mass,
this new results depends only weakly on it.

In summary the present work uses nonrelativistic QED tech-
niques to provide the most accurate evaluation of pure-QED
transitions energies in pionic hydrogen. Combined with recent
experimental values, it allows for a significant increase in the
precision of the determination of the strong interaction shift
and thus of the π−p → π−p scattering length at low energy.
Obtaining more accurate energies would require extending
effective theories like the one described in [6] to evaluate strong
and electromagnetic contributions to high orders, which is not
currently possible, and an improved measurement of the pion
mass. Deducing improved values of the isospin-independent
scattering length from the shift would moreover require more
accurate measurements of the low energy constant f1.
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