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Platinum nuclei: Concealed configuration mixing and shape coexistence
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The role of configuration mixing in the Pt region is investigated. For this chain of isotopes, the nature of the
ground state changes smoothly, being spherical around mass A ∼ 174 and A ∼ 192 and deformed around the
midshell N = 104 region. This has a dramatic effect on the systematics of the energy spectra as compared to
the systematics in the Pb and Hg nuclei. Interacting boson model with configuration mixing calculations are
presented for gyromagnetic factors, α-decay hindrance factors, and isotope shifts. The necessity of incorporating
intruder configurations to obtain an accurate description of the latter properties becomes evident.
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I. INTRODUCTION

By now, shape coexistence has been observed in many
mass regions throughout the nuclear chart and turns out to
be realized in more nuclei than anticipated a few decades
ago [1]. Shell-model [2] and mean-field [3] approaches have
shown that shape coexistence arises naturally, in the first case
through inclusion of many-particle, many-hole excitations
across closed shells and in the latter case through constraints
on the quadrupole moment in Hartree Fock (HF) and Hartree-
Fock-Bogoliubov (HFB) studies [4–9]. A particularly well-
documented example of shape coexistence is the Pb region.
From the closed neutron shell (N = 126) to the very neutron-
deficient nuclei, approaching and even going beyond the
N = 104 midshell, ample experimental evidence for shape
coexisting bands has been accumulated for the Pb (Z =
82) and Hg (Z = 80) nuclei [10–12]. Recent experiments
have extended our knowledge of the excitation energies in
intruding bands [13], lifetime data [7,14–17], nuclear charge
radii [18,19], 2+

1 gyromagnetic factors [20,21], and α-decay
hindrance factors [22–24].

An important question is how these shape coexisting
structures will evolve when one moves further away from
the Z = 82 and N = 126 closed shells. Recently, a lot of new
results have become available for the even-even Po, Hg, and Pt
nuclei, for which experimental information was highly needed.
It is informative to compare the systematics of the low-lying
states of the Z = 82 proton closed shell Pb nuclei (Fig. 1), the
Z = 80 Hg nuclei (Fig. 2), and the Z = 78 Pt nuclei (Fig. 3).
The data to construct these figures have been taken from the
relevant Nuclear Data Sheets, from [13] (for the Pb nuclei),
from [17,25–28] (for the Hg nuclei), and [29–35] (for the Pt
nuclei). Whereas the intruder bands are easily singled out for
the Pb and Hg nuclei and the excitation energies display the
characteristic parabolic pattern with minimal excitation energy
around the N = 104 neutron midshell nucleus, this structure
seems lost for the Pt nuclei. Focusing on the systematics of the
energy spectra in these Pt nuclei as a function of the neutron
number, one observes a rather sudden drop in the excitation
energy of the 0+

2 , 4+
1 , 2+

3 , and 6+
1 states between N = 110

(A = 188) and N = 108 (A = 186), followed by a particularly

flat behavior as a function of N until the energies of those
states start to move up again around neutron number N = 100
(A = 178).

As the Pb nuclei, the Pt nuclei have been studied within
the framework of the interacting boson model (IBM) [36].
Taking into account the presence of proton 2p-2h excitations
across the Z = 82 proton closed shell [37], one achieves an
overall good description of both energy spectra, radii, and
g factors [38,39]. In addition, IBM calculations that do not
explicitly take into account the proton intruder configurations
have also been carried out [29,33,40], resulting in a satisfactory
description of excitation energies and B(E2) transition rates.
In a previous paper [41], we studied the Pt nuclei extensively
and carried out a detailed comparison between calculations that
include proton 2p-2h excitations (hence, in the model space
[N ] ⊕ [N + 2], where N denotes the total number of bosons,
irrespective of their charge character) with calculations that
consider the smaller model space of the [N ] configurations
only. It turned out that the results for the energy spectra and
absolute B(E2) values were very similar up to an excitation
energy of ∼1.5 MeV, even though the corresponding wave
functions have to be very different in some cases. As such, it
was concluded that these similarities point toward a picture
where the configuration mixing and the larger model space are
somehow “concealed.”

