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Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of
measurable intensive quantities which are independent of system size variations. The first family of such quantities
was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of
volume fluctuations for quantities from both families within the framework of the grand canonical ensemble.
These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays
is also discussed.
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I. INTRODUCTION

An intensive quantity is a physical quantity which does
not depend on the system volume. In contrast, an extensive
quantity is proportional to the system volume. Clearly, the
ratio of two extensive quantities is an intensive one. As an
example, let us consider the number of particles, N , in the
relativistic gas which fluctuates around its mean value, 〈N〉.
Within the grand canonical ensemble, 〈N〉 is an extensive
quantity, whereas the ratio of mean multiplicities of two
different particle types is an intensive one. Particle number
fluctuations are quantified by the variance 〈N2〉 − 〈N〉2,
which is an extensive quantity, while the scaled variance,
[〈N2〉 − 〈N〉2]/〈N〉, is an intensive one.

Statistical models are surprisingly successful in modeling
multiparticle production in high-energy interactions [1]. They
are used to describe properties of strongly interacting matter
created in nucleus-nucleus collisions in terms of intensive
quantities. In particular, an equation of state is usually given
as a function relating pressure, temperature, and baryonic
chemical potential. On the other hand, in high-energy colli-
sions the volume of produced matter cannot be kept fixed. For
instance, nucleus-nucleus collisions with different centralities
may produce a statistical system with the same local properties
(e.g., the same temperature and baryonic chemical potential)
but with the system volume changing significantly from
interaction to interaction. Thus, an important question is
whether it is possible to measure the properties of the system
without knowing its volume fluctuations, or equivalently,
whether there are measurable quantities which are independent
of volume fluctuations.

Within the grand canonical ensemble, the answer is yes, and
the quantities with the required properties are referred to as
strongly intensive ones. Ratios of mean particle multiplicities
are strongly intensive quantities. In general, this is the case for
all ratios of any two extensive quantities which correspond to
the first moments of fluctuating variables. They are intensive
and strongly intensive quantities. However, the situation is
more complicated for the measures of fluctuations which
include the second moments of fluctuating variables. For
example, as is shown below, the scaled variance of a particle

number distribution is an intensive quantity but not a strongly
intensive one.

In this paper, we show that there are two families of strongly
intensive quantities which characterize the second moments of
random extensive variables used to study fluctuations and cor-
relations in a physical system. The first family was introduced
in 1992 [2], and another one is proposed in this paper.

The paper is organized as follows. In Sec. II, the two
families of strongly intensive quantities are introduced. For
simplicity, this is done within the model of independent
particle sources. The relation of the strongly intensive
quantities to previously used fluctuation measures is discussed
in Sec. III. The proof that the quantities are in fact strongly
intensive, that is, strictly independent of volume and volume
fluctuations within the grand canonical ensemble, is given
in Sec. IV. Finally, their properties within the canonical
and microcanonical ensembles are discussed in Sec. V. The
summary given in Sec. VI closes the paper.

II. TWO FAMILIES OF STRONGLY
INTENSIVE QUANTITIES

Let us start from the model of independent sources for
multiparticle production in which the number of sources, Ns ,
changes from event to event. The first and the most popular
example of this approach is the wounded nucleon model [3].
In the model of independent sources, extensive quantities
(e.g., mean number of particles and mean transverse energy)
are considered as those which are proportional to Ns . Two
fluctuating extensive variables A and B can be expressed as

A = a1 + a2 + · · · + aNs
, B = b1 + b2 + · · · + bNs

, (1)

where ak and bk denote the contributions from the kth source.
One finds for event averages

〈A〉 = 〈a〉〈Ns〉, 〈A2〉 = 〈a2〉〈Ns〉 + 〈a〉2
[〈
N2

s

〉 − 〈Ns〉
]
,

(2)

〈B〉 = 〈b〉〈Ns〉, 〈B2〉 = 〈b2〉〈Ns〉 + 〈b〉2
[〈
N2

s

〉 − 〈Ns〉
]
,

(3)

