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Relevance of complex branch points for partial wave analysis
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A central issue in hadron spectroscopy is to deduce—and interpret—resonance parameters, namely, pole
positions and residues, from experimental data, for those are the quantities to be compared to lattice QCD or
model calculations. However, not every structure in the observables derives from a resonance pole: the origin
might as well be branch points, either located on the real axis (when a new channel composed of stable particles
opens) or in the complex plane (when at least one of the intermediate particles is unstable). In this paper we
demonstrate first the existence of such branch points in the complex plane and then show on the example of the
πN P11 partial wave that it is not possible to distinguish the structures induced by the latter from a true pole
signal based on elastic data alone.
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I. INTRODUCTION

The second and third resonance region of baryonic excited
states is currently under intense experimental investigation
at various laboratories such as ELSA, MAMI, and JLab
[1–4]. Many resonances overlap at these energies, and usually
partial wave analyses in different frameworks, such as K-
matrix approaches or dynamical coupled-channel models
[5–23], are necessary to disentangle the resonance content.
Furthermore, many resonances may couple only weakly to the
πN channel, and the investigation of different initial and final
states in hadronic reactions is mandatory [19]. Also, at these
energies multipion intermediate and final states are becoming
increasingly important and should be included in the analysis
of the S matrix. For the corresponding T matrix, channels with
stable particles like ηN induce a branch point at the threshold
energy (

√
s = mη + MN ), which may be visible as a cusp in

the amplitude [24,25].
For effective multipion channels with one unstable and

one stable particle, such as ρN , the analytic structure is more
complicated. In comparison to the branch points on the real
s axis and the first and second sheet poles, the third type
of allowed singularities is given by branch points within the
complex energy plane. They emerge when amongst groups of
particles of an at least three-body decay there exists a strong
correlation between two particles. For example, a significant
fraction of π+π−X intermediate and final states typically
goes through the ρ meson. The resulting line shapes are
discussed in Ref. [26]. Branch points in the complex plane
also emerge in the recently developed complex-mass scheme
for baryonic resonances [27].

Known theoretically for a long time [28,29], these branch
points are present in several modern approaches, such as the
GWU/SAID analysis [5,6], the Jülich [15–19] and EBAC
[21,22] approaches, and the Bonn-Gatchina [14] analysis. It is
the goal of this study to demonstrate the model-independent
character of these complex branch points. To do so, we employ

general properties of the S matrix only. In a particular example
it is then shown that the branch points are of relevance in partial
wave analyses: if the theoretical partial wave does not include
them, their absence can easily be simulated by resonance poles.
This, of course, distorts the extracted baryon spectrum. Branch
points in the complex plane are thus important for the reliable
extraction of resonance parameters.

The paper is organized as follows: in Sec. II the existence of
branch points in the complex plane is derived from three-body
phase space, in Sec. II A the properties of the branch points
are determined, and in Sec. III it is shown that these branch
points are relevant in the extraction of the resonance content
of partial waves.

II. ANALYTIC STRUCTURE OF THE S MATRIX
AND COMPLEX BRANCH POINTS

Every channel opening introduces a new branch point and
with it a new sheet to the S matrix, located at s = (

∑
mi)2,

with mi being the masses of the stable particles in that
channel. The first sheet is always the physical one, i.e., where
the physical amplitude is situated. The only singularities
allowed on the first sheet are poles on the real s axis below the
lowest threshold (= bound states) or branch points on the real
axis. On other sheets, poles and branch points can be located
anywhere. Poles on the second sheet are called resonances if
their real part is located above the lowest threshold, and they
are called virtual states if they are located below the threshold,
but on the real axis. It is also possible to have poles on the
second sheet inside the complex plane with a real part lower
than the threshold [30] or on other hidden sheets that are often
referred to as shadow poles.

In this study we are interested in branch points on the
second sheet in the complex plane, i.e., on the same sheet
on which the resonance poles are situated. To prove the
emergence of these branch points, let us start from the optical
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theorem

T (j → i) − T †(j → i)

= i(2π )4
∑
f

∫
d�f T †(i → f )T (j → f ), (1)

where T (j → i) denotes the T matrix connecting channels
i and j and d�f denotes the phase space of channel f . To
simplify the argument we assume that the T matrix is in a
particular partial wave; below we focus on the singularities
that stem from the unitarity cuts only. Singularities like the
left-hand cuts, the short nucleon cut [18,31], or the circular
cut, induced by the partial wave projection, are ignored in the
following for they are irrelevant for the argument given.

