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�c D̄ and �c D̄ states in a chiral quark model
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The S-wave �cD̄ and �cD̄ states with isospin I = 1/2 and spin S = 1/2 are dynamically investigated within
the framework of a chiral constituent quark model by solving a resonating group method equation. The results
show that the interaction between �c and D̄ is attractive, which consequently results in a �cD̄ bound state with
a binding energy of about 5–42 MeV, unlike the case of the �cD̄ state, which has a repulsive interaction and thus
is unbound. The channel-coupling effect of �cD̄ and �cD̄ is found to be negligible owing to the fact that the gap
between the �cD̄ and �cD̄ thresholds is relatively large and the �cD̄ and �cD̄ transition interaction is weak.
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I. INTRODUCTION

Understanding the structure and dynamical origin of baryon
resonances is one of the most important topics within the field
of hadron physics. On the quark level, several constituent quark
models have been developed to investigated the mass spectrum
of excited baryon states. Isgur, Karl, and Capstick described the
baryon resonances as excited states of three constituent quarks
(qqq) which are confined by a phenomenological confinement
potential and interact through a residual interaction inspired
by one-gluon exchange (OGE) [1,2]. Glozman and Riska pro-
posed a rather different interaction mechanism. In their model,
two quarks interact via Goldstone boson exchanges (GBEs) in
addition to a phenomenological confinement potential, and it
is claimed that the flavor-dependent interaction is responsible
for the low mass of the Roper resonance [N∗(1440)] [3,4].
So far it is not clear whether the interactions among the
three constituent quarks, which are assumed to form the
baryon resonances, should be described by either OGE or
GBE or a mixture of both [5,6]. In chiral constituent quark
models, it is found that some nucleon resonances are able
to be accommodated as baryon-meson dynamically generated
resonances [7–9]. In Refs. [7,8], the �K and �K states were
dynamically investigated in a chiral SU(3) quark model, and it
was shown that a resonance with the same quantum numbers
as the S11 nucleon resonances can be dynamically generated
owing to the strong �K attraction. In Ref. [9] also, the K̄N

and π� interactions were dynamically investigated within the
extended chiral SU(3) quark model, and it was found that
both π� and K̄N are bound and the latter appears as a π�

resonance in a coupled-channel calculation. This resonance is
referred to as �(1405).

At the hadron level, various sophisticated coupled-channel
approaches have been formulated for the study of baryon
resonances. In the K-matrix-approximation approach [10–12],
only on-shell intermediate states are taken into account when
solving the scattering equation for two-body scattering, which
prohibits virtual two-body intermediate states. There, all
resonances are treated as genuine resonances and no dynamical
poles are reported. The unitary isobar model was developed by
Drechsel et al. [13]. It is a variation of the standard K-matrix-

approximation approach, and all the resonances are included
as genuine resonances described by Breit-Wigner forms. In the
chiral unitary approach, which includes only the lowest-order
interacting diagrams (i.e., the contact terms) in the scattering
kernel, a completely different picture is delivered and reso-
nances appear as dynamical effects through rescattering. In the
baryon sector, the N∗(1535), N∗(1650), N∗(1700), �∗(1700),
and �(1405) have been claimed to be dynamically generated
from the interactions of the pseudoscalar meson octet or vector
meson octet with the nucleon octet or � decuplet [14–16].
The dynamical coupled-channel hadron-exchange models,
capable of a quantitative description of the meson production
processes, have been developed by the Jülich group and the
Excited Baryon Analysis Center (EBAC) at Jefferson Lab to
study the nucleon resonances [17–21]. In the Jülich model, the
Roper N∗(1440) resonance appears as a dynamically generated
resonance and the other resonances like N∗(1535), N∗(1650),
and �∗(1700) are included as genuine resonances [17–19]. In
the EBAC model, all resonances needed for fitting the data are
included explicitly and no dynamically generated resonance is
reported [20,21].

