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We have performed a calculation of the scattering amplitude for the three-body system K̄NN assuming
K̄ scattering against a NN cluster using the fixed center approximation to the Faddeev equations. The K̄N

amplitudes, which we take from chiral unitary dynamics, govern the reaction and we find a K̄NN amplitude
that peaks around 40 MeV below the K̄NN threshold, with a width in |T |2 of the order of 50 MeV for spin 0
and has another peak around 27 MeV with similar width for spin 1. The results are in line with those obtained
using different methods but implementing chiral dynamics. The simplicity of the approach allows one to see
the important ingredients responsible for the results. In particular, we show the effects from the reduction of the
size of the NN cluster due to the interaction with the K̄ and those from the explicit consideration of the π�N

channel in the three-body equations.
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I. INTRODUCTION

The study of the bound K̄NN system is rising much
interest as the lightest nuclear system binding a K̄ [1–6].
Earlier calculations on this system were done in the 1960s [7]
and more recently in Ref. [8], yet the works of Refs. [1–6]
improve considerably on those earlier works, and, according
to Ref. [3], the results of Ref. [8] should be considered at best
as a rough estimate. It is very instructive to recall the basics
of these calculations. Those of Refs. [1–3,6] use Faddeev
equations, in the formulation of Alt-Grassberger-Sandhas
(AGS) [9], using a separable interaction for the potentials with
energy-independent strength, with form factors depending on
the three momenta. They also include as coupled channels
Nπ� and NNK̄ . On the other hand, the works of Refs. [4,5]
use a variational method to obtain the binding energy and
width by means of an effective potential [10] that leads to
the strongly energy-dependent K̄N amplitudes of the chiral
unitary approach [11–20]. The works of Refs. [4,5] make the
variational calculation using the K̄N effective potential. This
includes the π� channel integrated into the effective K̄N

potential but do not include the Nπ� channel explicitly into
the three-body system. The π� two body channel is effectively
considered through the K̄N potential, but the interaction of
πN or �N which appears in the Faddeev equations would
not be considered. Yet the πN interaction is relatively weak
compared to the K̄N at these energies, and the effect of the
�N is very small, as mentioned in Ref. [3], so one should
look for other reasons to understand the differences between
the two approaches. In Table IV of Ref. [3] one finds that
there are 11-MeV differences considering just one channel
K̄N or the two channels K̄N and π�, both in the evaluation
of the K̄N amplitude and in the K̄NN − π�N system, with
more binding in the case of two channels. One should note
that this is not to be compared with the present approach or
the one in Refs. [4,5], where the K̄N amplitude is always
calculated with K̄N , π�, and other coupled channels. As

argued here and in Ref. [10], this should take into account most
of the effects of the π� channel. The extra Faddeev diagrams
with explicit π�N intermediate states involve the πN or �N

interactions which have small effects. Actually, this line of
argumentation coincides with a hyphothesis of Schick and Gib-
son [21] which was substantiated numerically in the work of
Ref. [22].

However, in Ref. [5] the authors make guesses on the
reasons for the differences between the Faddeev approach and
their approach and, among other reasons, they suggest that the
three-body π�N dynamics not accounted for in their work
could be, in large part, responsible for the differences. In view
of this persistent question we shall introduce here explicitly
the π� channel in the three-body system to find out an
answer.

The two Faddeev approaches lead to binding energies
higher than the variational approach, 50- to 70-MeV versus
around 20-MeV binding, respectively. The details mentioned
above regarding an energy-independent kernel used in the AGS
equations is partly responsible for the extra binding of these
approaches with respect to the chiral calculations. Indeed,
as shown in Refs. [23,24], it is possible to obtain the same
results as with the field theoretical chiral unitary approach
using quantum mechanics with a separable potential but where
the potential is energy-dependent and proportional to the sum
of the two external meson energies in K̄N → K̄N . As a
consequence, a smaller K̄N → K̄N amplitude is obtained
at lower K̄N energies, resulting in a smaller binding for the
K̄NN system. This numerical result was mentioned in Ref. [5].
Actually, the same result is found within the approach of Refs.
[1,6] when the energy dependence of the Weinberg-Tomozawa
chiral potential is taken into account [25]. In return, this latter
approach contained two poles in the scattering matrices of the
three-body system, as a reminder of the two �(1405) poles
contained in Refs. [17–20]. We shall come back to this work
later in the paper.
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Yet, in most cases the widths are systematically larger
than the binding energy, of the order of 70–100 MeV. This
certainly makes the observation of these states problematic,
as acknowledged in all these works. In view of this, the
claim in Ref. [26] of a K−pp bound state with 115 MeV
binding was met with skepticism, and soon it was shown that
the peak observed in [26] was easily interpreted in terms of
conventional, unavoidable, reaction mechanisms which were
well under control [27].