To be specific we use the normalization of phase space as
proposed by the Particle Data Group [32]. Then we have the
following for the n-particle phase space,

d�n(P ; p1, . . . , pn) = δ(4)

(
P −

∑
i

pi

) ∏
i

d3pi

(2π )32Ei

,

(2)

where P is the overall center-of-mass (c.m.) four-momentum.
To avoid complications, which are irrelevant for the validity

of the present argumentation, we now focus on the diagonal
channel i = j . To be concrete we assume i = πN . To further
simplify the argument, in addition, we focus on f = ρN

as the only relevant intermediate ππN channel. The latter
assumption allows us to write

T (πN → ππN ) = iW
(
m2

ππ

)
D

(
m2

ππ

)
T (πN → ρN ), (3)

where D(m2
ππ ) denotes the physical ρ propagator as a function

of the ππ invariant mass mππ and W (m2
ππ ) is the partial wave

projected decay vertex, which contains also the information
on the orbital angular momentum � of the decay into ππ . In
the following we abbreviate m ≡ mππ .

One can decompose the three-body phase space into two
subspaces [32],

d�n(P ; p1, . . . , pn)

= d�j (q; p1, . . . , pj )

× d�n−j+1(P ; q, pj+1, . . . , pn)(2π )3dm2. (4)

For the example of the ρ[ππ ] N system considered here, the
first factor d� refers to the ππ phase space in the ρ subsystem
at four-momentum q (note that m2 = q2), the second is the
ρN phase space at four-momentum P , and n = 3 and j = 2.
With this decomposition,∫

d�j (q; p1, . . . , pj )|D(m2)W (m2)|2 = − 1

π
Im[D(m2)]

= ρ(m2), (5)

where ρ(m2) denotes the spectral density for the resonance
normalized via ∫ ∞

4m2
π

dm2ρ(m2) = 1. (6)

We get for the discontinuity of the πN amplitude from the
ππN channel

1

i
[T (πN → πN ) − T †(πN → πN )]

= (2π )7
∫

dm2ρ(m2)
∫

d�2(P ; q, p3)

× |T (πN → ρN )(s,m2)|2 + . . . , (7)

where the ellipses denote contributions from the other channels
omitted here. The two-body phase space can be calculated
explicitly. One finds

d�2(P ; q, p3) = 1

256π6

p(
√

s,m,m3)√
s

d�, (8)

with

p(
√

s,m,m3) = 1

2
√

s

√
[s − (m3 + m)2)(s − (m3 − m)2]

(9)

for the c.m. momentum of the nucleon (particle 3) and the pion
pair with invariant mass m.

Using Eq. (7) we may thus express the T matrix through a
dispersion integral and obtain

T (πN → πN )

= 1

4

∫ ∞

(MN+2mπ )2

ds ′
√

s ′

∫ (
√

s ′−MN )2

4m2
π

dm2 ρ(m2) p(
√

s ′,m,m3)

×
∫

d�
|T (πN → ρN )(s ′,m2)|2

s ′ − s + iε
+ . . . , (10)

where now the ellipses stand for the unitarity cut contributions
from other channels as well as left-hand cut contributions. First
of all, there is the three-body cut, which drives the inelasticity
of the T matrix. To be concrete, we may write

ρ(m2) = −N

π
Im

1

m2 − m2
ρ + imρ
̃

,

(11)


̃ = 

p̃(m,mπ,mπ )2�+1

p2�+1
0

,

where p0 is the three-momentum at the nominal resonance
mass and N is a normalization factor so that Eq. (6) is
fulfilled. The factor (p̃/p0)2�+1 accounts for the centrifugal
barrier and p̃ is the pion momentum in the ρ rest frame. Note,
p̃ = p(m,mπ,mπ ) at the ππN threshold (

√
s = 2mπ + MN );

i.e., the ρ is at rest and the ρ rest frame and the overall rest
frame coincide. Note also that the explicit form of Eq. (11) is
only for illustration. The m dependence of the denominator is
more complicated in general (see, e.g., the Appendix), but the
only property needed in the following is the presence of poles
in the spectral function.

