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Elastic 16O+20Ne scattering from a folding model analysis
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A folding potential for elastic 16O+20Ne scattering is constructed based on the four-α-particle model for
the 16O nucleus and the α+16O model for the 20Ne nucleus. The elastic scattering angular distributions of the
16O+20Ne system in the energy range of Ec.m. = 24.5–35.5 MeV are calculated by use of the α-folding potential
obtained. The calculations show that the experimental data can be reasonably well described. The surface term
in the imaginary potential has a significant effect on the calculations of the cross section at large angles for the
energies considered.
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I. INTRODUCTION

Elastic scattering between 4N-type nuclei has been exten-
sively studied in the past decades. The measured cross sections
for these systems often exhibit pronounced anomalous large-
angle scattering (ALAS). The ALAS feature is prominent in
16O+20Ne scattering and has attracted considerable attention.
In Ref. [1], the angular distributions for elastic and inelastic
16O+20Ne scattering at Ec.m. = 22.2 MeV were measured and
analyzed with an α cluster exchange process in the optical
model, optical model plus distorted-wave Born approximation,
and coupled-channel approaches. In Ref. [2], the angular
distributions and excitation functions of elastic and inelastic
16O+20Ne scattering for Ec.m. = 9–30 MeV were measured
and studied in terms of α exchange, resonances, and statistical
fluctuations. In particular, in Refs. [3–6], 16O+20Ne scattering
data in the energy range of Ec.m. = 20–40 MeV, which exhibit
strong oscillation structures in the backward angle region,
were extensively investigated by using the extended optical
model and coupled-channel approaches. In these studies,
the oscillation structures observed in angular distributions
and excitation functions were well described using nucleus-
nucleus potentials including both a parity-dependent real term
and an angular-momentum-dependent absorptive part. In the
earlier works of these studies [3,4], shallow potentials were
used for the extended optical model and coupled-channel
calculations and reasonable descriptions of the data were
obtained. Later, in Refs. [5,6], with a deep real potential,
the experimental angular distributions and excitation functions
were also well described.

However, as far as we know, there have been numerous
investigations of the scattering of 4N-type nuclei using diverse
optical potentials which do not contain a parity-dependent
real term and an angular-momentum-dependent absorptive
part, and reasonably good descriptions to the experimental
data have been obtained. But for the 16O+20Ne system,
there are few investigations available using such parity-
and angular-momentum-independent potentials. In Ref. [7],
a parity- and angular-momentum-independent potential was
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developed by use of the iterative perturbative (IP) method
for S(1)-to-V(r) inversion, and it led to the same angular
distributions as those obtained using the phenomenological
parity- and angular-momentum-dependent deep potential for
the 16O+20Ne system in Ref. [6].

The folding model has been widely used to describe the
optical potential for heavy-ion collisions. It has been shown
that folding model potentials give a good account of the
scattering between some 4N-type nuclei. For example, the
12C+12C, 16O+12C, 16O+16O, 12C+24Mg, 12C+28Si, and
16O+28Si elastic scattering data have been well described by
folding potentials in diverse approaches [8–16]. However, for
16O+20Ne scattering, there is only one paper [17] involving
a calculation using a folding potential; no other studies are
available using a folding model to attempt to explain the
16O+20Ne scattering.

In this work, we present calculated results for elastic
16O+20Ne scattering obtained by using an α-folding model
potential. From the perspective of nuclear cluster structure, 16O
and 20Ne can be considered as 4α and α+16O configurations.
In our previous studies based on the four-α-particle model for
the 16O nucleus and the α+16O model for the 20Ne nucleus, we
proposed α-folding potentials for the description of α+16O,
16O+16O, and α+20Ne elastic scattering [18–20]. The α-
folding potentials obtained can well describe the experimental
angular distributions of these systems at the incident energies
considered. In the present work, we construct an α-folding
potential for the analysis of elastic 16O+20Ne scattering to
further examine the α-folding model potential and the α+16O
model of the 20Ne nucleus. The strong ALAS feature observed
in elastic 16O+20Ne scattering will be a stricter test of the
model.