This very same observation has been put forward a long time
ago by Cohen, Lawson, and Soper [42–44] when addressing
the question “How can the results using a large model space,
be very similar to the ones resulting from a truncated model
space.” Starting from a model space of two degenerate 1d3/2

and 1f7/2 single-particle neutron orbitals (containing a neutron
number ranging from 4 to 12) and a given two-body interaction,
a Yukawa potential, they constructed a set of theoretical nuclei
which were called the Pseudonium nuclei 40–48Ps. Interpreting
the Ps energy spectra as pseudodata, they consequently showed
that these spectra could be well reproduced within the much
more restricted model space of the 1f7/2 orbital only, now
containing between 0 and 8 neutrons. Indeed, the effective
interaction matrix elements adjusted to the spectrum of the Ps
nuclei corresponded to quite a different interaction than those
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FIG. 1. (Color online) Energy systematic of the Pb nuclei. The red
lines (triangles) connect states associated with a prolate structure, the
blue lines (squares) states with an oblate structure and the blacklines
(circles) connect states with a spherical structure.

in case of the larger model space. Moreover, they showed
that other observables, such as the B(E2) values for the
strongest transitions, were very similar in both approaches,
even though the wave functions differed distinctly. A different
set of Pseudonium nuclei was constructed for a model space of
two degenerate 1p1/2 and 1d3/2 single-particle states that could
contain both protons and neutrons, up to a maximum of 12
nucleons. Very much the same conclusion was reached after the

FIG. 2. (Color online) Energy systematic of the Hg nuclei. The
red lines (circles) connect states associated with a prolate structure
and the blue lines (squares) states with an oblate structure.

FIG. 3. Energy systematic of the Pt nuclei. The dark lines (circles)
connect the yrast band structure, the full (triangles) and dashed thin
lines (open squares) connect the non-yrast levels.

analysis of the resulting spectra within a restricted model space
of the 1d3/2 orbital only [43]. In the latter study, it was pointed
out that quadrupole moments seemed to be a better observable
to probe differences. Certain particularly chosen transfer
reactions were highly sensitive to the choice of the model
space. This demonstrates that a number of observables such
as excitation energies and B(E2) values are rather insensitive
to configuration mixing arising from the excitation of zero-
coupled pairs across the closed shell. The same underlying
mechanism may be responsible for the similarities between the
results for the Pt isotopes obtained within the [N ] configuration
space of the IBM and those obtained for the [N ] ⊕ [N + 2]
configuration space. In addition to the detailed comparison
in [41], we have constructed pseudospectra in the IBM
within a [N ] ⊕ [N + 2] configuration space and consequently
adjusted the parameters of an IBM Hamiltonian within the [N ]
configuration space [45]. Apart from very particular B(E2)
transition rates, it was impossible to discriminate between the
results of the two approaches.

In a more recent example, a study of the actual wave
function content and the way to test it has been explored
in the study of the nucleus 40Ca [46]. It turns out that
the 0+ ground state consists of only 65% closed sd shell
(or 0p-0h) and exhibits 29% 2p-2h excitations out of the
2s1/2, 1d3/2 normally filled orbitals into the 1f7/2, 2p3/2, 1f5/2,
2p1/2 higher-lying orbitals with even a 5% 4p-4h excitation
contribution. This large model space is needed to describe the
higher lying strongly deformed bands and superdeformation
as experimentally observed in 40Ca. The isotopic shifts in the
even-even A = 40 to A = 48 Ca nuclei could be reproduced
well through explicit inclusion of mp-nh excitations across the
Z = 20, N = 20 “closed” shell in a slightly smaller model
space than the one mentioned before [47]. This indicates
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that one can indeed find observables which are sensitive to
the important components of the wave function and thus
can discriminate between various approaches that give quite
similar results when restricting to a subset of data only.