Indeed, the spectral function ρ(m2) of Eq. (11) contains a
pair of poles located at m2 = m2

0, where m0 denotes the pole
position of the ρ meson, located in the complex plane. We may
write m0 = mρ ± i
/2, where 
 denotes the width of the ρ

meson.
For the existence of branch points in the complex plane,

it is sufficient to consider the imaginary part of Eq. (10) in
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FIG. 1. The quasiparticle (ρ) coupling to the stable particle N

with orbital angular momentum L; the decay of the quasiparticle into
stable particles (2π ) is in � wave with respect to the quasiparticle c.m.
frame.

the following, or, more correctly, we consider the analytic
function δT , which is δT = Im T for

√
s ∈ R, but of course

δT �= Im T for
√

s /∈ R (e.g., δT develops an imaginary part
for complex

√
s, whereas Im T does not). The function δT can

be straightforwardly evaluated,

δ T = − π

4
√

s

∫ (
√

s−MN )2

4m2
π

dm2 ρ(m2)

×p(
√

s,m,MN ) p(
√

s,m,MN )2L g(
√

s,m), (12)

with p from Eq. (9). In Eq. (12), we have explicitly denoted
a factor of p2L that comes from the L = 0, 1, . . . transition
T (πN → ρN ). The function g(

√
s,m) contains the integral∫

d� over the part of |T |2 without these centrifugal barrier
factors. In general, g(m + MN,m) �= 0. The overall process
we consider here as an example is shown in Fig. 1.

A function f (
√

s) has a branch point zb at
√

s = zb, when-
ever in its integral representation f (

√
s) = ∫ b

a
dq f̃ (

√
s, q)

the function f̃ has a simple pole at q = q0 and a
√

s = zb

exists such that q0 = a or q0 = b. For example, the integrand
of the two-body phase space integral

∫ ∞
0 dq q2/(

√
s − E1 −

E2 + iε), where Ei =
√

m2
i + q2, has a simple pole at q0 =

p(
√

s,m1,m2) with the on-shell momentum p from Eq. (9).
Then, the branch point is given for the

√
s for which q0 = 0

(lower integration limit). This is the case for
√

s ≡ zb =
m1 + m2, i.e., the branch point is at the two-body threshold.

With this knowledge, it is straightforward to determine the
branch points of δ T : as discussed before, the simple poles of
the integrand (spectral function) are located at the complex
m2 = m2

0 which equals the upper integration limit of Eq. (12)
for

√
s = MN + m0.

Thus, without loss of generality, we have shown that poles
in the spectral function at m = m0 lead to branch points of
the amplitude at the complex scattering energy

√
s = MN +

m0 or
√

s ≡ zb1,2 = MN + mρ ± i
/2. (13)

More generally, the model-independent result is that zb is
given by the sum of the mass of the stable particle plus m0,
where m0 is the pole position in the scattering amplitude of the
subsystem, in this case given by ππ which resonates through
a ρ meson. Equation (13) has also been obtained in Ref. [18],
starting from an explicit expression for the ππN system,
derived from field theory, and in which the ππ subsystem is
boosted. In Appendix A we will come back to the connection
of that formalism to the present one.

FIG. 2. (Color online) Analytic structure of the amplitude. There
are three branch points zb1, zb2 = z∗

b1, and zb3. zb1 and zb2 are
structures in δT and thus on the second sheet.

The branch points zb in Eq. (13) have been obtained by
considering the upper integration limit in Eq. (12). However,
also the lower integration limit can coincide with a singularity
for a certain

√
s: this is the case for

√
s ≡ zb3 = 2mπ + mN, (14)

for which the lower integration limit coincides with the branch
point singularity coming from the factors of p in the integrand.
The overall analytic structure is shown in Fig. 2. The first,
physical sheet has the branch point zb3 with an associated cut.
If the cut is chosen along the real

√
s axis like in the figure, the

discontinuity of the amplitude is given by 2 δT from Eq. (12).
The branch points zb1 and zb2 are in δT , i.e., on the sheet that
is obtained by analytically continuing the discontinuity of the
first sheet. They are, thus, on the second sheet, where also
resonance poles are normally situated. The branch points zb1

and zb2 induce the new sheets 3 and 4; they are analytically
connected to the second sheet along the cuts induced by zb1

and zb2. In Fig. 2 these cuts are chosen parallel to the real
√

s

axis; in Ref. [18] they are chosen parallel to the imaginary
√

s

axis, which is a convenient choice to search for poles. For the
numbering of sheets, see also Ref. [18].