In between, the study of three-body systems involving
mesons and baryons with the Faddeev equations has expe-
rienced a new qualitative jump. It is well known that different
potentials leading to exactly the same on-shell two-body
scattering amplitudes lead to different results in the Faddeev
equations due to their different off-shell extrapolation. Yet, a
novel result has emerged from the study of the two meson-one
baryon systems with chiral dynamics, since it was shown in
Ref. [28] that the off shell part of the two body scattering
amplitudes cancels with genuine three-body terms that the
same chiral Lagrangians provide at the same order (see also
the Appendix of Ref. [29]). The same happens when systems
of three mesons are studied within the same chiral unitary
approach [30]. This finding is most welcome because the
results for the three-body amplitudes do not depend on the
unphysical off-shell two-body amplitudes. This cancellation
obviously cannot be seen in phenomenological approaches
like in Refs. [1–3,6] since one cannot systematically associate
the corresponding three-body forces that would cancel the
off-shell contribution of the two-body amplitudes. Thus,
the results are linked to the off-shell extrapolation of the
amplitudes, and though one should expect cancellations with
some three-body forces, there is no way in those approaches to
estimate the extent of these cancellations and the repercussion
in the final binding energy. In view of it, awaiting hopefully
a calculation in the line of Refs. [28–30], which is not
technically easy, we want to present a simplified approach,
yet one that is realistic enough and that explicitly relies only
on the on-shell amplitudes of the interacting pairs and takes
into account the energy dependence of the K̄N amplitude
demanded by chiral dynamics. We find this possibility using
the fixed center approximation to the Faddeev equations
(FCA). As we shall discuss in the next section, the common
findings of all the former approaches allow us to make
the simplifying approximations that make the FCA (with
some modifications) an easy and reliable tool to face this
problem.

The presence of the �(1405) in the K̄N amplitude is
one complicating factor because it is well known that all
present chiral theories [11–20] predict two poles close by in
the 1405-MeV region. This means two states of the coupled
channels π�, K̄N and other coupled channels. As found in
Ref. [17] different amplitudes involving the �(1405) have
different shapes, and, as a consequence, the �(1405) should
appear with different shapes in different reactions. Since the
pole with lower energy couples mostly to π� and the one
at higher mass mostly to K̄N [17], it was expected that in
reactions where the �(1405) production would be driven by
the K̄N the peak would appear around 1420 MeV, where
all different chiral approaches predict this second pole. It

did not take long to see this realized. Indeed, the study of
the K−p → π0π0�0 reaction at pK = 514–750 MeV/c [31]
revealed the peak of the �(1405) clearly at 1420 MeV. This was
interpreted in Ref. [32] as being due to a dominant mechanism
in which a pion is emitted from the initial nucleon, forcing
the �(1405) to be created from the K−p state. More recently,
it was also found in Ref. [33] that a clear peak appeared for
the �(1405) in the K−d → nπ� reaction for kaons in flight.
This is surprising considering that the K−p threshold is about
30 MeV above the �(1405) mass. However, it was explained
in Ref. [34] that the peak was due to the rescattering of the
kaon on a second nucleon, after it would lose some energy
in the first collision against one nucleon and have the right
kinematics to produce the �(1405) in a second collision. The
second surprise was that the peak of the resonance appears
around 1420 MeV, not 1405 MeV, which is not surprising at
all from the chiral dynamical perspective, since the resonance
production is once again induced by the K̄N channel. A recent
calculation [35] shows that the same features can already be
observed for kaons produced at the DAFNE facility, and an
experimental proposal is being prepared [36].

Coming back to the three-body works, the approach of
Refs. [4,5] is fully consistent with these chiral dynamical
features since it uses chiral theory as the underlying framework
to construct the effective potential. This is not the case of
the Faddeev approaches of [1–3,6], where to solve the AGS
equations an energy independent kernel is used. In addition,
providing just one �(1405) resonance, the important dynamics
of the two �(1405) resonances is lost. With this in mind,
the authors of these works try to evaluate uncertainties by
fitting their parameters to different masses of the �(1405)
from 1405 to 1420 MeV, and differences in the binding of
about 10–20 MeV appear. The fits with a mass of the �(1405)
of 1420 MeV provide less binding, closer to the results of the
variational approach of Refs. [4,5].

An important step to conjugate the AGS equations with
the K̄N -π� dynamics of the chiral Lagrangians has been
done, as mentioned, in Ref. [25]. Indeed, two poles are found
in qualitative agreement with other chiral approaches. One
narrow pole around 1420 MeV, rather stable against changes of
parameters, is found in agreement with all findings of the chiral
unitary approach. The second, wider pole, is found at very low
energies (1335–1341 MeV) and it is more unstable with respect
to changes of parameters. This agrees qualitatively with the
findings of the chiral unitary approach, but the energy is lower
than in other approaches. To understand these differences, in
Ref. [25] the π� mass distribution of the K−p → πππ�

