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Possibility of narrow resonances in nucleon-nucleon channels

M. I. Krivoruchenko
Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25 117218 Moscow, Russia and

Department of Nano-, Bio-, Information and Cognitive Technologies Moscow Institute of Physics and Technology,
9 Institutskii per. 141700 Dolgoprudny, Moscow Region, Russia

(Received 14 February 2011; published 15 July 2011)

Compound states manifest themselves as bound states, resonances, or primitives, and their character is
determined by their interaction with the continuum. If the interaction experiences a perturbation, a compound state
can change its manifestation. Phase analysis of nucleon-nucleon scattering indicates the existence of primitives in
the 3S1, 1S0, and 3P0 channels. Electromagnetic interaction can shift primitives from the unitary cut, turning them
into narrow resonances. We evaluate this effect on the 1S0 proton-proton scattering channel in the framework of
the Simonov-Dyson model. We show that electromagnetic interaction turns a primitve with a mass of 2 000 MeV
into a dibaryon resonance of approximately the same mass and a width of 260 keV. Narrow resonances of
a similar nature may occur in other nucleon-nucleon channels. Experimental confirmation of the existence of
narrow resonances would have important implications for the theory of nucleon-nucleon interaction.
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Analytical properties of scattering amplitudes were exten-
sively studied in the 1950s, and, for some time, the conditions
of analyticity and unitarity were considered likely to be suf-
ficient for the full recovery of scattering amplitudes. Low [1]
found the dispersion relation for scattering amplitudes, which
takes into account analyticity and unitarity. Solving this equa-
tion, Castillejo, Dalitz, and Dyson [2] observed an ambiguity,
which is now called the CDD poles. The physical meaning of
these poles was clarified by Dyson [3]. Using a version of the
Lee model [4], he showed that the CDD poles correspond to
bound states and resonances (for a review, see Ref. [5]).

S matrices with a finite number of poles, which are mainly
used in the phenomenological parametrizations of scattering
amplitudes, correspond to zero-range singular potentials. The
character of the interaction in such systems is determined by
analyzing the behavior of the scattering phase rather than the
potential: if the phase increases with energy, the interaction
is an attraction; if it decreases, the effect of interaction is
a bound state or repulsion. According to the Breit-Wigner
formula, isolated resonances drive the phase shift up. In the
absence of bound states, the systems discussed in Refs. [1–3]
correspond to phases that increase with energy.

In the nucleon-nucleon interaction, the only bound state,
the deuteron, arises in the 3S1 channel, whereas all other
two-nucleon channels are free of bound states.

Conversely, the nucleon-nucleon phase shifts decrease with
increasing energy and provide evidence for repulsion. The
Dyson model [3] was extended by Simonov [6] for the
description of internucleon forces. In the generalized model,
both attraction and repulsion may dominate, and the phase
shifts behave bidirectionally. The repulsion has been included
by weakening the condition of strict positivity of the imaginary
part of the D function, thereby allowing zeros of the D function
to appear on the unitary cut.1

1The D function appears as the denominator in the N/D decompo-
sition of the scattering amplitude.

Numerous experimental searches for exotic multiquark
states did not give decisive results. In the late 1970s Jaffe
and Low [7] proposed an experimental method to identify
exotic hadrons using a special formalism, called the P matrix.
The application of the P -matrix formalism to meson-meson
scattering revealed P -matrix poles that roughly correspond to
the four-quark states predicted earlier by quark models [7].
States that show up as poles of the P matrix, rather than the
S matrix, are called “primitives.” They correspond to zeros of
the D function on the unitary cut, modify the Low scattering
equation, and generate the CDD poles [8].

The Simonov-Dyson model [6] provides a dynamical
framework of the P -matrix formalism. It has been successfully
applied to describe the nucleon-nucleon interaction dominated
by repulsion at short distances [8–12]. In the Simonov-Dyson
model, primitives are the objects that produce repulsion.

The state of the art that prevailed in the early 1980s can be
characterized as follows: The Dyson model describes systems
dominated by attraction where bound states and resonances
may exist. The Simonov-Dyson model describes systems with
both attraction and repulsion where, in addition to bound states
and resonances, primitives come into play.