The situation we have presented so far clearly shows that
the constituent quark models and the models on the hadron
level do not give us a definite picture of the structures of the
baryon resonances. Different models may give us different
descriptions for the resonance structures even though they
fitted the same set of data, since each model has its own
uncertainties with tunable parameters. Thus it is still confusing
to us whether the baryon resonances should be described by
three-quark (qqq) or five-quark configurations (qqqqq̄), or
baryon-meson dynamically generated states, or a mixture of
them.

The study of �cD̄ and �cD̄ states is of particular interest.
If there exists a �cD̄ bound state or a �cD̄-�cD̄ dynamically
generated state, its energy will be around 4.3 GeV. Unlike
the low-energy resonances, where the excitation energies, i.e.,
the energy differences of nucleon ground state and nucleon
resonance states, are hundreds of MeV (usually comparable
to the 3q configuration excitation energy), such a high-energy
resonance, if it exists, will have more than 3.3 GeV excitation
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energy. This definitely excludes its explanation as a three-light-
quark configuration (qqq), and only its description as domi-
nated by a hidden charm five-constituent-quark configuration
(qqqcc̄), or a �cD̄ bound state, or a �cD̄-�cD̄ resonance
state, or a mixture of them is possible.

In Refs. [22,23], the interaction between �cD̄ and �cD̄ was
studied within the framework of the coupled-channel unitary
approach. There, a �cD̄ bound state is obtained with energy of
4.269 GeV, which is about 52 MeV below the �cD̄ threshold.
This state is found not to couple to the �cD̄ channel even
though its energy is about 114 MeV above the �cD̄ threshold.
Since the unitary approach used in Refs. [22,23] is restricted
to the contact term interaction only, the momentum-dependent
terms being neglected, a study of the �cD̄ and �cD̄ states
in other approaches is imperative in order to check the model
dependence and to confirm the possibility of the existence of
such a �cD̄ bound state.

In the past few years, the chiral SU(3) quark model and its
extended version have been shown to be quite reasonable and
useful models to describe the medium-range nonperturbative
QCD effect in light-flavor systems. Some successes were
achieved when these two models were applied to studies of
the energies of the baryon ground states, the binding energy
of the deuteron, the nucleon-nucleon (NN ) and kaon-nucleon
(KN ) scattering phase shifts of different partial waves, and
the hyperon-nucleon (YN ) and antikaon-nucleon (K̄N ) cross
sections [24–30]. In the chiral SU(3) quark model, the quark-
quark interaction contains OGE, a confinement potential, and
boson exchanges stemming from scalar and pseudoscalar
nonets. In the extended chiral SU(3) quark model, the boson
exchanges stemming from the vector nonets are also included,
and as a consequence the OGE is greatly reduced by fitting to
the energies of the octet and decuplet baryon ground states.
Recently, these two models have also been applied to study
the systems Nφ, N�̄, �K̄ , �π , �ω, ωφ, and D0D̄∗0, among
others [31–37].

In this work, we further extend the chiral SU(3) quark model
and its extended version to perform a dynamical coupled-
channel study of the �cD̄ and �cD̄ states in the framework
of the resonating group method (RGM), a well-established
method for studying the interactions among composite parti-
cles [38–40]. The quark configuration of the considered system
is (qqc)-(qc̄) with q being the light-flavor quark u or d. We
take the interaction between the light-flavor quark pair qq from
our previous work, where the parameters were fixed by a fitting
of the energies of octet and decuplet baryon ground states, the
binding energy of the deuteron, the NN scattering phase shifts,
and the YN cross sections [24,25]. The light-heavy quark pair
qc or qc̄ and the heavy-heavy quark pair cc̄ are considered
here to interact via the OGE and confinement potential. The
only adjustable parameter is the charm quark mass mc, while
the parameters of the OGE and the confinement for qc, qc̄,
and cc̄ interactions are fixed by the masses of the charmed
baryons �c and �c, the charmed mesons D and D∗, and the
charmonium J/ψ and ηc, and by the stability conditions of
those hadrons. Our results show that the interaction between
�c and D̄ is attractive, which consequently results in a �cD̄

bound state with binding energy of about 5–42 MeV, unlike

the �cD̄ state, which has a repulsive interaction and thus is
unbound. The channel-coupling effect of �cD̄ and �cD̄ is
found to be negligible because the gap between the �cD̄ and
�cD̄ thresholds is relatively large and the �cD̄ and �cD̄

transition interaction is weak.
The paper is organized as follows. In the next section the

framework is briefly introduced. The results for the �cD̄ and
�cD̄ states are shown in Sec. III, where some discussion is
presented as well. Finally, the summary is given in Sec. IV.