in the Hemingway experiment [37] is adjusted, assuming that
it is proportional to |Tπ�,π�|2. Yet, as shown in Ref. [17],
when one has two poles, the Tπ�,π� and TK̄N,π� amplitudes
differ and the �(1405) production processes proceed via the
combination of the two amplitudes |Tπ�,π� + βTK̄N,π� |2 [38].
The fact that a separable potential with form factors is used
also induces off-shell effects with respect to the use of the
on-shell scattering amplitudes of the chiral unitary approach.
All these facts certainly introduce uncertainties that revert in
the deduced Tπ�,π� , TK̄N,π� amplitudes and the position of
the poles. These uncertainties should then translate into the
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position of the poles of the K̄NN -π�N system reported in
Ref. [25]. In addition, one would like to know the TK̄NN,K̄NN

amplitude resulting from Ref. [25], which was not provided
in the paper and which would get a contribution from the
two poles of the three-body system. This information would
be useful to eventually compare with experiments, and in the
case of the K̄N -π� system, the physical amplitudes do not
have the shapes of either of the poles alone.

In the approach that we use we follow the chiral unitary
approach for the K̄N amplitudes, which provide the most
important source of the binding of the three-body system,
according to the former studies. But there is also another
different technical aspect of the present calculation with
respect to the former ones. All previous approaches have
concentrated on looking for the binding, searching for poles
in the complex plane or looking for the energy that minimizes
the expectation value of the Hamiltonian. Here, inspired by
the studies of Refs. [28–30], we shall look for bumps in the
scattering matrices as a function of the energy of the three-body
system. Furthermore, the amplitudes obtained here could, in
principle, be used as input for final-state interaction when
evaluating cross sections in reactions where eventually this
K̄NN state is formed.

The discussion here shows that, in spite of the much and
good work done so far on the subject, uncertainties remain
and further studies like the one done here should be welcome.
Although there are certainly approximations in the FCA with
respect to the Faddeev approach, as there are also in the
approximate three-body scheme of the AGS equations, one
can rely on some findings of these more elaborate approaches
to make the FCA results more solid, while it allows us to
overcome the sources of uncertainties mentioned in the other
approaches and provide a more intuitive and direct approach
to the problem with the consequent transparency in the results
obtained. Another of the novel things in the present work
is that we show the existence of a less bound state in S =
1, I = 0 of the two nucleons. This state was not considered in
Refs. [3–8,25], although hints of the existence could be
guessed from the large negative real part of the K−d scattering
length deduced in the work discussed in next section.

II. FIXED CENTER FORMALISM FOR THE K̄ (N N)
INTERACTION

The findings of the former works simplify our task. In
this sense we should mention that in Ref. [4] the nucleons
are found to move slowly, having around 20 MeV of kinetic
energy. It was also found there that the dependence on the type
of NN interaction is rather weak. We rely on the results of
Refs. [28–30] in the sense that only on-shell two-body
amplitudes are needed. By this we mean the part of the
analytical amplitudes obtained setting q2 = m2 for the external
particles, even if the particles are below threshold.

We also assume, like in the other works, that the two-body
interactions proceed in L = 0. The effect of the p-wave
interaction in the main interacting pair, the K̄N , was found to
be small in Ref. [5], the main consequence being a moderate

increase in the width, so we should accept the width that we
find as a lower bound of the actual width.

According to all the literature, the main component of the
wave function corresponds to having a K̄N in I = 0 and hence
the total isospin will be I = 1/2. The total spin can be J = 0,1,
but the JP = 0− state is the one found most attractive. We shall
investigate both possibilities.

According to Ref. [3] the effect of the �N interaction
is very small. We shall neglect it in our approach. Yet we
shall incorporate the π�N as an explicit channel in the
three-body system, which in the K̄NN → K̄NN amplitude
appears via the K̄N → π� transition followed by πN → πN

rescattering and π� → K̄N recombination.
All this considered, the problem we shall solve is the

interaction of a K̄ with a NN cluster. We shall evaluate the
scattering matrix for this system as a function of the total
energy of the K̄NN system and look for peaks in |T |2. In
a second step we will allow explicitly the intermediate π�

state in the three-body system. We shall use in our study
the FCA approximation to the K̄NN system. This approach
has been used before in connection with the evaluation K−d

scattering length [22,39–42]; a followup of Ref. [42] is done in
Ref. [43]. A discussion of these different approaches is done in
Ref. [44], where it is shown that Refs. [40,41] do not take into
account explicitly the charge exchange K−p → K̄0n reactions
and antisymmetry of the nucleons, while it is explicitly done
in Ref. [42]. In the present approach we also consider the
antisymmetry and charge exchange in our scheme although
in a different technical way than in Ref. [42] and assuming
isospin symmetry for the K̄N interaction.

The FCA for K−d at threshold was found to be an
acceptable approximation, within a few percentage points, to
the more elaborate Faddeev equation in Ref. [22,44]. There it
was also discussed that neglecting the π� channel in the three-
body system is a good approximation, as far as K̄N interaction
is evaluated in terms of the K̄N and π� coupled channels. We
shall be able to corroborate this here by explicitly introducing
the π� channel in the three-body system. Technically, we
follow closely the formalism of Ref. [45], where the FCA has
been considered, using chiral amplitudes, in order to study
theoretically the possibility of forming multi-ρ states with
large spin.