The conventional approach to the description of nucleon-
nucleon interaction is based on the Yukawa meson-exchange
mechanism. As a result of the developments of the 1970s and
early 1980s, a second approach has emerged, which ascribes
nucleon-nucleon interaction to the s-channel exchange of 6q

primitives (for a review, see Ref. [13]).
The mechanism of t-channel meson exchange is studied in

detail and is widely used to analyze particular effects. The s-
channel exchange mechanism has solid theoretical background
and is also largely self-sufficient in modeling nucleon-nucleon
interaction.

The above two mechanisms may appear mutually exclusive.
To decide which of them is more appropriate, it is necessary
to find a prediction that could draw a clear distinction between
the alternatives. The task is not simple, because they both
successfully describe a wide range of experimental data.
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However, these mechanisms can also be dual to each other
in the sense in which the s-channel resonance exchange is
dual to the t-channel resonance exchange in the Veneziano
model. In our case, this would mean that the t-channel
meson exchange parameterizes the s-channel exchange of 6q

primitives and vice versa. Simultaneous treatment of the t

and s exchanges would represent in this case double counting.
There is, moreover, a third possibility. The hybrid

Lee model can be reduced to the Simonov-Dyson model [8], so
the latter can be regarded as a phenomenological realization of
the former. In the hybrid Lee model, the internucleon forces are
generated by the s-channel exchange of 6q-compound states.

We wish to clarify which of the aforementioned mech-
anisms is realized in nature and whether there is a duality
between the t-channel exchange of mesons and the s-channel
exchange of primitives (6q-compound states).

The existence of primitives imposes constraints on the in-
teraction parameters. A characteristic feature of the Simonov-
Dyson model is that small perturbations of the interaction with
the continuum shift primitives from the unitary cut and, in the
general case, turn them into resonances.

Although primitives do not exist in the one-boson-exchange
(OBE) models as elementary objects, the behavior of the
phase shift associated with the repulsion permits a natural
interpretation in terms of primitives. Any intersection of the
phase shift of level δ(s) = 0 mod (π ) with a negative slope
can be interpreted as a zero of the D function and in turn as
a primitive [8]. The status of primitives in the OBE models
is roughly the same as the status of resonances and bound
states. Small perturbations of the t-channel exchange parame-
ters move primitives along the unitary cut. If there is a duality,
the zeros of the D function do not leave the unitary cut, so
primitives remain primitives. The duality condition thereby
imposes constraints on the permissible perturbations of the
parameters of the Simonov-Dyson model, which determine,
in particular, compound state masses and their coupling with
the continuum.

A similar situation occurs in the hybrid Lee model.
The Simonov-Dyson model ensures the existence of stable
primitives, if it arose as a reduction of the hybrid Lee model. In
this case, arbitrary perturbations of the parameters of the hybrid
Lee model are allowed, whereas the corresponding variations
of parameters of the Simonov-Dyson model are those that keep
primitives on the unitary cut.

Some discrimination between the aforementioned alterna-
tives can be made, if one considers scattering in an external
field. In the OBE models and in the case of duality, the
scattering cross section will not be qualitatively changed.
Conversely, if there is no duality and the s-channel exchange
mechanism operates as assumed in the Simonov-Dyson model,
we can expect the appearance of a resonance in the place
where we earlier observed a primitive. Because the mass of
the resonance is approximately known (it corresponds to zero
phase shift), the problem reduces to the estimation of the width
of the resonance. In the hybrid model of Lee, primitives are
rigidly connected with the unitary cut, so the resonance will
not occur.

In fact, we can proceed without external fields. A mean-
ingful example of the perturbation of strong-interaction

parameters of the model is given by the electromagnetic
interaction. In this case, the condition for the existence of
primitives is violated as a result of electromagnetic mass
shifts of the nucleons and the 6q-compound states, as well
as modification of the imaginary part of the D function,
which additionally receives the Gamow-Sommerfeld factor
for the proton-proton channel. Inclusion of the electromagnetic
effects allows the determination of the width of the resonance,
as well as the (small) shift of the resonance mass relative to
the primitive mass.

