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Elastic scattering and total reaction cross sections for the 8B, 7Be, and 6Li +12C systems
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Angular distributions for the elastic scattering of 8B, 7Be, and 6Li on a 12C target have been measured at
Elab = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed
in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the
elastic scattering of 8B + 12C is investigated by performing coupled-channels calculations with the continuum
discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were
deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other
weakly and tightly bound projectiles on 12C, as a function of energy. With the exception of 4He and 16O, the data
can be described using a universal function for the reduced cross sections.
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I. INTRODUCTION

Nuclei far from stability exhibit interesting features that
are strongly influenced by the very low energy that binds
the system. Elastic scattering measurements at low energies
(near to or above the Coulomb barrier) have been used as
an effective tool to investigate the unusual features of exotic
nuclei, such as extended halos or neutron skins. Particular
interest has been devoted to 6He and 8B nuclei mainly due
to the availability of low-energy radioactive beams of these
elements [1–6]. The exotic structure of these light nuclei alters
the elastic scattering due to competing mechanisms such as
breakup and transfer reactions. Due to the lower binding
energy of the weakly bound light nuclei, breakup can become
an important competing mechanism even at relatively low
incident energies, and coupled-channels analysis is required.
The importance of these couplings is well known in the
investigation of elastic scattering of the neutron-rich nucleus
6He on different targets such as 209Bi [7], 120Sn [6], and
64Zn [8] and it is found to be less important in light targets
such as 27Al [3] and 12C [9]. While many experimental data are
available for the neutron-rich nucleus 6He, elastic-scattering
data for the proton-rich 8B nucleus are rather scarce. Some
high-energy experiments have been reported for 8B on a 12C
target [10,11]. However, it is not clear if it is possible to
obtain information on the halo properties of the projectile from
high-energy data because those properties are, in principle,
surface effects. More recently, elastic-scattering measurements
for 8B and 7Be on 58Ni have been reported [5]. Their analysis
has shown striking evidence for a proton halo in 8B, where
projectile breakup was assumed to be responsible for the
increase of the observed reaction cross section [12]. Here, as
a complement to a systematic study for the elastic scattering
of 8B on different targets, we report the measurement and
analysis of the elastic-scattering angular distributions of 8B,
as well as 7Be and 6Li, on a lighter target, 12C. Nuclear effects

are expected to be more important for a lighter target, rather
than the dominant Coulomb effects expected for heavier-mass
targets.

The organization of this paper is as follows: In Sec. II, we
describe the details of the experiment. The optical-model and
double-folding model used to describe the elastic-scattering
data are discussed in Sec. III, where continuum discretized
coupled-channel (CDCC) calculations are presented. The
energy dependence of the reaction cross sections for these
systems is investigated and the results are discussed in Sec. IV.
Finally, further discussion and conclusions are presented in
Sec. V.

II. THE EXPERIMENT

The elastic-scattering angular distributions of 8B, 7Be, and
6Li on a natural carbon target were measured at Elab = 25.8,
18.8, and 12.3 MeV, respectively. The secondary 8B and 7Be
radioactive ion beams, together with the contaminant 6Li ions,
were simultaneously produced by the TwinSol system installed
at University of Notre Dame [13]. The in-flight beams were
produced by impinging a 35-MeV primary 6Li3+ beam on
a 3He gas-cell production target. The 3He gas cell was kept
at a pressure of 1 atm and was mounted in a small (20 cm in
diameter) chamber just before the first solenoid. After crossing
the production target, the 6Li primary beam is stopped in a
tungsten alloy and carbon Faraday cup, which allows one to
integrate its charge and measure its intensity. The secondary
beams produced in the forward direction are collected within
an angular range of 2.7◦ < θ < 6◦ by the two superconducting
solenoids and focused at a secondary scattering chamber. A
system of blocks and collimators, located along the solenoid
axes, is used to clean up the beam of interest. Although the
magnetic field of the solenoids was adjusted to focus the 8B
secondary beam and the blocks and collimator were used to
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prevent particles with different magnetic rigidity from reaching
the scattering target, particles with the same magnetic rigidity
such as 7Be and 6Li (as inelastic-scattered primary beam) also
were present. The average primary beam intensity during the
measurements was about 600 enA producing 8B, 7Be, and
6Li beams of 5 × 104, 1 × 105 and 2 × 108 pps, respectively.
The carbon target (99.8% 12C) used in the measurements was
a natural foil 1.1 mg/cm2 in thickness mounted in a target
holder. A thin gold target 2.0 mg/cm2 in thickness also was
mounted in the holder and used in separate runs to obtain the
overall normalization. The lastic scattering of these beams on
the gold target at these energies is expected to be Rutherford.