An interesting shared result of all the K−d calculation
quoted above is a large and negative real part of the scattering
length, of the order of −1.40 to 1.80 fm, which suggests the
existence of a bound state in J = 1. Of course, the imaginary
part of the scattering length is equally large, anticipating a
broad state. We shall be able to make this more quantitative
in the present approach. However, we shall also find that the
most bound K̄NN system correspond to J = 0, in agreement
with other approaches.

The NN interaction is of long range and very strong. It
binds the deuteron in spin S = 1 and I = 0, with L = 0 to a
very good approximation. It nearly binds the pp system also.
The binding of the pp system is so close that a little help from
an extra interaction, the strongly attractive K̄N interaction, is
enough to also bind this system and we shall assume that this
is the case here for pp or in general for two nucleons in S = 0,
I = 1, L = 0.
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Our strategy will be to assume as a starting point that the
NN cluster has a wave function like the one of the deuteron
(we omit the d wave). Later we will release this assumption and
assume that the NN system is further compressed in the K̄NN

system. Since in the FCA the input from the NN system is the
NN form factor, taking into account an extra compression
of the NN systems is very easy by smoothly modifying
the form factor to have a smaller radius. As mentioned in
the Introduction, we have taken information from previous
studies, and in this sense it is interesting to recall that the
calculations of Ref. [46] for K̄ bound in nuclei point to a
moderate compression of the nucleus due to the strong K̄N

interaction. However, in the case of two isolated nucleons the
decrease in the radius can be far bigger than that in nuclei,
where nucleons are already close to saturation density. The
information on the NN radius in the K̄NN molecule we get
from Ref. [5], where the NN interaction is taken into account,
including short-range repulsion that precludes unreasonable
compression. Yet, the rms radius found is of the order of
2.2 fm, slightly above one-half the value of the deuteron rms
radius of 3.98 fm (NN distance).

A. Calculation of the three-body amplitude

The formal derivation follows the steps of Ref. [45]. We
assume a pure L = 0 interaction for all the K̄N and NN pairs,
hence we have S = J = 0, INN = 1 or S = J = 1, INN = 0
for the two nucleons and we shall evaluate the interaction
in both cases. Since L = 0 also for K̄N , J will be the spin
of the total K̄NN system. In the case of INN = 0 for NN ,
the total isospin will be I = 1/2. In the case of INN = 1 we
shall also couple the total isospin I to 1/2 to give room to
the �(1405)N configuration which is where the attraction
concentrates, according to former studies.

The mechanism implicit in the FCA are depicted in Fig. 1.
The first thing we need to do is to evaluate the interaction
of a K̄ with either of the two nucleons in each of the two
configurations that we will consider: S = 0, INN = 1, I = 1/2
and S = 1, INN = 0, I = 1/2. The K̄N scattering matrix is
obtained as follows. First, we write the wave function for the
states.

|K̄(NN )INN=0, I = 1/2, Iz = 1/2〉 = |1/2〉 1√
2

× (|1/2,−1/2〉 − | − 1/2, 1/2〉) (1)

with the nomenclature |Iz > for the states of K̄ and |Iz1 , Iz2 >

for the NN system. We want to evaluate

〈K̄(NN )INN=0, I = 1/2, Iz = 1/2|t31|K̄(NN )INN=0,
(2)

I = 1/2, Iz = 1/2〉
and the same one for t32, where t31, t32 stand for the scattering
matrix of the K̄ with nucleons 1 and 2, respectively.

In order to use the isospin-scattering matrices we write the
state of Eqs. (1) in terms of good isospin states of K̄N as

1√
2
|1/2〉(|1/2,−1/2〉 − | − 1/2, 1/2〉)

(d)

FIG. 1. Mechanism for the K̄NN interaction, including multiple
scattering of the K̄ with the nucleons. The equivalent diagrams where
the K̄ interacts first with the second nucleon should be added.

= 1√
2

(|1, 1〉| − 1/2〉 − 1√
2
|1, 0〉|1/2〉

− 1√
2
|0, 0〉|1/2〉), (3)

where, in the second member of the equation, we use the
nomenclature |K̄N, I, Iz〉|IN2z〉 and then we find immediately
that

INN = 0 : t31 = 3

4
t I=1
K̄N

+ 1

4
t I=0
K̄N

. (4)

Similarly, combining the K̄ isospin with that of the second
nucleons we find

INN = 0 : t32 = 3

4
t I=1
K̄N

+ 1

4
t I=0
K̄N

. (5)