The content of this paper is organized as follows. After
Sec. I we present the IBM formalism in Sec. II A, the evolution
of the character of low-lying states in Sec. II B, the systematics
of the energy spectra in Sec. II C, and the decomposition of
the B(E2) values into regular and intruder contributions in
Sec. II D. In Sec. III we explain the origin of the observed
flat energy tendencies around neutron midshell on the basis of
the crossing of the regular and intruder unperturbed 0+ states.
Section IV is devoted to the study of observables sensitive
to the presence of 2p-2h configuration such as gyromagnetic
factors (Sec. IV A), α-decay hindrance factors (Sec. IV B),
and nuclear radii (Sec. IV C). Finally, in Sec. V we present the
summary and the conclusions of this work.

II. CONFIGURATION MIXING AND THE OBSERVATION
OF REGULAR PATTERNS

A. The formalism

In this section we present an abridged introduction to the
IBM configuration mixing formalism (or IBM-CM) and to
the fitting-procedure of the IBM-CM parameters for the Pt
isotopes. For an in-depth discussion, we refer to [41]. The
IBM-CM allows the simultaneous treatment and mixing of
several boson configurations which correspond to different
particle-hole (p-h) shell-model excitations [37]. On the basis of
intruder spin symmetry [48,49], no distinction is made between
particle and hole bosons. Hence, the model space including
the valence neutrons outside the N = 82 shell as well as the
regular 4h and 6h-2p proton configurations with respect to the
Z = 82 shell corresponds to a [N ] ⊕ [N + 2] boson space.
The boson number N is obtained as the sum of the number
of active protons (counting both proton particles and holes)
and the number of valence neutrons, divided by two. Thus, the
Hamiltonian for two configuration mixing is written

Ĥ = P̂
†
NĤN

ECQFP̂N + P̂
†
N+2

(
ĤN+2

ECQF + �N+2
)
P̂N+2

+ V̂ N,N+2
mix , (1)

where P̂N and P̂N+2 are projection operators onto the [N ] and
the [N + 2] boson spaces, respectively, V̂ N,N+2

mix describes the
mixing between the [N ] and the [N + 2] boson subspaces, and

Ĥ i
ECQF = εi n̂d + κ ′

i L̂ · L̂ + κiQ̂(χi) · Q̂(χi) (2)

is the extended consistent-Q Hamiltonian (ECQF) [50] with
i = N,N + 2, n̂d is the d boson number operator,

L̂μ = [d† × d̃](1)
μ (3)

is the angular momentum operator, and

Q̂μ(χi) = [s† × d̃ + d† × s](2)
μ + χi[d

† × d̃](2)
μ (4)

is the quadrupole operator. We did not consider the most
general IBM Hamiltonian for each Hilbert space, [N ] and
[N + 2], but restricted ourselves to the ECQF formalism

Hamiltonian [50,51]. This approach has been shown to be
a rather good approximation in many calculations.

The parameter �N+2 can be associated with the energy
needed to excite two particles across the Z = 82 shell gap,
corrected for the pairing interaction energy gain and including
monopole effects [52,53]. The operator V̂ N,N+2

mix describes the
mixing between the N and the N + 2 configurations and is
defined as

V̂ N,N+2
mix = w

N,N+2
0 (s† × s† + s × s) + w

N,N+2
2

× (d† × d† + d̃ × d̃)(0). (5)

The E2 transition operator for two-configuration mixing is
subsequently defined as

T̂ (E2)μ =
∑

i=N,N+2

eiP̂
†
i Q̂μ(χi)P̂i , (6)

where the ei (i = N,N + 2) are the effective boson charges
and Q̂μ(χi) is the quadrupole operator defined in Eq. (4).

In our fitting procedure, we focused on obtaining the best
possible agreement with the experimental data available for
the excitation energies and for the B(E2) reduced transition
probabilities. In the most general case 13 parameters need
to be determined for the IBM-CM Hamiltonian (1) and the
E2 operator (6). To obtain parameters that vary smoothly
from isotope to isotope, we imposed some constraints. For
the regular Hamiltonian, we chose χN = 0, while we fixed the
relative d-boson energy to εN+2 = 0 for the intruder Hamilto-
nian, the latter choice also supported by [38]. These choices
were made following a number of test calculations in which no
substantial improvement in the value of χ2 was obtained if we
allowed εN+2 �= 0 or χN �= 0. In addition, we kept the value
that describes the energy needed to create an extra particle-hole
pair (or two extra bosons) at �N+2 = 2800 keV (note the typo
�N+2 = 1400 keV in [41]; all calculations were performed
with the correct value, though). Similarly, the mixing strengths
were chosen w