〈AB〉 = 〈ab〉〈Ns〉 + 〈a〉〈b〉[〈N2
s

〉 − 〈Ns〉
]
, (4)
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where 〈a〉, 〈b〉 and 〈a2〉, 〈b2〉, 〈ab〉 are the first and second
moments of the distribution P ∗(a, b) for a single source.
These quantities are independent of Ns and play the role
of intensive quantities in the model of independent sources.
The distribution P ∗(a, b) is assumed to be the same for all
sources; that is, they are statistically identical. The probability
distribution Ps(Ns) of the source number is needed to calculate
〈Ns〉 and 〈N2

s 〉 and, in general, it is unknown. Using Eq. (2),
the scaled variance ωA which describes the event-by-event
fluctuations of the extensive variable A can be presented as

ωA ≡ 〈A2〉 − 〈A〉2

〈A〉 = 〈a2〉 − 〈a〉2

〈a〉 + 〈a〉
〈
N2

s

〉 − 〈Ns〉2

〈Ns〉
≡ ω∗

a + 〈a〉ωs, (5)

where ω∗
a is the scaled variance of the quantity A for each

source. A similar expression follows from Eq. (3) for the scaled
variance ωB . The scaled variances ωA and ωB are independent
of the average number of sources 〈Ns〉. Thus, ωA and ωB are
intensive quantities. However, they depend on the fluctuations
of the number of sources via ωs and, therefore, they are not
strongly intensive quantities.

From Eq. (2) follows that a knowledge of 〈A〉 and 〈A2〉 is not
sufficient to derive any strongly intensive quantity. However,
this is possible when two extensive random variables A and B

are considered. In order to characterize fluctuations, one may
then construct special combinations of the second moments in
which the terms proportional to 〈N2

s 〉 in the right-hand side
of Eqs. (2)–(4) are not present. Clearly, only two linearly
independent combinations of this type result from the three
equations (2)–(4). Note that in order to remove the dependence
on 〈Ns〉, strongly intensive quantities should be in a form of
reducible fractions. The following combinations seem the most
convenient:

AB∑
= 〈C〉−1[〈B〉ωA + 〈A〉ωB − 2(〈AB〉 − 〈A〉〈B〉)], (6)

�AB = 〈C〉−1[〈B〉ωA − 〈A〉ωB], (7)

where 〈C〉 is the average of any extensive quantity, for
example, 〈A〉 or 〈B〉. Straightforward calculation of (6) and
(7) using Eqs. (2)–(5) gives

AB∑
= 〈c〉−1[〈b〉ω∗

a + 〈a〉ω∗
b − 2(〈ab〉 − 〈a〉〈b〉)], (8)

�AB = 〈c〉−1[〈b〉ω∗
a − 〈a〉ω∗

b]. (9)

Thus, �AB and �AB defined by Eqs. (6) and (7) depend on
ω∗

a and ω∗
b , but they are independent of the average number of

sources 〈Ns〉 and its fluctuations ωs . They are, in fact, strongly
intensive measures which quantify fluctuations of any two
extensive random variables A and B. This is proved in Sec. IV
within the grand canonical ensemble for a case of particle
multiplicities.

There is an important difference between the �AB and
�AB quantities. Namely, in order to calculate �AB one needs
to measure only the first two moments: 〈A〉, 〈B〉 and 〈A2〉,
〈B2〉. This can be done by independent measurements of the
distributions PA(A) and PB(B). Quantity �AB includes the
correlations term, 〈AB〉 − 〈A〉〈B〉, and thus it also requires

simultaneous measurements of A and B in order to obtain
the joint probability distribution PAB(A,B). The quantities
�AB and �AB also have different symmetry properties:
�AB = �BA and �AB = −�BA. We call all strongly intensive
quantities which include the correlation term the � family, and
those which include only variances are the � family.

III. RELATION TO OTHER FLUCTUATION MEASURES

The well-known fluctuation measure � was introduced in
1992 [2] for a study of transverse momentum fluctuations,
and it belongs to the � family. In the general case [4], when
A ≡ X = ∑N

i=1 xi represents any motional extensive variable
as a sum of single-particle variables and B ≡ N is the particle
multiplicity, one gets