Similarly, we evaluate t31, t32 for the case of INN = 1

|K̄(NN )INN=1, I = 1/2, Iz = 1/2〉 = −
√

2

3
|1/2,

− 1/2〉 |1, 1〉 +
√

1

3
|1/2, 1/2〉|1, 0〉

(6)

with nomenclature |IK̄ , IK̄,z〉|INN, INN,z〉

|K̄(NN )INN=1, I = 1/2, Iz = 1/2〉

= −
√

2

3
| − 1/2〉|1/2, 1/2〉

+ 1√
3
|1/2〉

(
1√
2
|1/2,−1/2〉 + 1√

2
| − 1/2, 1/2〉

)
,

(7)
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where now we are using the nomenclature |K̄, Iz〉|IN1z, IN2z〉.
Combining K̄N1 to have good isospin states we obtain

|K̄(NN )INN=1, I = 1/2, Iz = 1/2〉

= −
√

2

3

1√
2
|1, 0〉|1/2〉 +

√
2

3

1√
2
|0, 0〉|1/2〉

+ 1√
6
|1, 1〉| − 1/2〉 + 1√

6

1√
2
|1, 0〉|1/2〉

+ 1√
6

1√
2
|0, 0〉|1/2〉 (8)

with nomenclature |K̄N, I, Iz〉|IN2,z〉, and then we find imme-
diately that

INN = 1 : t31 = 1

4
t I=1
K̄N

+ 3

4
t I=0
K̄N

(9)

and, similarly,

INN = 1 : t32 = 1

4
t I=1
K̄N

+ 3

4
t I=0
K̄N

. (10)

The S matrix for the single scattering of K̄N1,2 [Fig. 1(a)]
is given by

S(1,1) = −it1
1

V2

1√
2ωK̄

1√
2ω′

K̄

√
2M

2E1

√
2M

2E′
1

× (2π )4 δ(k + kNN − k′ − k′
NN ), (11)

S(1,2) = −it2
1

V2

1√
2ωK̄

1√
2ω′

K̄

√
2M

2E2

√
2M

2E′
2

× (2π )4 δ(k + kNN − k′ − k′
NN ). (12)

while that for the double scattering, Fig. 1(b), is given by

S(2) = −i(2π )4δ(k + kNN − k′ − k′
NN )

× 1

V2

1√
2ωK̄

1√
2ω′

K̄

√
2M

2E1

√
2M

2E′
1

√
2M

2E2

√
2M

2E′
2

×
∫

d3q

(2π )3
FNN (q)

1

q02 − �q 2 − m2
K̄

+ iε
t1t2, (13)

where FNN (q) is the form factor of the NN system.
On the other hand, if we consider the scattering of K̄ with

the NN system the S matrix is given by

S = −iT (2π )4δ(k + kNN − k′ − k′
NN )

1

V2

× 1√
2ωK̄

1√
2ω′

K̄

√
2MNN

2ENN

√
2MNN

2E′
NN

. (14)

As we can see, the field normalization factors that appear
in the amplitude of the different terms, for which we follow
the Mandl and Shaw convention [47], differ. However, if we
approximate ωK̄ = mK̄ ,

√
MN/EN = √

2MNN/2ENN = 1,
then all the normalization factors are the same. Then we can
write T in terms of two partitions, T1, T2, summing all the

terms which begin with the K̄ interaction with the nucleon 1
or nucleon 2, respectively. Then we find

T = T1 + T2, (15)

T1 = t1 + t1G0T2, T2 = t2 + t2G0T1, (16)

where

G0 =
∫

d3q

(2π )3
FNN (q)

1

q02 − �q 2 − m2
K̄

+ iε
. (17)

One can easily solve Eqs. (16) and we obtain

T = T1 + T2 = t1 + t2 + 2t1t2G0

1 − t1t2G
2
0

, (18)

which, taking into account that t1 = t2, can be written as

T = 2t1

1 − t1G0
. (19)

In principle, one must also consider the form factor in the
single scattering [45] but, as done in Ref. [45], taking into
account that one has small momenta of K̄ in the bound K̄N

system, one can just take it equal to 1.
The variable q0 in Eq. (17) is the energy carried by the K̄ ,

which is given by

q0 = s + m2
K̄

− (2MN )2

2
√

s
, (20)

with
√

s the rest energy of the K̄NN system. We also need the
argument of the t1 and t2 function, s1, given by

s1 = m2
K̄

+ m2
N + 1

2

(
s − m2

K̄
− 4m2

N

)
. (21)

For the form factor we take, as a starting point, the one of
the deuteron which is given by

F (q) =
∫ ∞

0
d3p

11∑
j=1

Cj

�p2 + m2
j

11∑
i=1

Ci

( �p − �q)2 + m2
i

, (22)

where the Ci coefficients are given in Ref. [48]. The form
factor is normalized to 1 at �q = 0 by dividing F (q) by the
expression of Eq. (22) at �q = 0. In further steps this form
factor will be changed to accomodate the reduced size of the
two N systems found in Ref. [5]. This is done by rescaling the
masses mi appearing in Eq. (22), demanding that the radius be
the one of Ref. [5].