A. Threshold behavior

Apart from determining the existence and position of
branch points, one can also deduce their threshold behavior,
i.e., the functional form of δT close to the three zb’s. In
Fig. 1, the three-body decay is schematically shown. Let the
quasiparticle (ρ) couple to the stable particle (N ) in L wave in
the overall c.m. system, while the quasiparticle decays into
stable particles (two pions) in � wave with respect to the
quasiparticle c.m. frame.

In the following we use the explicit form of Eq. (11) to
determine the threshold behavior. It is clear, however, that
the final results do not depend on this particular form for the
spectral function, but only on the fact that the spectral function
has poles [right side of Eq. (15)] and the presence of factors
of p in Eq. (12) that follow from the previously given phase
space derivation.

To study the behavior of the amplitude in the complex
energy plane close to the branch points zb1,2, complex values
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of m2 will be needed, and thus the (nonanalytic) function Im
in Eq. (11) needs to be evaluated to obtain a meromorphic
expression,

ρ(m2) = N

π

mρ
̃(
m2 − m2

ρ

)2 + m2
ρ
̃

2

m→m0−−→ 
 h1(m2)

m2 − m2
0

. (15)

The right-hand side shows the behavior of ρ(m2) close to the
pole at m = m0; the function h1 does not contain any poles
or zeros close to m0 and thus does not influence the threshold
behavior. In particular, p̃2�+1, which appears in the numerator
[cf. Eq. (11)], has no zero close to m0 and can be absorbed in
h1. Thus the threshold behavior of the branch points zb1 and
zb2 does not depend on �, which may appear to be a surprising
result.

To obtain the threshold behavior of the branch points zb1

and zb2 in the complex plane, one inserts the right-hand side
of Eq. (15) into Eq. (12),

δT ∼
∫ (

√
s−MN )2

4m2
π

dm2 

(
m2 − m2

0

) 2L+1
2 h2(m2)

m2 − m2
0

, (16)

where we have expanded the argument of the square root of the
p factors of Eq. (12) in m2, at the point p(

√
s = zb = MN +

m0,m,MN ) to obtain the power of the leading zero from these
factors. The function h2 is again analytic, free of zeros close
to m = m0, and does not influence the threshold behavior. The
integral may now be evaluated setting this numerator and h2

constant. The result for the threshold behavior of the branch
points zb1 and zb2 is [see also Eq. (13)]

δT (zb1,2) ∼ (√
s − zb1,2

) 2L+1
2 ∼ p(

√
s,m0,MN )2L+1. (17)

In Fig. 3 we show the branch point zb2 in the upper
√

s

half plane [see Fig. 2] for a realistic ρN intermediate state
and L = 0. The branch point is clearly visible, together with
the cut that in this picture is chosen in the positive Re

√
s

direction.
To obtain the threshold behavior for the third branch point

at zb3 = 2mπ + MN (see Fig. 2), we inspect again Eq. (15). As
discussed following Eq. (11), close to

√
s = zb3 = 2mπ + MN

[see Eq. (14)] the ρ c.m. frame coincides with the overall c.m.
frame, i.e., p̃ = p(m,mπ,mπ ), and thus the �-wave decay
in the ρ subsystem is also an �-wave decay in the overall
c.m. system. For

√
s in the vicinity of zb3, the denominator

of Eq. (15) is free of zeros; however, in contrast to the case
of zb1 and zb2, the numerator 
̃ ∼ p̃2�+1 = p2�+1 = (m2 −
4m2

π )(2�+1)/2 does have a zero that contributes to the threshold
behavior. Inserting Eq. (15) (including this factor) in Eq. (12)
and expanding the arguments of the square roots of the p

factors around zero [cf. Eq. (9)], one obtains

δT ∼
∫ (

√
s−MN )2

4m2
π

dm2

(
m2 − 4m2

π

) 2�+1
2

×(
m2 − 4m2

π

) 2L+1
2 h3(m2) , (18)

with a function h3 free of zeros and poles in the vicinity
of zb3. Integration leads now to the threshold behavior

FIG. 3. (Color online) Branch point zb2 in Re δT in the upper
√

s

half plane, for a realistic ρN intermediate state. The cut is chosen
here in the positive Re

√
s direction.

of zb3,

δT (zb3) ∼ [
√

s − (2mπ + MN )]�+L+2

∼ p(
√

s,MN, 2mπ )2�+2L+4 . (19)

This corresponds to the opening of the three-body threshold.
Note that even if � = L = 0, the threshold behavior is still
∼p4, i.e., the standard three-body phase space; thus, this
threshold opening is always smooth.