The scattered particles were detected by one �E-E Si
telescope and two silicon planar E detectors covering the
angles 15◦, 20◦, 25◦, 30◦, and 35◦ in the laboratory system.
Cross sections at 45◦ and 50◦ also were obtained for the 6Li
beam. The telescope consisted of a 20-μm Si �E detector
with an area of 300 mm2 backed by a 1000-μm-thick Si E

detector and had a circular aperture that subtended a solid
angle of 13 msr (±3.5◦). The E detectors were 1000-μm-
thick planar detectors that subtended a solid angle of 8 msr
(±3.0◦). Since the elastic cross sections in the angular interval
covered by these detectors could vary by up to one order
of magnitude, the average detection angle was determined
by a Monte Carlo simulation, which took into account the
detector collimator, the secondary beam-spot dimension on the
secondary target (4 mm), the secondary beam divergence (2◦
to 4◦), and the angular distribution in the range of the detector
aperture (Rutherford for the gold target and calculated in an
iterative way for the 12C target). This correction is particularly
important for the most forward angles.

The different scattering particles were identified using the
combination of �E and Etotal information for the data taken
with the telescope, and time-of-flight (TOF) and Etotal for
the data taken only with the E-silicon detectors. The TOF
corresponded to the time interval between the radio frequency
(RF) of the pulsed beam (100-ns intervals) and the fast time
signal from the E detectors. A selected particle identification
spectrum (TOF vs Etotal) is shown in Fig. 1. In this plot, the
scattered 8B, 7Be, and 6Li beams on the gold target at 15◦ are
displayed and clearly separated and identified. Some lighter
particle contaminants such as 4He and pileup of the intense 6Li
beam contaminant also can be seen in this spectrum. Owing to
its limited intensity, the yield for the 7Be beam was observed
only for four angles.

The experimental resolution for these beams was about
800 keV, obtained from the FWHM of the peak corresponding
to the scattering in the gold target. The 8B and 6Li nuclei have
no bound excited states and the data then are purely elastic. The
inelastic scattering to the first excited state (Ex = 0.43 MeV)
of 7Be is expected to be very small for the carbon target and
any corresponding yield is thus included in the elastic peak.

The experimental differential cross sections of the elastic-
scattering process for all three systems investigated are
displayed in Figs. 2, 3, and 4, respectively. The uncertainties
in the differential cross sections were estimated considering
the statistical uncertainty in the yields, uncertainty in the
target thickness (10%), and uncertainty in the secondary beam
intensity (10%).

FIG. 1. (Color online) Selected particle identification spectrum
(TOF vs E) for the interaction of 8B, 7Be, and 6Li + 197Au measured at
15◦. The elastically scattered 8B, 7Be, and 6Li particles are indicated,
as well as 4He and some other lighter particle contamination in the
TwinSol secondary beam.

A. Optical-model calculations

Optical-model analyses of the data were carried out with
the code FRESCO [14]. First, the data were analyzed in terms
of conventional optical-model (OM) calculations using both
volume type Woods-Saxon (WS) and double-folding nuclear
potentials (plus Coulomb potentials due to uniform charged
spheres). The WS potential parameters are listed in Table I
and were taken from Refs. [15–17]. The results of the OM
calculations can be seen in Figs. 2, 4, and 5 for each system.
The curve indicated as the SPP corresponds to OM figures
calculations using the SPP [18], which is a double-folding
potential with energy dependence and nonlocality correction.
The corresponding S-Matrix for these calculations are shown
in Figs. 3, 6 and 7. For this potential, the average diffuseness
for the charge and matter distributions is a = 0.53 fm and a =
0.56 fm, respectively. Within the context of the systematics
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FIG. 2. The differential cross sections for the elastic scattering
12C(8B,8B)12C at 25.8-MeV incident laboratory energy. The curves
are OM calculations with the parameters listed in Table I.
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FIG. 3. S matrix calculated for the elastic scattering
12C(8B,8B)12C at 25.8-MeV incident laboratory energy using the OM
parameters listed in Table I.

for the densities, the SPP has no adjustable parameters. The
imaginary part of the potential has the same form factor as
the real part but with a normalization of NI = 0.78. The SPP
reproduces quite well the absolute normalization, which is of
some interest considering that this folding-model potential has
no free parameters as noted. Although there was no attempt to
adjust the parameters to fit the data, the calculations with all of
these potentials give a good description of the elastic-scattering
data at forward angles.