II. FORMULATION

The chiral quark model used in the present work has been
widely described in the literature [7,8,27–30], and we refer the
reader to those references for details. Here we just present the
salient features of this model. The total Hamiltonian is written
as

H =
∑

i

Ti − TG +
∑
i,j

Vij , (1)

where Ti is the kinetic energy operator for the ith quark, and TG

is the kinetic energy operator for the center-of-mass motion.
Vij represents the interactions between quark-quark and quark-
antiquark,

Vij =
{

V OGE
ij + V conf

ij + ∑
M V M

ij (ij = qq) ,

V OGE
ij + V conf

ij (ij = qQ, qQ̄,QQ̄),

(2)

where q and Q represent the light quark u or d and heavy
quark c, respectively; V OGE

ij is the OGE potential

V OGE
ij = 1

4
gi gj

(
λc

i · λc
j

) [
1

rij

− π

2
δ(r ij )

×
(

1

m2
qi

+ 1

m2
qj

+ 4

3

σ i · σ j

mqi
mqj

) ]
, (3)

and V conf
ij is the confinement potential which provides the

nonperturbative QCD effect at large distance,

V conf
ij = −(

λc
i · λc

j

)(
ac

ij rij + ac0
ij

)
. (4)

V M
ij represents the effective quark-quark potential induced by

one-boson exchanges, and it is only considered for the light
quark pairs. Generally,

V M
ij = V

σa

ij + V
πa

ij + V
ρa

ij , (5)

with V
σa

ij , V
πa

ij , and V
ρa

ij stemming from scalar nonets,
pseudoscalar nonets, and vector nonets, respectively. Their
explicit forms are

V σa (r ij ) = −C(gch,mσa
,�)X1(mσa

,�, rij )
(
λa

i λ
a
j

)
, (6)

V πa (r ij ) = C(gch,mπa
,�)

m2
πa

12mqi
mqj

X2(mπa
,�, rij )

×(σ i · σ j )
(
λa

i λ
a
j

)
, (7)
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V ρa (r ij ) = C(gchv,mρa
,�)

[
X1(mρa

,�, rij ) + m2
ρa

6mqi
mqj

×
(

1 + fchv

gchv

mqi
+ mqj

MN

+ f 2
chv

g2
chv

mqi
mqj

M2
N

)

×X2(mρa
,�, rij ) (σ i · σ j )

] (
λa

i λ
a
j

)
, (8)

where

C(gch,m,�) = g2
ch

4π

�2

�2 − m2
m, (9)

X1(m,�, r) = Y (mr) − �

m
Y (�r), (10)

X2(m,�, r) = Y (mr) −
(

�

m

)3

Y (�r), (11)

Y (x) = 1

x
e−x, (12)

with mσa
being the mass of the scalar meson, mπa

the mass
of the pseudoscalar meson, and mρa

the mass of the vector
meson. mqi

is the constituent quark mass of the ith quark. gch

is the coupling constant for the scalar and pseudoscalar nonets,
and gchv and fchv the coupling constants for vector coupling
and tensor coupling of vector nonets.

In this work, we take the parameters for the light-flavor
quark system from our previous work [8,33,34], which gave
a satisfactory description for the energies of the octet and
decuplet baryon ground states, the binding energy of the
deuteron, the NN scattering phase shifts, and the NY cross
sections. The main procedure for determination of those
parameters is the following. The initial input parameters, i.e.,
the harmonic-oscillator width parameter bu and the up (down)
quark mass mu(d), are taken to have the usual values: bu =
0.5 fm for the chiral SU(3) quark model and 0.45 fm for the
extended chiral SU(3) quark model and mu(d) = 313 MeV.
The coupling constant for scalar and pseudoscalar chiral field
coupling, gch, is fixed by the relation