B. The limit of vanishing width

It is instructive to study the limit of a vanishing width of
the ρ meson in Eq. (7). Then

ρ(m2) −→ δ
(
m2 − m2

ρ

)
for 
 → 0.

This allows us to perform the m2 integration to get

1

i
[T (πN → πN ) − T †(πN → πN )]

= (2π )7�[(
√

s − MN )2 − m2
ρ]

∫
d�2(P ; q, p3)

× ∣∣T (πN → ρN )
(
s,m2

ρ

)∣∣2 + . . . , (20)

such that Eq. (10) reduces to the dispersion integral over the
standard two-body cut

T (πN → πN ) → 1

4

∫ ∞

(MN+mρ )2

ds ′
√

s ′ p(
√

s ′,mρ,MN )

×
∫

d�

∣∣T (πN → ρN)
(
s ′,m2

ρ

)∣∣2

s ′ − s + iε
+ . . . . (21)

The imaginary part, which is given by

δ T
→0 = −π/(4
√

s) p(
√

s,mρ,MN )2L+1 g(
√

s,mρ), (22)
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has a branch point at
√

s = mρ + MN , which is simply the
ordinary two-body threshold on the real

√
s axis. As 
 → 0,

the two branch points zb1 and zb2 in the complex plane move
toward the real

√
s axis until they coincide and form this single

branch point at
√

s = mρ + MN . Note that there is a factor of

 in the numerator of Eq. (16), but in the limit 
 → 0, another
factor ∼
 appears in the denominators from the two poles
moving to the real axis, which cancels the 
 of the numerator.
Thus, indeed the branch point persists in the limit 
 → 0 with
the result given in Eq. (22).

For the third branch point at zb3 = 2mπ + MN , Eq. (18)
shows that there are no poles that can prevent the term from
disappearing in the limit 
 → 0; thus, as 
 → 0, the third
branch point fades away. In other words, 
 → 0 means that
the ρ decouples from ππ and, thus, in our example, the ππN

channel decouples from πN .

III. THE RELEVANCE OF BRANCH POINTS
IN THE COMPLEX PLANE

As shown in the previous section, whenever there is a mul-
tiparticle intermediate state with pairwise strong correlations,
unavoidably branch points show up in the complex plane. As
we demonstrate on a particular example in this section, their
influence on the data might well be visible. However, as will
be also shown, it is in general not possible to deduce the origin
of such a structure from elastic data only.

The first model we use is the so-called Jülich model
[15–19]. It is a coupled-channel meson-exchange model
including the channels πN , ηN , K�, and K as well as
three effective ππN channels, namely, π�, σN , and ρN . All
these two-pion channels show the mentioned kind of branch
points [18]. In the Appendix we show the connection of the
formalism of the Jülich model to the one of the previous
section. The Jülich model allows for a good description of
the available πN data in all partial waves with j � 3/2 up to
an energy of 1.8 GeV and has been recently extended to higher
energies, partial waves, and additional reactions [19].

To be specific we focus here on the P11 partial wave and the
region around

√
s ∼ 1.7 GeV. In this energy region, around

300 MeV above the Roper resonance, signals for another
resonance, N (1710)P11, have been found in several analyses
[32]. It is, however, remarkable that in recent analyses of the
GWU/SAID group [6], there is no sign for this resonance any
more. Like the GWU/SAID analysis, the Jülich model contains
explicitly the branch points zb1 and zb2 in the complex plane at√

s = MN + mρ ± i
/2 ∼ 1700 ± 75 i MeV. However, there
are no poles around these energies (the only genuine pole
term in the P11 partial wave is the nucleon, while the poles of
the Roper resonance are dynamically generated [15]). For the
purpose of this study we have slightly changed the parameters
of the model compared to the results of Ref. [16] to obtain a
good description of the GWU/SAID solution. This is shown in
Fig. 4 by the dashed lines. The important point here is that the
theoretical amplitude in the complex plane around

√
s ∼ 1.7

GeV is free of poles, but there is the ρN branch point.
To illustrate the difficulties in determining the origin of

structures in the amplitude we fit this Jülich model amplitude

1200 1400 1600 1800

s
1/2

 [MeV]