III. CDCC CALCULATIONS

One can infer from the results in the previous section that
the effect of the breakup process on the elastic scattering of
8B on 12C probably will be weak. This conclusion comes from
the fact that there is no need for changing the normalization
coefficients of the SP potential from the conventional values
(Nr = 1.0 and Ni = 0.78, corresponding to the real and
imaginary parts of the potential, respectively) to describe
the elastic-scattering angular distributions. In this section we
perform CDCC calculations for this system to study this
conclusion in more detail. In the CDCC calculation, we
consider a cluster model, in which the proton halo 8B nucleus
is represented by 7Be + p in describing the interaction with
the 12C target. The SPP has been used to describe the real
part of the interaction of the 7Be core and the valence particle
(the proton), where in the present calculations the core was
considered inert. We used the same real part of the SPP for
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FIG. 4. The differential cross sections for the elastic scattering
12C(7Be,7Be)12C at 18.8-MeV incident laboratory energy. The curves
are OM calculations with the parameters listed in Table I.

the imaginary part, again multiplied by 0.78. It has been
shown that this prescription provides a good description of
the elastic-scattering cross-section data for a wide energy
range and for a variety of systems [19]. It is important to
mention that this imaginary potential not only accounts for
the absorption of flux, from the breakup to the fusion channel,
but also accounts, effectively, for the inelastic excitation of the
target. The p-7Be interaction potential [20] used to generate
the bins was the same as the one used in Refs. [12,21], where a
good description of the breakup angular distribution, emission-
energy distribution, and elastic-scattering distributions for the
8B + 58Ni system was obtained.

In the CDCC calculations, the continuum states are ap-
proximated by a set of square-integrable wave functions
constructed by linearly combining the p-7Be elastic-scattering
wave functions. To guarantee the convergence of the CDCC
calculations for this system, bins up to εmax = 5 MeV and
orbital angular momenta of the p-7Be relative motion up to
l = 3h̄ were needed. To calculate the transition matrix elements
between the bin states, the radial integration was extended up
to rbin = 70 fm. The projectile-target relative motion wave
functions were expanded in partial waves up to Lmax = 200h̄.
The interaction potential was expanded up to its quadrupole
term.

In Fig. 8 we show the results of the present CDCC calcu-
lations. The solid curve represents the full CDCC calculation
including all reorientation terms, both Coulomb and nuclear
interactions, and all continuum-continuum couplings. The

TABLE I. Optical-model potential parameters used in the calculations. Radii are given by Rx = rx × (A1/3
P + A

1/3
T ). The depths are in MeV,

and the radius and diffuseness are in fm.

Potential V rV aV WV WS rW aW rC Reference

WS-1 245.70 0.75 0.70 11.40 – 1.17 0.49 1.24 6Li + 12C (24 MeV) [15]
WS-2 60.00 1.18 0.60 32.60 – 1.18 0.60 0.63 9Be + 12C (26 MeV) [16]
WS-3 152.00 0.65 0.77 8.55 – 1.22 0.89 0.59 7Li + 12C (21 MeV) [17]
WS-4 100.00 1.19 0.50 10.00 – 1.34 0.22 1.45 10B + 12C (18 MeV) [17]
WS-5 136.80 0.85 0.64 – 7.75 0.80 0.77 0.85 6Li + 12C (13 MeV) [17]
WS-6 248.50 0.78 0.70 4.72 – 1.52 0.35 1.29 6Li + 12C (13.0 MeV) [15]
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FIG. 5. S matrix calculated for the elastic scattering
12C(7Be,7Be)12C at 18.8-MeV incident laboratory energy using the
OM parameters listed in Table I.

continuum-continuum couplings shown are important in ac-
curately describing the elastic-scattering angular distributions
[22]. The dashed curve represents the no-coupling calculations
where the OM potential is obtained by the single folding of the
full Coulomb + nuclear interaction over the 8B ground state,
the 1p3/2 state. One can see that the agreement of the CDCC
calculations with experimental data is quite good. Note that
in this calculation, once we have chosen the optical potential,
there again are no free parameters. Comparing the dashed and
full curves one can indeed conclude that as expected the effect
of the breakup channel on the elastic scattering in this energy
regime in this system is indeed weak.