g2
ch

4π
=

(
3

5

)2
g2

NNπ

4π

m2
u

M2
N

, (13)

with the empirical value g2
NNπ/4π = 13.67. For the vector

meson field coupling, we consider three different cases. In
model I, the coupling between vector meson field and quark
field is not considered at all, which means gchv = 0. Then, in
models II and III, the coupling constant for vector coupling is
taken to be gchv = 2.351 and 1.973, respectively, and the ratio
for the tensor coupling and vector coupling is taken to be 0 and
2/3, respectively. The masses of the mesons are taken to be the
experimental values, except for the σ meson. mσ is obtained
by fitting the binding energy of the deuteron. The cutoff radius
�−1 is taken to have a value close to the chiral symmetry
breaking scale [41–44]. The OGE coupling constants and the
strengths of the confinement potential are fitted by the baryon
masses and their stability conditions.

Note that, in light-flavor quark systems, the confinement
potential is found to give negligible contributions between two
color-singlet hadron clusters [7,27–29]. Therefore different

TABLE I. Model parameters. Model I refers to the model where
the coupling for vector nonets is not considered. Models II and III
refer to the models where the coupling for vector nonets is included
while the ratio for tensor coupling and vector coupling fchv/gchv is
taken to be 0 and 2/3, respectively.

mc gc ac
uu ac

uc ac
cc ac0

uu ac0
uc ac0

cc

(GeV) (fm−2) (fm−2) (fm−2) (fm−1) (fm−1) (fm−1)

I 1.43 0.35 0.44 1.07 1.74 −0.38 −0.74 −0.73
1.55 0.37 0.44 1.08 1.77 −0.38 −0.85 −0.93
1.87 0.43 0.44 1.10 1.81 −0.38 −1.14 −1.44

II 1.43 0.77 0.41 1.70 1.83 −0.53 −1.15 −0.34
1.55 0.82 0.41 1.72 1.68 −0.53 −1.27 −0.40
1.87 0.94 0.41 1.76 1.04 −0.53 −1.57 −0.47

III 1.43 0.57 0.37 1.68 2.19 −0.46 −1.14 −0.71
1.55 0.60 0.37 1.69 2.16 −0.46 −1.25 −0.85
1.87 0.69 0.37 1.74 1.94 −0.46 −1.55 −1.17

forms of confinement potential (linear or quadratic) do not
have any visible influence on the theoretical results in light-
flavor quark systems. In the present work we adopt a color
linear confinement potential. The results from a calculation
using a color quadratic confinement potential are discussed as
well. Of course the NN scattering phase shifts and the NY

cross sections are always well described irrespective of the
confinement form because the contribution of any confinement
to these systems is negligible.

The additional parameters needed in the present work are
those associated with the charm quark. The only adjustable
parameter is the charm quark mass mc. Here we take three
typical values, mc = 1.43 GeV [45], 1.55 GeV [46], and
1.87 GeV [47], to test the dependence of our results on mc.
The other parameters we need are the coupling constant of
the OGE and confinement strengths for light and heavy quark
pairs qc and qc̄ and for the heavy quark pair cc̄. They are
fixed by a fitting to the masses and stability conditions of the
charmed baryons �c and �c, charmed mesons D and D∗, and
charmonium J/ψ and ηc. The values of those parameters are
listed in Table I. The corresponding masses of �c, �c, D,
D∗, J/ψ , and ηc obtained with mc = 1.55 GeV are shown in
Table II. There, model I refers to the model where the coupling
for vector nonets is not considered. Models II and III refer to the
models where the coupling for vector nonets is included while
the ratio for tensor coupling and vector coupling, fchv/gchv, is
taken to be 0 and 2/3, respectively.

TABLE II. The masses (in GeV) of �c, �c, D, D∗, J/ψ , and ηc

obtained from models I, II, and III, respectively, with mc being taken
as 1.55 GeV. Experimental values are taken from the Particle Data
Group (PDG) [48].