We therefore consider the possibility that the displacement
of primitives is associated with electromagnetic interaction.
This takes place in all nucleon-nucleon channels because of
the electromagnetic mass shifts and other electromagnetic
corrections, including the initial- and final-state Coulomb
interaction. For numerical estimates, we use the Simonov-
Dyson model.2

The D function can be written as

D(s) = �(s) − �(s), (1)

where

�−1(s) =
∑

β

g2
β

s − M2
β

+ f, (2)

�(s) = − 1

π

∫ +∞

s0

�2(s ′)
F2(s ′)
s ′ − s

ds ′. (3)

The indices β label 6q-compound states with masses
Mβ , the coupling constants gβ parametrize the interaction
with the continuum, and f describes the four-fermion contact
interaction. �2(s) = πk/

√
s is the phase space volume of

two nucleons, where k is the nucleon momentum in the
center-of-mass frame. F(s) is the form factor arising from the
vertices of compound states and nucleons and the four-fermion
interaction vertices:

F(s) =
(

s

s0

)1/4 sin(kb)

kb
C0(s). (4)

Here, s0 is threshold value of s and b is the effective interaction
radius. The Gamow-Sommerfeld factor [14,15]

C2
0 (k) = 2πη

exp(2πη) − 1
, (5)

where η = αμ/k and μ = m/2 is the reduced proton mass,
accounts for the initial- and final-state Coulomb interaction of
the S-wave protons. In the pn and nn channels, C0(k) = 1.

In the proton-proton channel, the dispersion integral of
Eq. (3) can be evaluated to give

κ�(s) = 1

2k2b
{2Si(2kb) sin(2kb) + [Ci(2kb) + Ci(−2kb)]

× cos(2kb) − 2C − ln(−4k2b2)} − sin(kb)

kb
eikb

×
[
C2

0 (k) + π

k

]
+

∞∑
n=1

sinh(b/n)

b/n
e−b/n 2

1 + k2n2
,

(6)

2This model is also known as the quark compound bag model.
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where κ = 2mb/π and C = 0.5772 . . . is the Euler constant.
Here units are chosen in which ac ≡ 1/(αμ) = 1; later, we
will restore the dimension. In the expression (6), a branch of
the logarithm ln(1) = 0 enters; in the complex k plane, the cut
extends from −∞ to 0, so ln(−1 ± i0) = ±iπ . In the physical
upper half of the complex k plane, the self-energy operator
�(s) is an analytical function. On the real s axis below s0 or,
equivalently, on the imaginary half-axis Re(k) = 0, Im(k) > 0,
�(s) is a real function.

�−1(s) is assumed to have a single pole at s = M2,
corresponding to a 6q-compound state. The contribution to
�−1(s) of the contact four-fermion interaction is described by
a constant term. As a result,

κ−1�−1(s) = cp

(
rp

s − M2
− rp

s0 − M2

)
− 1

γ
, (7)

where κcprp = g2
1 is the coupling constant entering Eq. (2) and

rp = 8π2/b2 is the residue of the free P matrix. The value of cp

measures the strength of interaction of the compound state with
the continuum. The residue of κ−1�−1(s) is parameterized as
follows:

cprp = ξ
M2 − s0

γ
.

In the pn and nn channels, the D function has the correct
analytical properties, provided ξ ∈ (0, 1). The phase shifts are
well reproduced for ξ = 0.9. Here we restricted ourselves to
verification of the fact that, in the channel pp at ξ = 0.9, the
analytical properties of the D function are correct.

The value of γ is determined by the scattering length. In
the pp channel, we use the series expansion around k = 0 for
Re(k) > 0 [16]:

kC2
0 (s) cot δ(k) + 2h(k) = 1

a
+ r

2
k2 + . . . . (8)

This expansion allows one to draw a link between the low-
energy parameters of the model and the phenomenological
constants that characterize the low-energy proton-proton scat-
tering. The following equation serves as the definition of an
analytical function h(k):

2ψ

(
1 + i

k

)
+ ik + ln(−k2) = 2h(k) + ikC2

0 (s), (9)

with ψ(z) being the digamma function.
The strong-interaction phase shift can be found from the

strong-interaction S matrix modified by the initial- and final-
state Coulomb interaction

S ′(k) ≡ e2iδ(k) = D(s − i0)

D(s + i0)
. (10)