IV. TOTAL REACTION CROSS SECTIONS

An additional important piece of information that can be
deduced from the elastic-scattering analysis is the total reaction
cross section. This information is useful to investigate the
role of breakup (or other reaction mechanisms) for weakly
bound, exotic nuclei. If we consider different systems with
different breakup threshold energies, for instance, the role of
breakup can be investigated by plotting the total reaction cross
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FIG. 6. The differential cross sections for elastic scattering
12C(6Li,6Li)12C at 12.3-MeV incident laboratory energy. The curves
are OM calculations with the parameters listed in Table I.
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FIG. 7. S matrix calculated for the elastic scattering
12C(6Li,6Li)12C at 12.3-MeV incident laboratory energy using the
OM parameters listed in Table I.

section for weakly and tightly bound nuclei on the same target
nucleus as a function of energy. To compare the cross sections
for systems with different Coulomb barriers and different
geometry, it is necessary to suppress the differences arising
from the sizes and charges of the systems. We use a reduction
procedure suggested by Gomes et al. [23] to do this. The
reduced cross sections and energies are given by

σred → σR(
A

1/3
p + A

1/3
t

)2 and Ered → Ecm

(
A

1/3
p + A

1/3
t

)
ZpZt

,

(1)

with ZP (ZT ) and AP (AT ) standing for the charge and mass of
the projectile (target), respectively. Gomes et al. [23] in this
way claim that the geometrical effects (such as masses and
charges of the collision partners) are removed while possible
anomalous values of the reduced radius r0, which could be
related to the physical processes or specific feature of the
projectile nuclear matter density to be investigated, are not
washed out. Figure 9 shows the results of the reduced total
reaction cross sections, σred, for many of the systems listed
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FIG. 8. The differential cross sections for the elastic scattering
12C(8B,8B)12C at 25.8-MeV incident laboratory energy. The dashed
curve is the cluster-folding parametrization of the interaction without
the couplings to the continuum, while the solid line is the result of
the CDCC couplings.

014603-4



ELASTIC SCATTERING AND TOTAL REACTION CROSS . . . PHYSICAL REVIEW C 84, 014603 (2011)

TABLE II. Data and parameters used to determine the universal function F (x), and reduced reaction cross sections as described in the text.
The energies, potentials, and h̄ω are in MeV, the radii in fm, and the cross sections in mb.

System Ec.m. RB VB h̄ω σR Ni x F (x) Ered σRed Ref.

6He + 12C 5.86 8.04 1.98 2.64 1206.0 0.78 3.79 19.28 2.00 71.52 [24]
6He + 12C 6.12 8.04 1.98 2.65 1226.0 0.78 1.46 8.24 2.09 72.71 [24]
6He + 12C 6.60 8.04 1.98 2.65 1189.0 0.78 1.56 8.75 2.26 70.52 [25]
6He + 12C 12.0 8.03 1.98 2.65 1368.0 0.70 1.74 9.15 4.10 81.13 [26]
6Li + 12C 3.0 7.83 3.06 2.58 169.4 0.78 −0.02 0.64 0.68 10.05 [27]
6Li + 12C 6.0 7.83 3.06 2.59 891.3 0.80 1.14 6.74 1.37 52.86 [28]
6Li + 12C 16.0 7.82 3.06 2.36 1288.0 0.78 5.48 28.52 3.65 76.39 [29]
6Li + 12C 20.0 7.81 3.07 2.55 1292.0 0.75 6.65 33.27 4.56 76.63 [29]
7Li + 12C 2.84 7.95 3.01 2.76 139.4 0.78 −0.06 0.45 0.66 7.90 [29]
7Li + 12C 4.70 7.97 3.00 2.76 715.0 0.78 0.67 4.16 1.10 40.49 [28]
7Li + 12C 6.95 7.95 3.01 2.75 1071.0 0.88 1.42 8.51 1.62 60.66 [28]
7Li + 12C 8.21 7.95 3.01 2.75 1160.0 0.80 1.89 10.95 1.92 65.70 [28]
7Li + 12C 9.47 7.95 3.01 2.75 1248.0 0.94 2.34 13.58 2.21 70.68 [28]
7Li + 12C 13.26 7.95 3.01 2.75 1336.0 0.84 3.72 20.36 3.09 75.66 [28]
8Li + 12C 14.34 8.03 2.97 2.92 1405.0 0.78 3.90 21.45 3.42 76.37 [30]