�x =
[ 〈X〉
〈N〉�

XN

]1/2

− [x2 − x2]1/2, (10)

where �XN is given by Eq. (6) with C ≡ N , and x2, x2

correspond to single-particle inclusive averages. Note that
these inclusive quantities can also be presented in terms of
event averages, namely x = 〈X〉/〈N〉 and x2 = 〈X2〉/〈N〉,
where X2 ≡ ∑N

i=1 x2
i . The measure � was extended in 1999

[5,6] for multiplicity fluctuations. For two particle types, A

and B, the � measure was constructed by setting xi = 1
if the ith particle is of the A type and xi = 0 otherwise.
One then finds x = x2 = 〈A〉/[〈A〉 + 〈B〉] and thus x2 −
x2 = 〈A〉〈B〉/[〈A〉 + 〈B〉]2 with A and B denoting particle
numbers. Taking into account these relations, and using X = A

and N = A + B in Eq. (10), the expression for the � reads

� =
√〈A〉〈B〉
〈A + B〉 [(�AB)1/2 − 1], (11)

where �AB is given by Eq. (6) with C ≡ A + B.
A possible extension of � for the case of two motional

variables has not been discussed yet; however, it can be done
naturally within the framework of the �AB and �AB families
presented here. It is also important to note that the � measure
extended to the study of the third moment preserves its strongly
intensive properties within the model of independent sources
[7]. Study of strongly intensive quantities which include third
and higher moments of extensive quantities is beyond the scope
of this paper.

Another quantity frequently used to characterize the fluctu-
ations of particle numbers A and B was introduced in 2002 [8]
as

νAB
dyn ≡ 〈A(A − 1)〉

〈A〉2
+ 〈B(B − 1)〉

〈B〉2
− 2

〈AB〉
〈A〉〈B〉 . (12)

Using Eq. (6) with C ≡ A + B, one easily finds the relation

νAB
dyn = 〈A + B〉

〈A〉〈B〉 [�AB − 1]. (13)

Equation (13) shows that νAB
dyn , similar to �AB , is independent

of fluctuations of the source number, but it decreases as νAB
dyn ∝

〈Ns〉−1 and, thus, it is not an intensive quantity. Note that the
quantity 〈C〉νAB

dyn , where C can be chosen as A, B, or A + B,
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is a strongly intensive quantity from the � family. Despite the
fact that specific examples of the �AB family were introduced
and discussed a long time ago, the �AB family is now proposed
in this paper.

IV. PROOF WITHIN THE GRAND
CANONICAL ENSEMBLE

Let us now prove within the grand canonical ensemble
(GCE) that the two families of quantities, �AB and �AB , are
strongly intensive. The proof is limited to a case of particle
multiplicities; that is, A and B are the numbers of particles
of type A and B, respectively. The GCE partition function �

of the quantum gas, which is a mixture of different types of
particles, reads

� = exp

{
V

∑
j

ηjdj

∫
d3p

(2π )3
ln[1 + ηjλj exp(−εj /T )]

}
,

(14)

where V and T denote, respectively, the system volume and
temperature; λj is the fugacity, which is related to particle
chemical potential μj as λj ≡ exp(μj/T ); dj denotes the
number of a particle’s internal degrees of freedom; εj ≡
(m2

j + p2)1/2 is the particle energy with mj and p being its mass
and momentum; ηi = −1 for bosons; ηi = 1 for fermions; and
ηi = 0 corresponds to the classical Boltzmann approximation.
The GCE averages are calculated as

A = 1

�
λA

∂

∂λA

�

= V

∫
d3p

(2π )3

dA

λ−1
A exp(εA/T ) + ηA

≡ V nA, (15)

A2 = 1

�

(
λA

∂

∂λA

)2

�

= V 2n2
A + V

∫
d3p

(2π )3

dAλ−1
A exp(εA/T )[

λ−1
A exp(εA/T ) + ηA

]2 , (16)

AB = 1

�
λA

∂

∂λA

λB

∂

∂λB

� = V 2nAnB, (17)

where nA = A/V and nB = B/V denote the particle number
densities. The corresponding expressions for B and B2 are
obtained by replacing A by B in Eqs. (15) and (16).

For the GCE scaled variance, one finds

ω∗
A ≡ A2 − A

2

A
= n−1

A

∫
d3p

(2π )3

dAλ−1
A exp(εA/T )[

λ−1
A exp(εA/T ) + ηA

]2 .