We use the empirical value of the scattering length a to
fix γ :

γ = 1 + b

a
+ [ln(4b2) + 4C − 3]b

−
∞∑

m=2

(−1)m
2m+1

(m + 1)!
bmζ (m), (11)

where ζ (m) is the Riemann ζ function. Once the model
parameters are determined, we arrive at a prediction for the

effective range

r = 2

3
(1 + γ ) b − 8γ ξ

b
(
M2 − 4m2

) − 7

9
b2

+
∞∑

m=2

(−1)m
2m+2(m − 1)(m + 6)

3(m + 3)!
bm+1ζ (m). (12)

In the 1S0 pn channel with ac = ∞, one has r = 2.1 fm [8],
which should be compared with r = 2.8 fm [17] in the OBE
models.

In bare strong interaction, the real and imaginary parts of
the D function simultaneously vanish at some point on the real
k axis. The zeros of Im(D(s)), on the other hand, are the zeros
of F(s), the lowest-lying one is located at3

k∗
0 = π/b0. (13)

In the parametrization (7), Re(D(s)) also vanishes at this point,
whereas the compound state mass is equal to the total energy
of protons in the center-of-mass frame:

M0 = 2
√

π2/b2
0 + m2

0. (14)

In strong plus electromagnetic interaction (strong interac-
tion + QED), the zero of the D function is shifted to the
complex plane. The effect is related to the change of the model
parameters b0 → b = b0 + �b, m0 → m = m0 + �m, etc.,
and to the Coulomb interaction of the protons. Let us discuss
the change of parameters.

Electromagnetic mass splitting of hadrons is well studied.
QED corrections to hadron masses are usually attributed to the
Coulomb interaction between the quarks and their spin-spin
interaction:

�M = c

〈∑
i<j

eiej

〉
+ h

〈∑
i<j

eiejσ iσ j

〉
. (15)

Here, it is assumed that all the quarks are in S-wave states. The
averaging is made over the color-spin-isospin wave function
of the quarks. A reasonable description of the mass splitting in
octet-baryon isomultiplets, accounting for the mass difference
of nonstrange quarks, can be obtained for c = 3.06 MeV and
h = −1.35 MeV [18].

The average values of the spin-isospin operators and the
corresponding electromagnetic mass shifts of the proton, the
neutron, and the 6q-compound states with quantum numbers
of the 1S0 nucleon-nucleon channels are listed in Table I.
The calculation of average values of the operators was carried
out using fully antisymmetrized color-spin-isospin quark wave
functions. The 6q-compound state is denoted by d∗.

For the nonstrange quarks, the MIT bag model gives b∼
R and M ∼R3, where R is the radius of the six-quark bag,
and thus the change of the parameter b for the inclusion of
electromagnetic interaction is simply given by

�b

b
= �M

3M
. (16)

3Parameters of the model with electromagnetic interaction switched
off are supplied with the subscript 0.
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TABLE I. Electromagnetic mass shifts of the proton, the neutron,
and the 6q-compound states d∗ with isospin projections I3 = ±1, 0.
The third and fourth columns show average values of the spin-isospin
operators. Electromagnetic mass shifts of the hadrons are shown in
the last column (in MeV).

Hadron I3 〈∑
i<j

eiej 〉 〈∑
i<j

eiejσ iσ j 〉 �M

p 1
2 0 4

3 −1.8

n − 1
2 − 1

3 1 −2.4

d∗++ 1 1 − 7
5 5.0

d∗+ 0 − 1
3

19
5 −6.2

d∗0 −1 2
3 − 2

5 −1.5

The values of the 1S0 scattering lengths, derived from
the experimental data, are as follows [17]: 7.83 ± 0.01 fm,
23.75 ± 0.01 fm, and 16.4 ± 0.09 fm in the I3 = 1, 0,−1
channels, respectively. In our approach, the scattering length
or, equivalently, the value of γ is an adjustable parameter. We
obtain a = 6.5 fm in the pp channel by fitting a maximum of
the phase at T ≈ 10 MeV.

To compare the physical phase with that of the bare strong
interaction, we must have an estimate of a0. We give some
arguments in favor of the change in the scattering length
being proportional to the electromagnetic mass shift of the
6q-compound state with quantum numbers of the channel.