In the next section we present a brief outline of the α-folding
potential for the description of elastic 16O+20Ne scattering.
The calculated results, comparison with the experimental data,
and discussion are given in the last section.

II. α-FOLDING POTENTIAL FOR THE 16O+20Ne SYSTEM

From the 4α model of the 16O nucleus and the α+16O
model of 20Ne nucleus, the real part of the optical potential

014602-10556-2813/2011/84(1)/014602(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.014602


YONG-XU YANG AND QING-RUN LI PHYSICAL REVIEW C 84, 014602 (2011)

for the 16O+20Ne scattering can be represented by the folding
potential

V (R) =
∫

Vα20Ne(R − r)ρα(r) dr, (1)

where ρα(r) is the α-particle density distribution in the 16O
nucleus. The interaction between an α particle and the target
nucleus Vα20Ne(R) is also a folding potential:

Vα20Ne(R) =
∫ [

Vαα

(
R − 4

5
r
)

+ Vα16O

(
R + 1

5
r
)]

× |χ0(r)|2dr, (2)

with

Vα16O(R) =
∫

Vαα(R − r)ρα(r) dr, (3)

where χ0(r) is the wave function for the relative motion of the
α and 16O clusters in the ground state of the 20Ne nucleus, and
r is the relative coordinate between the centers of mass of α

and 16O. The α-α interaction we used is that given by Buck
et al. [21], that is,

Vαα(r) = −122.6225 exp(−0.22r2) MeV. (4)

The form factor describing the α-particle distribution in the
16O nucleus has been given in our previous work [19] as

ηα(q) = �(q)

[
1 −

(
1

6
+

√
6

12

)
(aq)2 + 1

48
(aq)4

]
e−a2q2/4,

(5)

where a = 1.2 fm is the harmonic-oscillator parameter, and
�(q) = ea2q2/16 is the c.m. correction factor.

The above α-α potential and the α distribution form
factor have been applied to construct the folding potentials
for the α+16O [18] and 16O+16O scattering [19], and the
obtained potentials can satisfactorily describe the experimental
angular distributions of the elastic α+16O scattering at incident
energies from 25 to 54 MeV and the elastic 16O+16O scattering
at incident energies from 75 to 124 MeV.

For the α+16O relative motion wave function χ0(r) in
expression (2), we have proposed an α+16O model of the
20Ne nucleus [20,22]. In this model the relative motion wave
function for the ground state of the 20Ne nucleus can be written
as

χ0(r) = R0(r)Y00(θ, φ), (6)

where R0(r) is the radial wave function, and is given as

R0(r) = sin
β

2
O10(r) + cos

β

2
O20(r). (7)

Here O10(r) and O20(r) are the harmonic-oscillator radial
functions with the quantum numbers 1s and 2s, respectively,
that is,

O10(r) = 2(a6π )−1/4e−r2/2a2
(8)

and

O20(r) =
√

8

3
(a6π )−1/4

[
3

2
−

( r

a

)2
]

e−r2/2a2
. (9)

By fitting the experimental charge form factor of 20Ne, we
obtain the parameters a = 1.96 fm and β = 282.4◦.

Using the relative motion wave function χ0(r) and the
α-16O potential Vα16O(R) provided in [18], the folding potential
Vα20Ne(R) of expression (2) can be easily obtained and
expressed as an analytical function. This folding potential
has been applied to describe the elastic α+20Ne scattering
and can yield a reasonable description of the experimental
angular distributions for incident energies of 31.1, 54.1, and
104.0 MeV [20].

Because of the analytical and simple forms of Vαα(r), ηα(q),
χ0(r), Vα16O(R), and Vα20Ne(R), the folding model potential of
expression (1) can be conveniently obtained and expressed as
an analytical function. Then, as in the usual folding model
calculations, the total optical potential used to describe the
elastic 16O+20Ne scattering has the form

U (R) = NV (R) + W (R) + VC(R), (10)

where N is the renormalization factor and W (R) is the
imaginary part of the interaction. The Coulomb potential
VC(R) is taken to correspond to a uniformly charged sphere of
radius RC = 1.3(A1/3

1 + A
1/3
2 ).