0

0.2

0.4

0.6

R
e,

 I
m

   
P

11

FIG. 4. (Color online) Fit of the CMB Zagreb model (solid lines)
to the P11 amplitude provided by the Jülich model (dashed lines). The
“data” points represent the single energy solution of the GWU/SAID
group [6].

with another model, which does not contain the ρN branch
point in the complex plane. For this, we use a Carnegie-Mellon-
Berkeley (CMB) type of model that has been developed by
the Zagreb group [8,9,33,34]. In this unitary coupled-channel
model which respects analyticity, background plus resonances
are provided, but all branch points are on the real axis. The
result of the fit, using two resonance terms, is shown in Fig. 4 by
the solid lines. As the figure shows, the fit is very precise and,
in particular, shows no visible discrepancy to the amplitude of
the Jülich model in the energy range shown.

However, the behavior in the complex plane is quite
different: as mentioned before, there is no complex branch
point in the CMB fit by construction; instead, a pole is found
at 1698 − 130 i MeV, which in this case might simulate the
branch point missing in that model.

Thus, at a realistic scale of precision, the ρN branch point
does not manifest itself in a unique structure on the physical
axis; it can be simulated by resonance terms that produce poles
in the complex plane. Still, the ρN branch point is a required
structure of the S matrix, as shown in this study, and we have
demonstrated that, in an analysis of partial waves, this and
other branch points have to be included to avoid false resonance
signals, which of course can totally distort the spectrum of
excited baryonic resonances.

In such circumstances, one clearly has to consider other
final states in which the resonance candidate shows a clearer
signal. As already proposed in Ref. [35], performing global
analyses of many different reaction channels within one
theoretical ansatz is a much cleaner way to determine the
resonance spectrum than increasing the precision of a partial
wave for one reaction.

First steps within the coupled-channel Jülich model have
been undertaken in this direction through the inclusion of some
ρN data [15], ηN data [16], and, most recently, K++ data
[19]. For the isospin I = 1/2 sector, we expect the inclusion

015205-5



S. CECI et al. PHYSICAL REVIEW C 84, 015205 (2011)

of K0� data to further clarify the role of the N (1710)P11 (see
also Ref. [36]).

Thus, the aim of the present short exercise is not to discard
the existence of the much-debated N (1710)P11 as such. Rather,
we have shown that branch points in the complex plane
are relevant; in their absence, resonances may be needed to
simulate them, and, thus, the extracted baryon spectrum can
be easily distorted.

IV. CONCLUSIONS

Using only general properties of the S matrix we have
shown the existence and determined the position of three
branch points induced by intermediate quasi-two-body states.
Those are three-body states in which two particles are
so strongly correlated that the scattering amplitude of this
subsystem has a pole. A pole in the subsystem necessarily leads
to the appearance of branch points in the complex

√
s plane

of the overall πN amplitude. This result is model independent
because it does not depend on any particular parametrization,
but only on analyticity and general properties of the three-body
phase space. We have also determined the threshold behavior
of all branch points, which depends on the orbital angular
momenta of the two decay processes involved. Finally, on
the example of the P11 partial wave, it has been shown that
branch points in the complex plane are relevant in partial wave
analysis: if a theoretical amplitude does not contain the branch
points, false resonance signals may be obtained. To allow for a
reliable extraction of the baryon spectrum, it is thus mandatory
to include also these branch points in the analysis.
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APPENDIX: SPECTRAL REPRESENTATION
OF THE JÜLICH MODEL

In this appendix the connection of the field theoretical
formalism, used in the Jülich model of hadron exchange, to
the formalism used in this study is outlined, up to overall
normalization factors. For further details of the formalism used
in the Jülich model, we refer to Ref. [18]. For the example of
the ρN propagator that is considered here, the propagator on
the real axis is given by

gρN (
√

s, k) = 1√
s − EN (k) − E0

ρ(k) − [zρ(
√

s, k), k]
,

(A1)

where EN is the nucleon energy, E0
ρ is the ρ energy using the

bare ρ mass, and  is the ρ self-energy, where zρ(
√

s, k) is
the boosted energy for the ρ subsystem. The explicit form of
zρ(

√
s, k) is quoted in Ref. [18] but for the present discussion

the only needed property is that zρ(
√

s, k = 0) = √
s − MN .