(18)

It corresponds to the particle number fluctuations at a fixed
volume V . It is an intensive quantity and depends only on T

and μA. Note that ω∗
A > 1 for bosons, ω∗

A < 1 for fermions,
and ω∗

A = 1 for classical Boltzmann particles.
We introduce volume fluctuations, assuming that local

properties of the system within the GCE (i.e., the temperature
and chemical potentials) are volume independent. The volume
fluctuations are described by the probability density function

F (V ). Thus, the full averaging denoted as 〈· · ·〉 includes
both the GCE averaging (15)–(17) at a fixed volume and an
averaging over the volume fluctuations:

〈A〉 = 〈V 〉nA,
(19)

〈A2〉 = 〈V 2〉n2
A + 〈V 〉nAω∗

A, 〈AB〉 = 〈V 2〉nAnB,

where 〈V k〉 ≡ ∫
dV V kF (V ) for k = 1, 2. One finds

ωA ≡ 〈A2〉 − 〈A〉2

〈A〉 = ω∗
A + nA

〈V 2〉 − 〈V 〉2

〈V 〉 ≡ ω∗
A + nAωV .

(20)

The corresponding expression for ωB is obtained by replacing
A by B in Eq. (20). Equations (20) and (5) have similar
structures. Namely, the first terms ω∗

A or ω∗
a correspond to

the particle number fluctuations at a fixed volume V or
fixed number of sources Ns , respectively. The second terms
correspond to the contribution from the volume fluctuations
in Eq. (20) and the fluctuations of the number of sources in
Eq. (5).

By calculating (6) and (7) according to Eq. (19) with C =
A + B, one gets

AB∑
= 1

nA + nB

(nBω∗
A + nAω∗

B),
(21)

�AB = 1

nA + nB

(nBω∗
A − nAω∗

B).

Equation (21) proves that �AB and �AB are strongly intensive
quantities as they are strictly independent of average volume
〈V 〉 and its fluctuations ωV .

Note that in the GCE there are no correlations between the
number of different particle species; that is, 〈AB〉 − 〈A〉〈B〉 =
0. In modeling of hadron production in high-energy collisions,
particles stable with respect to strong decays are usually
considered, whereas the GCE system includes also short-lived
resonances which finally decay into stable particles. These
resonance decays increase multiplicities of stable particles and
thus change numerical values of nA, nB , ω∗

A, and ω∗
B . If decay

products of a resonance R decay include both A and B hadrons,
a correlation between them appears, and it can be expressed as

〈AB〉 − 〈A〉〈B〉 =
∑
R

〈R〉(〈AB〉R − 〈A〉R〈B〉R)

≡
∑
R

〈R〉ρR
AB, (22)

where 〈R〉 is a mean multiplicity of R and 〈· · ·〉R means the
averaging over its decay channels. The measure �AB then has
the form

AB∑
= 1

nA + nB

(
nBω∗

A + nAω∗
B − 2

∑
R

nRρR
AB

)
, (23)

and thus it remains a strongly intensive quantity.
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V. PROPERTIES OF � AB AND �AB WITHIN CANONICAL
AND MICROCANONICAL ENSEMBLES

For a large-volume system in equilibrium, the particle num-
ber distribution P (A,B; V ) in the GCE, canonical ensemble
(CE), and microcanonical ensemble (MCE) can be written
in a general form of the bivariate normal distribution (see
Refs. [9,10]):

P (A,B; V ) = 1

2π

[
ω∗

Aω∗
B

(
1 − ρ∗2

AB

)
AB

]−1/2

× exp

{
− 1

2
(
1 − ρ∗2

AB

)[
(A − A)2

ω∗
AA

− 2 ρ∗
AB

(A − A)(B − B)

(ω∗
Aω∗

BAB)1/2
+ (B − B)2

ω∗
BB

]}
,

(24)

where A ≡ nAV and B ≡ nBV are mean particle numbers.
Averaging at a fixed volume V is defined as (k = 1, 2)

Ak ≡
∑
A,B

AkP (A,B; V ), Bk ≡
∑
A,B

BkP (A,B; V ),

(25)
AB ≡

∑
A,B

ABP (A,B; V ).

The straightforward calculations of (25) with the distribution
function (24) give

A2 − A
2

A
= ω∗

A,
B2 − B

2

B
= ω∗

B,
AB − AB

(ω∗
Aω∗

BAB)1/2
= ρ∗

AB.