�c �c D D∗ J/ψ ηc

Expt. 2.452 2.286 1.869 2.007 3.097 2.980
I 2.436 2.269 1.883 1.947 3.052 3.024
II 2.450 2.283 1.869 1.932 3.129 2.946
III 2.450 2.283 1.869 1.932 3.087 2.989
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With all parameters determined, the �cD̄ and �cD̄ systems
can be dynamically studied in the framework of the RGM,
where the wave function of the five-quark system is of the
following form:

� =
∑

β

A{[φ̂A(ξ1, ξ2)φ̂B(ξ3)]βχβ(RAB)}. (14)

Here ξ1 and ξ2 are the internal coordinates for the cluster
A (�c or �c), and ξ3 is the internal coordinate for the
cluster B (D̄). RAB ≡ RA − RB is the relative coordinate
between the two clusters A and B, and β ≡ (A,B, I, S, L, J )
specifies the hadron species (A,B) and quantum numbers of
the baryon-meson channel. φ̂A and φ̂B are the internal cluster
wave functions of A and B, and χβ(RAB) is the relative wave
function of the two clusters. The symbol A represents the
antisymmetrizing operator defined as

A ≡ 1 −
∑
i∈A

Pi4 ≡ 1 − 3P34. (15)

Substituting � into the projection equation

〈δ�|(H − E)|�〉 = 0, (16)

we obtain the coupled integro-differential equation for the
relative function χβ as∑

β ′

∫
[Hββ ′(R,R′) − ENββ ′ (R,R′)]χβ ′(R′) dR′ = 0,

(17)

where the Hamiltonian kernel H and normalization kernel N
can, respectively, be calculated from{

Hββ ′(R,R′)
Nββ ′ (R,R′)

}
=

〈
[φ̂A(ξ1, ξ2)φ̂B(ξ3)]βδ(R − RAB)

×
∣∣∣∣
{

H

1

}∣∣∣∣A[[φ̂A(ξ1, ξ2)φ̂B(ξ3)]β ′δ

× (R′ − RAB)]

〉
. (18)

Equation (17) is the so-called coupled-channel RGM
equation. Expanding the unknown χβ(RAB) by employing
well-defined basis wave functions, such as Gaussian functions,
one can solve the coupled-channel RGM equation for a
bound-state or a scattering problem to obtain the binding
energy or scattering S matrix elements for the two-cluster
systems. The details of solving the RGM equation can be
found in Refs. [38–40].

III. RESULTS AND DISCUSSION

As mentioned in the Introduction, the structures of the
nucleon resonances below 2 GeV are not clear so far. Different
models may give us different pictures even though they fit the
same set of data, since each model has its own uncertainties,
which are usually approximated by fitting parameters. It is
still a challenging question for hadron physicists whether
the low-energy baryon resonances should be described by a
three- (qqq) or a five-constituent-quark configuration

(qqqqq̄), or baryon-meson dynamically generated states, or
a mixture of them. The �cD̄ and �cD̄ states are of particular
interest simply because if there exists a �cD̄ bound state
or a �cD̄-�cD̄ dynamically generated resonance, its energy
will be around 4.3 GeV, and the explanation of such a
high-energy state as a three-constituent-quark configuration
(qqq) will be definitely excluded; only the description that this
state is dominated by a hidden charm five-constituent-quark
configuration (qqqcc̄) or a �cD̄-�cD̄ baryon-meson state
or a mixture of them will be possible. Thus the system of
�cD̄-�cD̄ is a good place to test whether we could have a
nucleon resonance whose configuration is dominated by at
least five quarks.

Here we perform a dynamical investigation of the �cD̄ and
�cD̄ states with isospin I = 1/2 and spin S = 1/2 by solving
the RGM equation [Eq. (17)] in our chiral quark models as
depicted in Sec. II. Our purpose is to understand the interaction
properties of the �cD̄ and �cD̄ states and to see whether
there exists a �cD̄ bound state or a �cD̄-�cD̄ dynamically
generated resonance within our chiral quark models.