In the Born approximation, the scattering length is pro-
portional to the averaged interaction potential. A part of
this potential associated with the electromagnetic interaction
leads to a difference of scattering lengths in different isospin
channels. On the other hand, the electromagnetic mass splitting
of hadrons is also determined by averaging the electromagnetic
potential, although of quarks rather than nucleons. In any case,
the equation a = a0 + C2�M , with a0 = 14.45 fm and C2 =
−1.45 fm/MeV, gives scattering lengths a = 7.3 fm, 23.4 fm,
and 16.6 fm in the I3 = 1, 0,−1 channels, respectively, which
agrees well with the empirical data. Thus, we accept

�a = C2�M. (17)

A slightly better fit of the proton-proton phase shift is obtained
for a = 6.5 fm. Because a/ac ∼1/3 (in dimensional units
ac = 58 fm), the electromagnetic corrections to low-energy
parameters of the model are expected to be only moderately
small. In the scattering lengths, the electromagnetic correc-
tions ∼1.

Parameter ξ is also an adjustable parameter. We will accept
�ξ = 0.

We thus have estimates of the proton mass m0 in the
bare strong interaction, as well as the electromagnetic mass
corrections for nucleons and d∗. The relative value of the
correction to b is known also.

The proton kinetic energy Tδ = 244 MeV in the laboratory
frame corresponds to a vanishing phase shift. In the center-
of-mass frame, one finds the momentum of the protons
kδ = √

mTδ/2 and their total energy Mδ =
√

2mTδ + 4m2 =
1995 MeV. The phase shift vanishes provided that the imag-
inary part of the D function vanishes; that is, it is necessary
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FIG. 1. (Color online) The 1S0 proton-proton scattering phase
shift in radians modulo π versus the proton kinetic energy in the
laboratory frame. The smooth dashed curve 1 is the model prediction
with electromagnetic interaction switched off. The solid broken
curve 2 arises on dressing the model parameters by electromagnetic
interaction, i.e., in strong interaction + QED. The squares show the
experimental data [19].

to have kδb = π , so the interaction radius b is fixed. The
total mass of the compound state M ≈ Mδ is known with an
accuracy of O(�M), so we find from Eq. (16) the interaction
radius b0 with electromagnetic interaction switched off.

The condition (13) holds for bare strong interaction. Using
Eq. (14) one may find a mass of the compound state with
electromagnetic interaction switched off. Then, for α = 0, the
mass M = M0 + �M .

In Fig. 1, the proton-proton scattering phase shift is plotted
in strong interaction + QED and in the bare strong interaction
case. In Fig. 2, the S-wave proton-proton cross section is
plotted. The narrow resonance peak is associated with the
complex root of the equation

D(M2
∗ − iM∗�∗) = 0. (18)

If the electromagnetic interaction is switched off, Eq. (18)
has a primitive root corresponding to �∗ = 0. When the
electromagnetic interaction is switched on, a resonance of a
width �∗ = 0 appears in the neighborhood of the primitive.
The full set of the model parameters is shown in Table II. In
the first row, the model parameters to which we previously
attributed the subscript 0 are given.

The value of Mδ is defined to within a few MeV. If we
take Mδ = 2000 MeV, the resonance will have a mass of
M∗ = 2005.5 MeV and a width of �∗ = 250 keV. Because the
position of the peak is not very well defined, in an experimental
search for the resonance, one needs to scan a few MeV region
around the zero value of the scattering phase with a resolution
in

√
s better than 100 keV.

Phase analysis of nucleon-nucleon scattering did not reveal
primitives in the 3P1 and 1P1 channels. In the 3P0 channel,
the data indicate the existence of a primitive with a mass of
about 1970 MeV [12]. Arguments similar to those used for the
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FIG. 2. (Color online) The 1S0 proton-proton partial-wave cross
section versus the proton kinetic energy in the laboratory frame.
Notations are the same as in Fig. 1.

S-wave scattering allow one to conclude that electromagnetic
interaction in the 3P0 proton-proton channel transforms the
primitive to a resonance with a mass of about 1970 MeV and
a width of a few hundred keV.