III. RESULTS

In Fig. 2 we plot the deuteron form factor F (q) normalized
to 1 at q = 0, as well as the one corresponding to the reduced
NN radius, as described in the former section. In Fig. 3 we
show the results for |T |2 of Eq. (19), as a function of the total
energy of the K̄NN system for the case of S = 1. The results
obtained using F (q) from the deuteron show a clear peak at√

s = 2350 MeV, about 22 MeV below the threshold of K̄NN .
The width of the distribution is about 50 MeV. It is interesting
to see what happens with the decreased NN radius. As one
can see, the effects are clearly visible, the binding is increased
by about 5 MeV, and the width is practically unchanged.
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FIG. 2. Form factor of the deuteron, and the one corresponding
to an NN system with a reduced radius from Ref. [5].

More interesting is to see what happens for S = 0. This is
shown in Fig. 4. We find here that |T |2 also shows a peak but is
more bound than for S = 1. The position of the peak indicates
a binding of the K̄NN system by 30 MeV. The width is of
about 50 MeV. When we take the case of the reduced NN

radius the peak is displaced to about 40 MeV binding and the
width is still around 50 MeV.

The results obtained could be interpreted as giving support
to two independent states since they have different total angular
momentum, but some considerations are in order. The first
important thing is to observe the different strengths of the two
distributions. Indeed, |T |2 is 4.5 times bigger in the S = 0
case than in S = 1. Second, in the case of S = 0 the system is
more bound. The two independent states come in our approach
because we have assumed an exact L = 0 contribution. Should
we allow for some L = 1 contribution in the K̄N interaction,
we can have a contribution to total spin J = 0 from a spin
S = 1 of the two nucleons and then the different spins of

2200 2250 2300 2350

s
1/2

[MeV]

0

0.05

0.1

|T
|2

FIG. 3. Modulus squared of the three-body scattering amplitude
for triplet (S = 1). The solid line indicates the K̄NN system in normal
size and the dashed line indicates the same system with reduced
NN radius Ref. [5]. The dot-dashed line indicates the result of the
including the π� channel with the reduced radius.

2200 2250 2300 2350

s
1/2

[MeV]

0

0.1

0.2

0.3

0.4

0.5

|T
|2

FIG. 4. Modulus squared of the three-body scattering amplitude
for singlet (S = 0). The solid line indicates the K̄NN system in
normal size and the dashed line indicates the same system with
reduced NN radius Ref. [5]. The dot-dashed line indicates the result
of the including the π� channel with the reduced radius.

the nucleons would mix in the real state. But this mixing
should be small in view of the weak effects of the K̄N p wave
reported in Ref. [5]. It is clear from our results that the state
with J = 0 will correspond to the most bound K̄NN system
and that it will contain a small admixture of S = 1(I = 0)
of the two nucleons. This is the same conclusion reached in
Ref. [4,5].

The approach followed here shows with clarity why the
S = 0, INN = 1 configuration is preferred. Indeed, as one can
see in Eqs. (4), (5), (9), and (10) in the case of S = 1, INN = 0,
the t1,2 amplitudes have a weight of 3/4 for IK̄N = 1 and 1/4
for IK̄N = 0, while in the case of S = 0, INN = 1 the weights
are opposite, with 1/4 for IK̄N = 1 and 3/4 for IK̄N = 0.
Since the strong attraction appears in IK̄N = 0, where the two
�(1405) states are generated, it becomes clear that one gets
more attraction and more strength in |T |2 for the case of S =
0, INN = 1 than for S = 1, INN = 0.

On the other hand, the exercise made here also tells that,
while the S = 1, INN = 0, LK̄N = 0 configuration does not
correspond to a pure state and does not lead to the most bound
component of the K̄NN system, it is still a configuration
with a sizable strength, although reasonably smaller than the
one with S = 0, INN = 1, LK̄N = 0. In a reaction producing
K̄NN (bound) in the final state, these configuration would
all contribute to the cross section, resulting in a peak with
larger width. Note that in such reactions one would have to
look for decay products of K̄NN to identify the peak that we
produce. A possible channel would be �N , but one should not
expect to see such a clean peak as we have produced, since
the production amplitude with �N in the final states will also
have contribution from “uncorrelated” �p production which
might have a large strength compared to the contribution of
�p production mediated by the doorway mechanism of K̄NN

(bound) production. An answer to this issue can be provided
only by detailed calculations for each particular reaction. In
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q

q′

π

π

y

x

x′

p

k

k′

p′
1 p′

2

K̄

K̄

Σ

N1 N2

FIG. 5. Feynman diagram for the π�N channel. The equivalent
diagrams where the K̄ interacts first with the second nucleon should
be added.

such a case, the explicit evaluation of the K̄NN scattering
amplitude that we have obtained would be of much use.