(26)

Equation (26) reveals the meaning of the parameters in
the distribution (24): the scaled variances ω∗

A and ω∗
B , and

the correlation coefficient ρ∗
AB . In a mixture of relativistic

ideal gases, particle numbers are not conserved, and thus
A and B fluctuate in all statistical ensembles. This leads to
nonzero positive values of ω∗

A and ω∗
B which are approaching

constant values with system volume, increasing to infinity.1

Particle correlations, and thus nonzero ρ∗
AB , result from

exact material and motional conservation laws [12]. Thus
the correlation coefficient ρ∗

AB equals to zero in the GCE
and is nonzero in the CE and MCE. The exact conservation
laws also influence the values of ω∗

A and ω∗
B . Quantities like

the particle number densities do not depend on the choice
of the statistical ensemble for large systems. This means
thermodynamical equivalence of the statistical ensembles.
Below we present results for the CE and MCE in the
large volume limit in which all three statistical ensembles
become thermodynamically equivalent. However, let us stress
that the thermodynamical limits of the quantities (26) are
different (see Ref. [12] for details) in the GCE, CE, and MCE
ensembles.

1The volume dependence may be different for systems at the phase
transition. For example, in a case of the Bose-Einstein condensation,
one gets ω ∝ V 1/3 at T = TC and ω ∝ V at T < TC , as shown in
Ref. [11].

We introduce now the volume fluctuations assuming that
local properties of the system (e.g., temperature and conserved
charge densities in the CE, or energy density and conserved
charge densities in the MCE) are volume independent for
sufficiently large volumes. In this case, the distribution (24)
depends on the system volume only through the average
multiplicities. The full averaging reads

〈· · ·〉 ≡
∫

dV F (V )
∑
A,B

· · · P (A,B; V ). (27)

By calculating (6) and (7) according to Eq. (27) with
C = A + B, one gets

�AB = 1

nA + nB

[nBω∗
A + nAω∗

B

− 2ρ∗
AB (nAnBω∗

Aω∗
B)1/2], (28)

�AB = 1

nA + nB

(nBω∗
A − nAω∗

B). (29)

Equations (28) and (29) show that �AB and �AB are indepen-
dent of the average system volume and its fluctuations. For the
CE and MCE, this is valid if the volume fluctuates in a range
in which all three statistical ensembles are thermodynamically
equivalent.

A unique determination of five intensive quantities, nA,
nB , ω∗

A, ω∗
B , and ρ∗

AB , from measurements of 〈A〉, 〈B〉, 〈A2〉,
〈B2〉, and 〈AB〉, is impossible as 〈V 〉 and ωV are in general
unknown. The average particle multiplicities are given by
〈A〉 = nA〈V 〉 and 〈B〉 = nB〈V 〉. Therefore, only the ratio of
particle number densities, rAB ≡ 〈A〉/〈B〉 = nA/nB , can be
found from the measurements of 〈A〉 and 〈B〉. The strongly
intensive quantities, rAB , �AB , and �AB , allow a unique
determination of ω∗

A and ω∗
B in the GCE. In this case, there are

no correlations between A and B at fixed volume, and from
Eq. (21) one finds

ω∗
A = 2(1 + rAB)(�AB + �AB),

(30)
ω∗

B = 2
(
1 + r−1

AB

)
(�AB − �AB).

However, if ρ∗
AB �= 0, as in the CE and MCE, or if in-

cluding correlations due to resonance decays in the GCE,
even the knowledge of all strongly intensive quantities
is not sufficient to reconstruct ω∗

A, ω∗
B , and ρ∗

AB in a
unique way.

VI. SUMMARY

In summary, in this paper we consider two families of
strongly intensive quantities �AB and �AB which characterize
fluctuations of system properties. While specific measures
from the �AB family were introduced in 1992 [2], the
�AB family is proposed in this paper. We prove within the
grand canonical ensemble that both �AB and �AB quantities
are strictly independent of volume and volume fluctuations.
In the canonical and microcanonical ensembles, they are
approximately independent of volume and volume fluctuations
for sufficiently large systems. Furthermore, we show that
they are also independent of fluctuations of the number
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of sources in models of independent particle sources, for
example, the wounded nucleon model [3]. This suggests
that the �AB and �AB quantities may be approximately
independent of the system size fluctuations in approaches
which are neither strictly statistical nor strictly independent
source models. Studies within transport models should help
to clarify this conjecture. It would be also important to
identify physical processes which may lead to a significant
violation of the strong intensive properties of the �AB and �AB

quantities.
Note that the � and νAB

dyn measures, which can be expressed
in terms of �AB , have already been used successfully to study
transverse momentum and particle ratio fluctuations; see, for

example, Refs. [13,14] and references therein. We hope that the
results presented in this paper will be useful in further analysis
of fluctuations of hadron production properties in collisions of
relativistic particles.
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