The propagator gρN is iterated in the multichannel scattering
equation, but to investigate the analytic structure it is sufficient
to consider the one-loop amplitude

GρN (
√

s) =
∫ ∞

0
dk k2 gρN (

√
s, k), (A2)

where for simplicity we have omitted the form factors that
regularize this divergent expression. One can rewrite the
Dyson-Schwinger representation of Eq. (A1) with the spectral
function

S(ω, k) = − 1

π
Im

1

ω − EN (k) − E0
ρ(k) − [zρ(ω, k), k]

,

(A3)

resulting in the Lehmann representation

gρN (
√

s, k) =
∫ ∞

2mπ +MN

dω
S(ω, k)√
s − ω + iε

. (A4)

For the imaginary part of the ρN loop GρN (
√

s), one obtains

Im GρN (
√

s) = Im
∫ ∞

0
dk k2 gρN (

√
s, k)

= −π

∫ ∞

0
dk k2S(

√
s, k)

= −π

∫ k1

0
dk k2S(

√
s, k). (A5)

The last equality shows that the integration can be cut at k =
k1 as for k > k1 the spectral function is zero because then
zρ(

√
s, k) < 2mπ . In particular, k1 is given by zρ(

√
s, k1) =

2mπ . Note that the explicit evaluation of the integration limits
as done here is necessary if one wants to use the spectral
representation in the complex

√
s plane. This has been shown

recently in the context of Feynman parametrized loops [37]:
the integration limits have to be analytically continued for
complex

√
s to obtain the analytic continuation of the loop

itself, and for this they need to be known explicitly.
Equation (A5) can be rewritten as

Im GρN (
√

s) =
∫ √

s−mπ

m1

dm
S[

√
s, kon(m)] m

Eon
m

×(−π )
kon(m) Eon

π Eon
m√

s
, (A6)

with

kon(m) = p(
√

s,m,mπ ), Eon
π =

√
m2

π + (kon)2,

Eon
m =

√
m2 + (kon)2, (A7)

and p from Eq. (9). The lower integration limit m1 is given as
the solution of zρ[

√
s, kon(m1)] = 2mπ . The second fraction

in Eq. (A6) can be compared to the imaginary part of
the well-known [18] propagator of two stable particles, M
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and N ,

Im Gstable = −π
kon(m = √

s) Eon
M Eon

N√
s

. (A8)

Thus, the imaginary part of a loop with one stable and
one unstable particle can be expressed as an integral over
a distribution of imaginary parts of the form of Eq. (A8).
Comparing Eq. (A6) to Eq. (12), one sees the formal similarity:
there is an integral of a spectral function, which has poles [cf.
Eq. (A3)], together with the factor kon(m) = p(

√
s,m,mπ ),

and both ingredients produce the three branch points zb1,
zb2, and zb3 as has been shown in the main text (we have
omitted here the additional 2L powers of p for simplicity).
There is a difference in the chosen parametrization in terms
of the spectral function [compare p(

√
s,m,mπ ) in Eq. (A7)

vs p(
√

s,m,MN ) in Eq. (12)], but this does not change the
position of the branch points.

Indeed, kon = 0 for the upper integration limit m = √
s −

mπ and thus zρ(
√

s, 0) = √
s − MN . The poles of the ρ

resonance in the spectral function S are located at the complex
zρ = z0

ρ and consequently the integration limit equals the pole

position for
√

s ≡ zb1,2 = MN + z0
ρ , which is indeed Eq. (13).

The singularity at kon = 0, coming from the factor kon(m)
in Eq. (A6), is also reached if m = √

s − mπ . It is easy to
show that this m equals the lower integration limit m1 for√

s = 2mπ + MN and thus Eq. (A6) indeed provides also the
third branch point zb3 from Eq. (14).

In Ref. [18], the amplitude has been analytically continued
to the complex plane using contour deformation. In fact,
one could use the representation of Eq. (A6) for the same
purpose in principle. As shown in the main text, for this,
one has to respect the analyticity of the spectral function,
i.e., the Im function in Eq. (A3) needs to be explicitly
evaluated like in Eq. (15). Second, and this is an additional
complication, the self-energy  itself has a two-sheet structure
and the corresponding cut needs to be rotated as specified
in Ref. [18]. This cut in  induces the cut of branch point
zb3 in the overall πN amplitude. Apart from this and a
carefully chosen integration path for the m integration of
Eq. (A6), there are no additional complications, and the spec-
tral representation allows for an alternative method of analytic
continuation.
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