Figure 1 shows the diagonal matrix elements of the
Hamiltonian for the �cD̄ system in the generator coordinate
method (GCM) [38] calculation, which can be regarded
qualitatively as the effective Hamiltonian of two color-singlet
clusters �c and D̄. In Fig. 1, H�cD̄ includes the kinetic energy
of �cD̄ relative motion and the effective potential between
�c and D̄, and s denotes the generator coordinate, which can
qualitatively describe the distance between the two clusters
�c and D̄. From Fig. 1, one sees that �c and D̄ are attractive
to each other in the medium range for all three values of the
charm quark mass mc = 1.43, 1.55, and 1.87 GeV and all
three models I, II, and III (see Sec. II for details of these three
models). Our further analysis demonstrates that in model I
the attraction between �c and D̄ is dominated by σ exchange
and the color magnetic force of the OGE; the latter exists
between the two color-singlet clusters �c and D̄ because of
the antisymmetrizing [Eq. (14)] of the four constituent quarks
in �cD̄ required by the general Pauli principle. In models II
and III, the OGE, among light-flavor quarks are greatly reduced
by vector-meson exchanges and the �cD̄ attraction is found
to be dominated by σ and ρ exchanges.

Inspired by the moderately large �cD̄ attraction, we solved
the RGM equation for a bound-state problem to see whether
or not there is a �cD̄ bound state. Our results are listed
in Table III, where the first and second columns denote the
model and the charm quark mass, respectively, and the third
column shows the corresponding binding energy for each set of
parameters. One sees that the �cD̄ is really bound independent
of the type of model and the value of the charm quark mass
we use. The binding energy is around 9–42 MeV in various
models, which corresponds to an energy of 4.279–4.312 GeV
for the �cD̄ bound state (the �cD̄ threshold is 4.321 GeV).

Here we would like to discuss the dependence of our results
on the phenomenological confinement potential. In light-flavor
quark systems, the SU(3) flavor symmetry is approximately
respected and thus the confinement potential between two
color-singlet hadron clusters is found to give negligible
contributions [7,27–29]. If the charm quark is included, the
SU(4) flavor symmetry is strongly violated since the charm

015203-4



�cD̄ AND �cD̄ STATES IN A . . . PHYSICAL REVIEW C 84, 015203 (2011)

FIG. 1. (Color online) The GCM matrix elements of the Hamil-
tonian for the �cD̄ system. The dotted, solid, and dash-dotted lines
represent the results obtained in models I, II, and III, respectively.

TABLE III. The binding energy of �cD̄ (in MeV) in models I, II,
and III, respectively.

mc (GeV) r confinement r2 confinement

I 1.43 9.3 4.5
1.55 10.9 6.4
1.87 15.3 11.0

II 1.43 28.3 9.3
1.55 31.8 10.3
1.87 41.6 10.0

III 1.43 19.7 7.3
1.55 22.2 8.9
1.87 28.6 11.3

quark mass is much bigger than that of the light-flavor quark.
The consequence of this flavor symmetry violation is that the
contribution of the confinement potential to the interaction
between two hadron clusters may not be negligible. In the
present work, we check the dependence of our results on
the form of the confinement potential by replacing the linear
confinement [Eq. (4)] with a quadratic one,

V conf
ij = −(λc

i · λc
j )

(
ac

ij r
2
ij + ac0

ij

)
, (19)

with the parameters being fitted by using the same procedure as
given in the previous section. With the quadratic confinement
Eq. (19), we re-solve the RGM equation for the �cD̄ bound-
state problem, and the results are shown in the fourth column of
Table III. One sees that the �cD̄ is still bound in various models
and the binding energy is around 5–11 MeV, which is a little
smaller than that for linear confinement. The corresponding
energy of the �cD̄ bound state is 4.310–4.316 GeV.

We have also studied the �cD̄ system. Figure 2 shows
the diagonal matrix elements of the Hamiltonian for the
�cD̄ system in the GCM calculation, which can be regarded
qualitatively as the effective Hamiltonian of two color-singlet
clusters �c and D̄. One sees that, unlike the �cD̄ system,
which is attractive in the medium range, the �cD̄ system is
strongly repulsive for all three models and all three values of
charm quark mass. No �cD̄ bound state will be found as a
matter of course because of this repulsion.