For the imaginary part of the potential, two choices were
used, a pure volume term of standard Woods-Saxon (WS) type
and the volume term together with an additional surface term
of a Woods-Saxon derivative (WSD) shape:

W (R) = −iW0

1 + exp
(

R−RW

aW

) (11)

and

W (R) = −iW0

1 + exp
(

R−RW

aW

) + −i4WD exp
(

R−RD

aD

)
[
1 + exp

(
R−RD

aD

)]2 , (12)

with RW,D = rW,D(A1/3
1 + A

1/3
2 ).

III. RESULTS AND DISCUSSION

The available experimental data [4] of elastic 16O+20Ne
scattering in the energy range of Ec.m. = 24.5–35.5 MeV have
been analyzed using the α-folding model potential constructed
in Sec. II. To investigate the predictive ability of the α-folding
potential, the imaginary potential should be chosen as simple
as possible to show the predominant effect of the real part.
Thus we use a simple standard Woods-Saxon-type imaginary
potential for our first investigation. And to reduce the number
of free parameters, the radius parameter rW = 1.30 fm and the
diffuseness aW = 0.70 fm were chosen and fixed in the whole
investigated energy range; only two parameters N and W0 were
adjusted to obtain a fit to the experimental data. The calculated
angular distributions are shown in Fig. 1 in comparison with
the experimental data. The corresponding values of N , W0, and
the volume integrals of the real and the imaginary potentials
are listed in Table I.

From Fig. 1, one can see that the α-folding potential
with a simple standard Woods-Saxon imaginary part can
overall describe the main features of the elastic 16O+20Ne
scattering angular distributions. The behavior of the backward
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FIG. 1. The angular distributions of elastic 16O+20Ne scattering at energies of Ec.m. = 24.5, 27.9, 28.2, 29.1, 31.7, 32.1 33.0, and 35.5 MeV.
The curves show the calculated results by use of the α-folding potential with a WS imaginary part. The experimental data are taken from
Ref. [4].

rise is reproduced to a certain extent, but the predictions for
the backward angles are not satisfying. Especially for the
energies of Ec.m. = 28.2, 29.1, 31.7, 32.1, and 35.5 MeV, the
calculations overestimate the data at angles θc.m. ≈ 80◦–120◦
and underestimate the data at larger angles. However, the
calculations show that the α-folding model potential, which
has a deep real part and is parity independent, has general
predictive ability to explain the angular distributions of elastic
16O+20Ne scattering. We expect that the quality of the fit would
be improved by using a more flexible imaginary potential.

Analyses for the 16O+12C and 16O+16O systems [11,12,23]
have shown that for the data at higher energies an acceptable
description was possible using just a volume term for the
imaginary part, whereas the fits at lower energies (lower than

TABLE I. Values of the renormalization factor, the central depth
of the imaginary potential, and the volume integrals of the real and
imaginary potentials for calculations using a WS imaginary part with
rW = 1.30 fm and aW = 0.70 fm.

Ec.m. N W0 JR/A1A2 JI /A1A2

(MeV) (MeV) (MeV fm3) (MeV fm3)

24.5 1.13 5.5 467.8 25.1
27.9 1.10 6.3 455.4 28.7
28.2 1.05 6.4 434.7 29.2
29.1 1.09 6.4 451.3 29.2
31.7 1.14 6.8 472.0 31.0
32.1 1.14 6.6 472.0 30.1
33.0 1.14 6.7 472.0 30.5
35.5 1.14 7.4 472.0 33.7

Ec.m. = 40 MeV) required inclusion of a surface imaginary
term. And in Ref. [24], for analysis of the 16O+28Si system
using a deep modified optical potential with an imaginary
potential consisting of the sum of a Woods-Saxon volume
and a surface potential, it was observed that the surface term
had a significant effect at all the energies considered. As in
the present investigation for elastic 16O+20Ne scattering, the
energy range is Ec.m. = 24.5–35.5 MeV, where the surface
imaginary term may play an important role. Thus, we use an
imaginary potential consisting of a WS volume term plus a
WSD surface term for further analysis. In Ref. [23], it was
found that the volume diffuseness of the imaginary potential
tends to be very small when the surface imaginary term is
included in the potential. The volume imaginary diffuseness
can be fixed at some small value, such as 0.1 fm. In Ref. [24],
the radius parameter found for the volume imaginary term is
RW = 0.060 84Ec.m. − 0.544 fm, which is much smaller than
that generally used for lower energies.