7Be + 12C 11.87 7.77 4.11 2.69 1138.0 0.78 2.89 16.66 2.08 64.45 Present work
8B + 12C 15.48 7.74 5.16 2.80 1171.0 0.78 3.69 21.62 2.21 63.65 Present work

9Be + 12C 11.40 7.98 3.99 3.04 1289.0 0.96 2.64 15.97 2.19 67.52 [16]
9Be + 12C 14.90 7.98 3.99 3.03 1381.0 0.99 3.60 21.34 2.71 72.34 [16]
11B + 12C 5.40 8.02 4.95 3.34 298.0 1.00 0.13 1.50 0.81 14.63 [31]
11B + 12C 6.50 8.02 4.95 3.34 573.8 1.00 0.46 3.47 0.98 28.17 [31]
11B + 12C 7.20 8.02 4.95 3.34 716.4 1.00 0.67 4.80 1.08 35.17 [31]
11B + 12C 8.6 8.02 4.95 3.34 930.6 1.00 1.09 7.44 1.29 45.69 [31]
11B + 12C 11.5 8.02 4.95 3.34 1192.0 1.00 1.96 12.75 1.73 58.52 [31]
11B + 12C 14.00 8.02 4.95 3.34 1361.0 1.00 2.71 17.72 2.11 66.82 [31]
11B + 12C 26.00 8.02 4.95 3.34 1582.0 1.00 6.30 38.26 3.91 77.67 [31]

in Table II, plotted as a function of the reduced energy.
The total reaction cross section for each system listed in
Table II , for consistency, was obtained by performing a
reanalysis of the elastic-scattering angular distributions using
the double-folding SPP. However, the total reaction cross
sections obtained from the present reanalysis are not very
different from the ones obtained with WS potentials in the
original papers. The total reaction cross section for all these
systems has been obtained using the double-folding SPP with
normalization of the real part fixed to NR = 1.00 and the
imaginary part multiplied by variable NI values as listed in
Table II.

As suggested by Kolata and Aguilera [32] and Aguilera
et al. [33], these data can be compared with the total reaction
cross section given by the Wong [34] cross section σW

R ,

σW
R = R2

B

h̄ω0

2E
ln

[
1 + exp

(
2π (E − VB)

h̄ω0

)]
, (2)

which also is reduced to

σW
red = ε0r

2
0

2Ered
ln

[
1 + exp

(
2π (Ered − Vred)

ε0

)]
, (3)

where the cross sections are in fm2 and RB = r0(A1/3
p + A

1/3
t ),

ε0 = h̄ω0
(A1/3

p +A
1/3
t )

ZpZt
, and Vred = V0

(A1/3
p +A

1/3
t )

ZpZt
are denoted as the

Wong-model parameters. These are free parameters, and when
we adjust this curve to the data for 6He, 6Li, 7Li, 7Be, 8Li, 8B,