The width of the K̄NN state of about 50 MeV that we have
obtained is in line with that obtained in most approaches. Some
of them provide even larger widths [2–5]. Note that although
our K̄N amplitudes contain the transition K̄N → π� in
intermediate states, and hence our approach contains π�N

intermediate states, we do not have diagrams in our approach,
so far, in which the π or the � interact with the nucleon,
although former works have indicated these effects to be
small, as mentioned in the Introduction. We come back to
this issue in the next section. Common to all the theoretical
approaches is the lack of K̄ absorption by two nucleons. In
our approach, this is also not considered, and this would also
make the width larger. Estimates done in Refs. [4,5] point
to one increase of extra 25 MeV in the width from this
source, leading to widths considerably larger than the binding,
which added to other difficulties pointed out above, do not
help when trying to observe experimentally this interesting
state.

IV. EXPLICIT CONSIDIRATION OF THE π�N
CHANNNEL IN THE THREE-BODY SYSTEM

As we have explained, the π� channel and other coupled
channels are explicitly taken into account in the consideration
of the K̄N amplitude which we have used in the FCA
approach. This means that we account for the K̄N → π�

transition, and an intermediate π�N channel, but this π�

state is again reconverted to K̄N leaving the other N as a
spectator. This is accounted in the multiple scattering in the
K̄N → K̄N scattering matrix on one nucleon. However, we
do not consider the possibility that one has K̄N → π� and
the π rescatters with the second nucleon. If we want to have
a final K̄NN system again, the π has to scatter later with the
� to produce K̄N . One may consider multiple scatterings of
the π with the nucleons, but given the smallness of the πN

amplitude compared to the K̄N , any diagram beyond the one
having one rescattering of the pion with the nucleon will be
negligible. Then we must consider the diagram of Fig. 5 (for
K̄N scattering on nucleon 1).

The S matrix for this process is given by

S(π�) =
∫

d4x

∫
d4x ′

∫
d4y

1√
2ωK̄V

1√
2ωK̄ ′V

× e−ikxeik′x ′
ϕ1(x)ϕ2(y)ϕ∗

1 (x ′)ϕ∗
2 (y)

×
∫

d4p

(2π )4
e−ip(x ′−x) 2M�

2E�( �p)

1

p0 − E�( �p) + iε

×
∫

d4q

(2π )4
e−iq(y−x) 1

q2 − m2
π + iε

×
∫

d4q ′

(2π )4
e−iq ′(x ′−y) 1

q ′2 − m2
π + iε

× tK̄N,π�tπN,πN tπ�,K̄N . (23)

We use the variables

�R = 1
2 (�x + �y), �R′ = 1

2 ( �x ′ + �y), �r = (�y − �x),
(24)

�r ′ = ( �x ′ − �y), �R′ = �R + 1
2 (�r + �r ′)

and perform explicitly the x0, x ′0, y0, q0, q ′0, p0 integrations
following similar steps as in Sec. II A.

We also write

ϕ1(�x)ϕ2(�y) = 1√
V

ei�kNN
�Rϕ(�r),

(25)

ϕ∗
1 ( �x ′)ϕ∗

2 ((�y) = 1√
V

e−i �k′
NN

�R′
ϕ∗(�r ′),

where ϕ(�r) is the wave function of the NN system, for which
we take the same expression as it was used to evaluate the form
factor. In momentum space

ϕ̃(�q) =
∫

d3�rei �q�rϕ(�r) = 1

N

∑
j

Cj

�q2 + m2
j

(26)

with

N2 = 1

(2π )3

∫
d3 �p

⎛
⎝∑

j

Cj

�p2 + m2
j

⎞
⎠

2

. (27)
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Then we find

S(π�) = i
1√

2ωK̄V
1√

2ωK̄ ′V

∫
d3 �q

(2π )3

∫
d3 �q ′

(2π )3

∫
d3 �p

(2π )3

M�

E�( �p)
ϕ̃( �p + �q)ϕ̃( �p + �q ′)(2π )4

× δ(k + kNN − k′ − k′
NN )tK̄N,π�tπN,πN tπ�,K̄N

1

2

1

ω(�q) + ω( �q ′)

1

ω(�q)ω( �q ′)

1√
s1 − ω(�q) − E( �p) + iε

× 1
√

s1 − ω( �q ′) − E( �p) + iε
[
√

s1 − E( �p) − ω(�q) − ω( �q ′)]. (28)

One can also perform the angular integrations in �q, �q ′ explicitly and considering the relationship of S to T from Eq. (14) we find

T (π�) = − 1

N2

1

(2π )3

∫
p2dp

M�

E�( �p)

∫
qdq

∫
q ′dq ′ ∑

j

Cj

2p
ln

p2 + q2 + 2pq + m2
j

p2 + q2 − 2pq + m2
j

∑
i

Ci

2p
ln

p2 + q ′2 + 2pq ′ + m2
i

p2 + q ′2 − 2pq ′ + m2
i

× tK̄N,π�tπN,πN tπ�,K̄N

1

ω(�q) + ω( �q ′)

1

ω(�q)ω( �q ′)