In nuclear matter, nucleons are in an effective mean field.
Here we expect significant renormalization of the parameters
responsible for the dynamics. In the Simonov-Dyson model,
we also should expect the transformation of the 6q primitives
to the resonances, which significantly modifies the properties
of nuclear matter. Dibaryon resonances are bosons. In cold
nuclear matter and with increasing chemical potential of
nucleons, a Bose condensation will begin [20]. This modifies
the equation of state of nuclear matter and modifies the
properties of neutron stars under equilibrium [21]. Bose
condensation of dibaryon resonances may also be the trigger
for a phase transition to quark matter. The above scenario
and its connection with other effects in nuclear physics and
astrophysics are discussed in Ref. [12].

Astrophysical observations of neutron stars provide impor-
tant constraints on the nuclear matter properties above satura-
tion density and, indirectly, on the in-medium modifications of
hadrons. The problem of the possible conversion of primitives
to resonances, however, can most reliably be settled in the
laboratory.

In the phase behavior of the nucleon-nucleon scattering,
there are clear features that can be attributed to primitives.

TABLE II. Parameters of the Simonov-Dyson model for Mδ =
1995 MeV with electromagnetic interaction switched off and on. a is
the scattering length, r is the effective range, and b is the interaction
radius (in fm). m is the proton mass, M is the compound state mass,
and M∗ and �∗ are the primitive and resonance masses and widths (in
MeV).

α a r b m M M∗ �∗

0 14.45 2.22 1.829 940.1 1998.6 1998.6 0
1/137 6.50 0.84 1.831 938.3 2003.5 2000.5 0.260

We therefore believe that in the bare strong interaction case
some compound states remain on the unitary cut and manifest
themselves as primitives rather than resonances or bound
states. When external conditions, such as nonzero density of
matter or finite temperature, begin to differ or new interactions
come into play, compound states can leave the unitary cut,
turning into resonances. These resonances can be observed in
the laboratory as the usual Breit-Wigner peaks.

In the OBE models and the hybrid Lee model primitives
remain on the unitary cut. In the Simonov-Dyson model,
in general, the primitives, if they exist, are shifted from the
unitary cut. Some preferences for these models can be done
after the search results of the narrow dibaryons will become
available.

For an experimental search for narrow dibaryon resonances,
one should have a beam of protons with a kinetic energy of T ∼
250 MeV and an energy spread below 100 keV. The energy
resolution of the detector is not important, so one can use
scintillation detectors. In the CELSIUS accelerator at Uppsala,
the beam momentum spread was a few times 10−3 before
electron cooling and a few times 10−5 after electron cooling.
Under such conditions, it is possible to measure

√
s with an

accuracy of 10 keV or better. The narrow width of d∗++(2000)
is not an obstacle to its experimental search.

Resonances of the same nature should exist in the pn and
nn channels. Experiments with neutron beams are, however,
more complicated. Also, e.g., deuterium cannot be used as
a fixed target, because the narrow resonances are smeared
out by the Fermi motion. We thus estimated the effect in the
proton-proton channel, which is of interest for experiments
with protons bombarding a hydrogen target.

Suppose that, in proton-proton scattering, experimentalists
scanned the energy region up to a few MeV around the value
where the phase shift is zero and the resonance was not found.
In this case, we would have to conclude that the primitives
are stable under perturbations and are strictly adhered to the
unitary cut. Such stability is inherent in the OBE models
and hybrid Lee model. Consequently, the Simonov-Dyson
model would either be dual to the OBE models or be a
phenomenological realization of the hybrid Lee model.

Assume instead that, in place of the primitive, experimen-
talists found the d∗++(2000) resonance with a width of about
260 keV. This would mean that the primitives are not strictly
adhered to the unitary cut. This property holds only in the
Simonov-Dyson model.

Observation of the resonance will have the following
consequences: (i) mutual transformation of primitives and
resonances will be confirmed, (ii) universality of the Yukawa
meson-exchange mechanism will be questioned on the experi-
mental basis, (iii) the region of validity of the hybrid Lee model
will be reduced, and (iv) the absence of duality between the
t-channel meson exchange and the s-channel exchange of 6q

primitives will be proved.
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of Russian Federation Grant No. 4568.2008.2.
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