9Be, and 11B we get Vred = 0.64(3), r0 = 1.73(2) fm, and ε0 =
0.43. In particular, the value r0 = 1.73(2) fm is significantly
larger than the typical values of 1.4–1.5 fm. The result of this
fit is shown in Fig. 9 as the solid curve and the values obtained
for the Wong-model parameters seem to be comparable
with the ones obtained by Aguilera et al. [33] for heavier
targets.
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FIG. 9. (Color online) The reduced reaction cross sections for the
8B + 12C system obtained in this work together with reduced reaction
cross sections of the lithium isotopes and some other weakly bound
and tightly bound projectiles on 12C. The solid and dotted line curves
are explained in the text.
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It has been observed for heavier targets such as 58Ni, 64Zn,
or even 209Bi, where the Coulomb breakup predominates over
the nuclear breakup, that larger reduced total reaction cross
sections are obtained at energies around the Coulomb barrier
for exotic nuclei (6He and 8B) followed by the weakly bound
nuclei (6Li, 7Li, 8Li, and 9Be) and then the tightly bound
nuclei (16O and 4He) which produce the smallest total reaction
cross section [32,33]. It seems that the effect of the weak
binding energy is switching on additional channels that would
enhance the total reaction cross sections, and the halo states
do provide a related threshold effect. On other hand we can
conclude that, for a target as light as 12C, the additional
channels would not be switching on as easily as for heavier
targets, and the reduced reaction cross sections for exotic and
weakly bound nuclei as well as for a tightly bound nuclei
(11B) follow the same trend. The exceptions are for the 4He
and 16O projectiles. As one can see in Fig. 9, the reduced
cross section for 4He follows a different trend. Using the
same Wong-model parameters obtained by Aguilera et al. in
Ref. [33] for 4He, i.e., Vred = 0.913(5), r0 = 1.39(5) fm, and
ε0 = 0.175(6), we obtained the dashed line curve in Fig. 9.
We should emphasize here that the data set for 4He + 12C
could not be reanalyzed in terms of the double-folding SSP.
Instead we use the reaction cross section from Ref. [35],
where to fit the angular distributions the authors applied a
smooth-cutoff model modified to include resonances of the
compound nucleus 16O.

Because the above renormalization (reduction) assumes
that the barrier parameters depend only on the atomic and mass
numbers, the behavior observed in Fig. 9 may indicate that
static effects and/or dynamic effects due to breakup are also
present. According to Refs. [33,36], dynamic effects would be
more important in the region near to and below the reduced
barrier, and static effects would be relevant for all energies.
It would be interesting if one could disentangle these effects
by considering another way to renormalize (reduce) the data.
Canto et al. [37] suggested the use of a universal function
F (x), where static effects arising from the weakly bound nuclei
would be taken into account by considering the characteristics

of the barrier for each system. The original idea was developed
for fusion processes, where the fusion function is defined as

F (x) = 2E

h̄ωR2
σF , (4)

with

x = E − VB

h̄ω
, (5)

where VB , RB , and h̄ω are the height, radius, and curvature
of the barrier, respectively, and σF is the fusion cross
section.

This universal fusion function (UFF) is derived from
Wong’s approximation [34]:

σW
F = R2

B

h̄ω

2E
ln

[
1 + exp

(
2π (E − VB)

h̄ω0

)]
, (6)

which, when valid, reduces the fusion function to

F0(x) = 2E

h̄ω0R
2
B

σW
F = ln[1 + e(2πx)] (7)

Shorto et al. [38] proposed to use the parametrization
of Eq. (4) to analyze reaction cross sections by replacing
the fusion cross section (σF ) by the total reaction cross
section (σR). Thus, considering the real part of the potential,
we assumed that the sum of the nuclear and the Coulomb
potentials near the barrier is described by a parabola:

V (r) = V (RB) + 1

1!

dV (RB)

dr
(r − RB)

+ 1

2!

d2V (RB)

dr2
(r − RB)2 + . . . � VB

+ 1

2
μω2

0(r − RB)2. (8)

To find the parameters RB , VB , and ωO we then fitted the real
part of the OM potential by a parabola. As indicated before, we
reanalyzed all the angular distributions for the systems listed
in Table II with the SPP to obtain the reaction cross section.
With this potential in hand, we fit a parabola to the real part
near the barrier to obtain the parameters RB , VB , and ω for

TABLE III. Data and parameters used to determine the universal function F (x), and reduced reaction cross sections as described in the
text. The energy potentials and h̄ω are in MeV, the radii in fm, and cross sections in mb. The notation WS and WS + Res. correspond to a
Woods-Saxon and Woods-Saxon plus resonance analysis, respectively.

System Ec.m. RB VB h̄ω σR Ni x F (x) Ered σred Ref.