1√
s1 − ω(�q) − E( �p) + iε

1
√

s1 − ω( �q ′) − E( �p) + iε

× [
√

s1 − E( �p) − ω(�q) − ω( �q ′)]. (29)

Using the same arguments as in Sec. II A one can show that
the tK̄N,π� amplitude that appears in Eq. (29) is given by

tK̄N,π� = 1

4
t I=1
K̄N,π�

+ 3

4
t I=0
K̄N,π�

; S = 0 (30)

tK̄N,π� = 3

4
t I=1
K̄N,π�

+ 1

4
t I=0
K̄N,π�

; S = 1 (31)

tπN,πN =
(

7

12
− 1√

6

)
t
I= 3

2
πN,πN +

(
5

12
+ 1√

6

)
t
I= 1

2
πN,πN ; S = 0

(32)

tπN,πN =
(

11

12
+ 2

3

1√
3

+ 2

3

1√
6

− 1

6

√
2

)
t
I= 3

2
πN,πN

+
(

7

12
− 2

3

1√
3

− 2

3

1√
6

+ 1

6

√
2

)
t
I= 1

2
πN,πN ; S = 1.

(33)

We get tπN,πN from the work of Ref. [49].1 We find that T (π�)

is about a factor 20 smaller than tK̄N,K̄N . Once we have T (π�)

we add it coherently to tK̄N,K̄N (t1) in Eq. (19) and recalcu-
late the total T matrix. This will also contain rescattering
effects.

The result of the including the π� channel can be seen in
Figs. 3 and 4 for S = 1, S = 0. We can see that the effects
are moderate. For S = 0 we find a small shift of the peak
of about 2–3 MeV to smaller binding energies and a small
broadening of the width by about 2–3 MeV. The small shift of
the peak to lower energies does not contradict the findings of
Ref. [3] where the comparison is made with Faddeev equations
using K̄N and π� channels or the same Faddeev equations
using only K̄N , both in the two body scattering matrices and in
the three-body Faddeev equations. Here the π�, K̄N channels
always have been considered in the two-body K̄N amplitudes.
This result answers a question raised in the Introduction, and

1We thank A. Ramos for providing us with the numerical amplitudes
of the model of Ref. [49].

the approximately 11-MeV shift of the binding energy seen in
Ref. [3] should be mostly attributed to the consideration of the
π� channel in the two-body scattering matrices rather than
its explicit consideration in the extra diagrams of the Faddeev
series that we have evaluated explicitly here.

For the case of S = 1 we can see the result in Fig. 3. The
effects of the T (π�) amplitude are also small and here we do
not see any visible change in the peak position or the width,
only a small increase in the |T |2.

V. CONCLUSIONS

We performed calculations for the scattering amplitudes of
the K̄NN system using the FCA of Faddeev equations and
considering the scattering of the light K̄ against the heavier
NN cluster. We assume that an NN cluster is made, since
in S = 1, INN = 0 the NN system is bound, and the S = 0,
INN = 1, which is nearly bound in free space, gets the small
push needed to bind from the strong attractive K̄N interaction.
We reduced the “frozen” condition for the NN system by
allowing its size to be changed, and for that we took the results
for the NN radius obtained in the calculations of Ref. [5]. We
found that the consideration of this reduced NN size reverted
into a larger binding of the three-body system. For the S = 0,
INN = 1 state with a “normal” NN size we found a peak
around 30 MeV binding and a width of about 50 MeV, but
when the reduced size was considered we found a shift of about
10 MeV to larger binding energies and practically no change
in the width (B = 40 MeV, � = 50 MeV). We also found
a peak with smaller strength for the S = 1, INN = 0 (with
LK̄N = 0) configuration around 27 MeV, when the reduced
size was considered. We also saw that this configuration should
weakly mix (with LK̄N = 1) with the dominant configuration
S = 0, INN = 1. The results that we obtain are in line with
those obtained when a chiral amplitude is used for the K̄N

interaction or when the energy dependence of the chiral
approach is used [4–6]. Our results, which rely only on
physical on-shell amplitudes, reinforce the findings of these
latter works and they shed light on why other works could
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give different results, because they either force the �(1405)
with mass 1405 MeV to be a bound state of K̄N or because
they use an energy independent kernel to describe the K̄N

interaction. In any case, they introduce off-shell effects which
cannot be controlled in those approaches.

The simplicity of the present approach also allows for a
transparent interpretation of the results, which is not easy to
see when one uses either a variational method or the full
Faddeev equations. The dominance of the S = 0, INN = 1
channel could be anticipated once the K̄N amplitudes for a N

belonging to a cluster with S = 0 or S = 1 is known. This
conclusion is in agreement with results of other methods,
which were found with more laborious ways. The results
obtained here with our on shell approach with the FCA to Fad-
deev equations, should encourage more elaborate calculations
with the on-shell approach to Faddeev equations developed in
Refs. [28,29]. Comparison with the present results would tell
us the degree of accuracy of the present method, and with this

knowledge one could venture into similar problems with this
technically much simpler approach.
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