In our calculations, referring to the above works
[11,12,23,24] and after several attempts, the parameters rW =
0.24 fm, aW = 0.10 fm, rD = 1.08 fm, and aD = 0.60 fm
were chosen and fixed in the whole considered energy range;
only N , W0, and WD were allowed to vary to obtain a fit to the
experimental data. The calculated results are shown in Fig. 2 in
comparison with experimental data. The obtained values of the
renormalization factor N , the central depths W0 and WD of the
imaginary potential, and the volume integrals of the real and
the imaginary potentials are listed in Table II. One can see that
much better fits to the data are obtained by using an imaginary
potential with a WS volume term plus a WSD surface term
than by using only a WS volume term. The backward rise and
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FIG. 2. As Fig. 1, but for the WS + WSD imaginary potential.

the oscillatory structure are well described by the calculations.
However, the calculations are somewhat out of phase with the
measurements and overestimate the data at some angles for
some incident energies.

From the obtained parameters listed in Table II, the required
renormalization factors are N ≈ 1.15 ± 0.01. The volume
integrals of the real potential are very weakly dependent on
energy in this energy range, while the imaginary volume
integrals increase with incident energy. The obtained real
volume integrals JR/A1A2 ≈ 475 ± 5 MeV fm3 are “anoma-
lously” strong comparing to those of “normal” potentials
for neighboring 4N-type nuclei systems. For the 12C+12C,
16O+12C, and 16O+16O systems, Brandan and Satchler [10]
extracted the values of the volume integrals as a function of
projectile energy per nucleon for various potentials that fit the

TABLE II. Values of the renormaliztion factor, the central depths
of the WS and the WSD terms, and the volume integrals of the
real and imaginary potentials for calculations using the WS + WSD
imaginary part with rW = 0.24 fm, aW = 0.10 fm, rD = 1.08 fm, and
aD = 0.60 fm.

Ec.m. N W0 WD JR/A1A2 JI /A1A2

(MeV) (MeV) (MeV) (MeV fm3) (MeV fm3)

24.5 1.14 42.0 6.0 472.0 19.9
27.9 1.15 49.0 7.0 476.1 23.2
28.2 1.16 52.0 7.2 480.2 23.9
29.1 1.15 53.0 7.2 476.1 24.0
31.7 1.14 54.0 8.0 472.0 26.5
32.1 1.14 55.0 8.0 472.0 26.5
33.0 1.15 56.0 8.6 476.1 28.4
35.5 1.15 56.0 10.6 476.1 34.7

data (see Fig. 6.7 of Ref. [10]). It is shown that the real volume
integrals are less than 400 MeV fm3.

It should be pointed out that the anomaly of the stronger
real volume integral was revealed in α elastic scattering on
20Ne [20,25,26]. It has been shown that a normal real potential
with volume integral JR/A1A2 around 350 MeV fm3 can well
reproduce the experimental cross sections for α scattering
on lower-mass targets [25], but fails to describe the data for
the 20Ne target. Michel and Reidemeister [26] found that, for
the 54.1 MeV elastic α+20Ne scattering, a phenomenological
potential with real volume integral about 500 MeV fm3 can
well describe the backward angle enhancement of the data but
is unable to obtain a satisfactory phasing with the data for the
whole angular range. However, the data can be quantitatively
described by use of a real potential with JR/A1A2 about
350 MeV fm3 plus a small parity-dependent real part. In our
previous analysis of the elastic α+20Ne scattering based on a
framework similar to the present α-folding model, the required
volume integrals for the real potential to get a fit to the data
are about 450–490 MeV fm3 [20].