4He + 12C 8.25 7.10 2.35 3.54 717.0 WS + Res. – – 2.67 47.70 [35]
4He + 12C 9.08 7.10 2.35 3.54 490.0 WS + Res. – – 2.93 32.60 [35]
4He + 12C 9.75 7.10 2.35 3.54 603.0 WS + Res. – – 3.15 40.12 [35]
4He + 12C 10.50 7.10 2.35 3.54 597.0 WS + Res. – – 3.39 39.72 [35]
4He + 12C 11.25 7.10 2.35 3.54 662.0 WS + Res. – – 3.63 43.88 [35]
4He + 12C 12.00 7.10 2.35 3.54 735.0 WS + Res. – – 3.88 48.90 [35]
4He + 12C 12.75 7.10 2.35 3.54 750.0 WS + Res. – – 4.12 49.90 [35]
4He + 12C 13.50 7.10 2.35 3.54 813.0 WS + Res. – – 4.36 54.09 [35]
4He + 12C 14.25 7.10 2.35 3.54 810.0 WS + Res. – – 4.60 53.89 [35]
16O + 12C 17.30 8.1 8.11 6.04 1029.0 WS 1.52 9.00 1.73 44.50 [39]
16O + 12C 20.80 8.1 8.11 6.04 1155.0 WS 2.10 12.16 2.08 49.95 [39]
16O + 12C 22.80 8.1 8.11 6.04 1207.0 WS 2.44 13.94 2.28 52.19 [39]
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FIG. 10. (Color online) The reduced reaction cross sections
considering the universal function F (x) for the 8B + 12C system
obtained in this work together with F (x) of the lithium isotopes
and some other weakly bound and tightly bound projectiles on 12C.
The solid curve is explained in the text.

each system. Using these parameters we then deduced the
universal functionF (x) for each system. The universal func-
tions obtained, as well as the barrier parameters for different
systems from the literature and for our data, are listed in
Tables II and III. The universal function F (x) as a function
of the parameters x can be seen in Fig. 10. Among these
systems we have combinations both with weakly bound
nuclei projectiles, such as 6,7,8Li, 9Be, and 6He, and more
tightly bound nuclei projectiles, such as 16O and 11B. The
solid curve in Fig. 10 corresponds to the function F0(x) =
ln[1 + e(2πx)]. When all data above the Coulomb barrier follow
this curve, it implies in principle that the reaction cross
sections can be described by Wong’s approximation given by
Eq. (7).

Although Canto et al. [40] have suggested that a deviation
of experimental fusion functions, with respect to the F0(x),
should be due to dynamic effects such as channel-couplings,
it is not so clear if the same holds for the total reaction cross
sections.

In any case, by considering this universal function reduction
procedure for heavier targets, such as 58Ni, 64Zn, or even
209Bi, where Coulomb breakup predominates over the nuclear
breakup [38], larger reduced total reaction cross sections are
obtained at energies around the Coulomb barrier for exotic
nuclei (6He and 8B) followed by the weakly bound nuclei
(6Li,7Li, 8Li, and 9Be) and then for the tightly bound nuclei
(16O and 4He), as also obtained by the previous procedure to

reduce the cross section. This may indicate that, unlike for
lighter targets, the breakup cross sections for these systems
(or breakup + neutron transfer cross sections for the 6He
projectile) may likely be responsible for an appreciable part
of the total reaction cross sections. As observed in Fig. 1
of Ref. [38], even for medium-mass targets such as 27Al,
where the Coulomb field is not so intense, the indication is
that transfer and/or breakup cross sections might be a very
important channel for 6He. However, in contrast, this behavior
is not observed for the light target 12C, since the F (x) function
for weakly bound lithium and beryllium isotopes, for 6He, and
for the tightly bound nuclei 11B and 16O follow the same trend,
indicating that breakup channels may not be important.

V. SUMMARY

We report here measurements and analyses of the elastic-
scattering angular distributions of 8B, 7Be, and 6Li on a 12C tar-
get following a systematic investigation of the elastic scattering
of weakly bound light nuclei. The measured elastic-scattering
angular distributions can be reproduced with conventional
WS potentials, double-folding model optical potentials, and
a cluster-folding model in the case of the 8B nucleus. The
effect of breakup (continuum) on the elastic scattering was
investigated for the weakly bound 8B nucleus by performing
CDCC calculations, and for this light 12C target the effect
can be considered negligible in the description of the elastic-
scattering data. Breakup effects on the total reaction cross
section were investigate by calculating the reduced reaction
cross sections as a function of reduced energy for the lithium
and beryllium isotopes as well as for the borromean nucleus
6He, the proton halo nucleus 8B, and the tightly bound 11B
nucleus on 12C. All these systems have the same behavior in
this description, indicating that for light systems the effects
of the binding energy through breakup on the reaction cross
sections likely are very small.
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