Is there a �cD̄-�cD̄ resonance in the coupled-channel
study? In Refs. [7,8], we dynamically investigated the �K

and �K systems by using the RGM in our chiral quark model.
There, it was found that the �K interaction is attractive and
a �K bound state can be formed as a consequence, with a
binding energy of about 17–44 MeV, while the �K state is
repulsive and unbound. In the coupled-channel calculation,
a �K-�K dynamically generated resonance is obtained; it
is located between the thresholds of �K and �K and has
quantum numbers the same as those for nucleon S11 reso-
nances. By analogy, one may expect a �cD̄-�cD̄ dynamically
generated resonance in the coupled-channel calculation since
�cD̄ is also attractive and bound just like �K . But actually,
the coupled-channel effect of �cD̄ and �cD̄ is found to
be negligible, and no �cD̄-�cD̄ resonance is found in our
coupled-channel calculation. This is because the gap between
the �cD̄ and �cD̄ thresholds, 166 MeV, is comparatively big
and the transition matrix elements between �cD̄ and �cD̄ are
too weak, in contrast to the case of the �K-�K system, where
the gap between the two channel thresholds is only 78 MeV
and the transition matrix elements between �K and �K are
relatively large.

In brief, we obtain a �cD̄ bound state in our model with
energy of about 4.279–4.316 MeV, and the effect on this state
of the �cD̄ channel is negligible. In Refs. [22,23], the �cD̄

and �cD̄ states were studied on the hadron level within the
framework of the coupled-channel unitary approach. There,
a �cD̄ bound state was also found with energy of about
4.240–4.291 GeV, and this state does not couple to the �cD̄

channel. Although the binding energy given in Refs. [22,23]
is bigger than that obtained in the present work, it makes
sense that the results from different theoretical approaches
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FIG. 2. (Color online) The GCM matrix elements of the Hamil-
tonian for the �cD̄ system. The dotted, solid, and dash-dotted
lines represent the results obtained in models I, II, and III,
respectively.

are qualitatively similar. Note that the �cD̄ bound state, if it
exists, cannot be accommodated in the three light-flavor quark
configuration (qqq), unlike the nucleon resonances below
2 GeV. Whether or not it can be explained as a hidden charm

five-constituent-quark configuration (qqqcc̄) needs further
detailed scrutiny. Investigations from other approaches and
experiments are needed to further confirm the existence of this
state and to pin down its structure and mass.

As discussed in Refs. [22,23], the largest decay modes of
the �cD̄ bound state are expected to be ηcN , K�, ηN , η′N ,
and πN through t-channel D∗ and D∗

s exchanges. A much
smaller but much more easily detected decay mode is J/ψN

through t-channel D exchange. Since D∗, D∗
s , and D are very

heavy, the total decay width of the state is expected to be
small. The narrow width of the predicted state makes it easier
to observe in experiments. Furthermore, compared with those
baryons with hidden charms below the ηcN threshold proposed
by other approaches [49], the �cD̄ bound state predicted by the
present work is above the ηcN and J/ψN thresholds, which
also makes it much easier to detect experimentally.

IV. SUMMARY

In this work, we perform a dynamical coupled-channel
study of the �cD̄ and �cD̄ states by solving the RGM
equation in the framework of a chiral quark model. The model
parameters for light-flavor quarks are taken from our previous
work [8]; they gave a satisfactory description of the energies
of the octet and decuplet baryon ground states, the binding
energy of the deuteron, the NN scattering phase shifts, and
the NY cross sections. The parameters associated with the
charm quark are determined by fitting the energies and the
stability conditions of �c, �c, D, D∗, J/ψ , and ηc. Our results
show that the �c and D̄ interaction is attractive and a �cD̄

bound state can be formed as a consequence, with energy of
about 4.279–4.316 GeV, while the �cD̄ state is repulsive and
unbound. The channel-coupling effect between �cD̄ and �cD̄

is negligible because of the large mass difference between
the �cD̄ and �cD̄ thresholds and the small off-diagonal
matrix elements of �cD̄ and �cD̄. This �cD̄ bound state,
if it really exists, cannot be accommodated in a three-light-
flavor-quark configuration (qqq). Further investigations using
other approaches and experiments are needed to confirm the
existence of this state and to pin down its structure and mass.
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