It seems that the potential for the description of elastic
16O+20Ne scattering, like that for α+20Ne scattering, has
different properties from the normal potentials. In Refs. [3–6],
an extended potential with a parity-dependent real term
and an angular-momentum-dependent absorptive part can
reasonably describe the elastic 16O+20Ne scattering data.
Here, the data have been well described by an α-folding
model potential with a much stronger real volume integral
than that of a normal potential. However, the quality of the
fits for the angular distributions obtained via the α-folding
model potential shown here in Fig. 2 is better than that
obtained by the parity- and angular-momentum-dependent
extended optical potentials shown in Refs. [3–5]. In
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FIG. 3. Excitation function for elastic 16O+20Ne scattering at
θc.m. = 90◦ and 154◦. The solid circles are calculations averaged
over an angular range of ±2◦ for the considered energies obtained by
the α-folding potential with a WS + WSD imaginary part. The data
(open circles) are taken from Refs. [27,28].

Ref. [7], the parity- and angular-momentum-independent
potential obtained by using the IP inversion method gave
the same angular distributions as the phenomenological
parity- and angular-momentum-dependent “deep” potential in
Ref. [6]. The real part of this potential in Ref. [7] is deeper and
exhibits some oscillations, and the absorptive part is surface
transparent, having a small and energy-dependent radius.

In Ref. [17], calculations for the 32.1 MeV elastic
16O+20Ne scattering show that the M3Y double-folding model
potential cannot describe the data at backward angles, whereas
the data can be well described by including an α-transfer
amplitude in the elastic channel. In this case, the α-exchange
effect makes a significant contribution to the large-angle cross
sections. In our present analysis, we have not explicitly taken
account of the exchange effect between the incident and target
α particles, which is beyond the folding model framework.
We consider that, since the α-α potential given by Buck et al.
takes into account the indistinguishability of two α particles,
the exchange effect may be partly included in the α-folding
model through the α-α potential. Therefore, the backward rise

can be well reproduced by the obtained α-folding potential.
However, from the analyses in Ref. [17], it may be expected
that the inclusion of the accurate α-exchange process will
yield a better description of the phase and magnitude of the
backward oscillations.

For the 16O+20Ne system, there are experimental elastic
excitation functions at θc.m. = 90◦ and 154◦ [27,28]. In Fig. 3,
we show the values of the cross section averaged over an
angular range of ±2◦ calculated by the α-folding model,
together with the experimental data. One can see that the
calculated cross sections are in general agreement with the
experimental data for the considered energies. However,
to obtain a full description of the excitation functions, an
expression for the energy dependence of the optical potential
should be established. In particular, from the experience of
the previous relevant studies, the energy dependence of the
imaginary potential should be reasonably well known. In
Refs. [3–5,27], an angular-momentum- and energy-dependent
imaginary potential is introduced for the 16O+20Ne system,
and a reasonable description of the excitation functions is
obtained. In this work, we do not attempt to obtain a practicable
expression for the energy dependence of the optical potential.
The intention of the present work, as mentioned above, is to
examine the α-folding model potential and the α+16O model
of the 20Ne nucleus via elastic 16O+20Ne scattering. This
simple α-folding model with only two or three free parameters
can obtain the results shown in Figs. 1–3. Thus the aim of the
present study has been well achieved.

In summary, based on the four-α-particle model for the
16O nucleus and the α+16O model for the 20Ne nucleus,
we have constructed a folding model potential to describe
elastic 16O+20Ne scattering. The available experimental
elastic 16O+20Ne scattering data in the energy range of
Ec.m. = 24.5–35.5 MeV have been analyzed by use of this
α-folding potential. The calculated results show that, with a
simple standard WS imaginary part, the α-folding potential
can only give a qualitative description of the data, whereas,
with an imaginary potential consisting of a WS volume
term plus a WSD surface term, the experimental data can
been reasonably well described. The ALAS feature and the
oscillatory structure are well reproduced although detailed
fits to the values and the phase of the data at backward
angles are not very satisfactory. The required renormalization
factor is N ≈ 1.15 ± 0.01 to get a good fit to the data, which
leads to an anomalously stronger real volume integral of
JR/A1A2 ≈ 475 ± 5 MeV fm3. The anomaly of the 16O+20Ne
scattering should be further systematically studied.
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[4] Y. Kondō, B. A. Robson, and R. Smith, Nucl. Phys. A 437, 117
(1985).
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