N,N+2
0 = w

N,N+2
2 = 50 keV for all the Pt

isotopes. Those values are known to be quite appropriate in
this part of the nuclear chart [38,39], although the choice of the
mixing strength remains somewhat arbitrary [38]. Finally, we
also have to determine the effective charges of the E2 operator
for each isotope. With these choices, the number of parameters
still to be determined for each nucleus is 8.

The parameters for the IBM-CM Hamiltonian resulting
from the fitting procedure are summarized in Table I [41].
Note that some of the Hamiltonian parameters, especially for
172Pt and 174Pt, remain rather arbitrary due to the lack of
experimental data. For 172Pt and 174Pt the value of the effective
charges cannot be determined because not a single absolute
B(E2) value is known. Similarly, for 182Pt, the absolute value
of the effective charges could not be determined because only
relative B(E2) values are known. As a consequence, those
charges are dimensionless.

B. The evolution of the character of the yrast band

We start our analysis with the structure of the configuration
mixed wave functions along the yrast levels, expressed as a
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TABLE I. Hamiltonian and T̂ (E2) parameters resulting from the present study. All quantities have the dimension of energy (given
in units of keV), except χN+2 which is dimensionless and eN and eN+2 which are given in units

√
W u The remaining parameters of the

Hamiltonian, i.e., χN and εN+2 are equal to zero, except �N+2 = 2800 keV and w
N,N+2
0 = w

N,N+2
2 = 50 keV.

Nucleus εN κ ′
N κN κ ′

N+2 κN+2 χN+2 eN eN+2

172Pt 725.0 0.00 − 39.47 0.00 − 22.87 −0.38 – –
174Pt 701.2 0.00 − 31.60 0.00 − 21.82 −0.30 – –
176Pt 683.4 1.04 − 37.62 5.24 − 23.56 −0.75 1.86 1.63
178Pt 753.8 −2.31 − 37.45 5.27 − 25.17 −0.55 3.21 1.52
180Pt 999.3 −15.14 − 37.34 6.57 − 25.14 −0.32 1.29 1.94
182Pt 939.9 −6.70 − 35.39 7.03 − 23.50 −0.31 1 1.1
184Pt 750.6 1.47 − 32.66 6.64 − 23.89 −0.34 1.14 1.71
186Pt 675.3 3.17 − 30.50 7.29 − 24.23 −0.32 1.44 1.67
188Pt 483.2 4.94 − 37.38 6.67 − 31.47 −0.11 1.66 1.66
190Pt 338.7 19.33 − 34.62 0.83 − 32.51 0.00 1.50 1.50
192Pt 314.9 12.01 − 45.32 −8.82 − 38.84 0.00 1.68 1.77
194Pt 370.9 6.67 − 38.26 6.52 − 31.02 0.00 1.97 0.25

function of the [N ] and [N + 2] basis states,

�(k, JM) =
∑

i

ak
i (J ; N )ψ

(
(sd)Ni ; JM

)

+
∑

j

bk
j (J ; N + 2)ψ

(
(sd)N+2

j ; JM
)
, (7)

where k, i, and j are rank numbers.
In Fig. 4 we present the weight of the wave function

contained within the [N ]-boson subspace, defined as the sum
of the squared amplitudes wk(J,N) ≡ ∑

i | ak
i (J ; N ) |2 for

the yrast states (k = 1) and the 0+
2 state, which is indicated

with a dashed line. The results exhibit an interesting behavior,
both as a function of angular momentum J and as a function
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FIG. 4. (Color online) Regular component of the yrast band states
(full lines), together with the 0+

2 state (black dashed line), calculated
using the IBM-CM formalism.

of changing mass number. Indeed, the character of the yrast
band changes with increasing neutron number, passing from
being spherical (major component in the [N ] space) at mass
number A ∼ 172 toward more deformed (major component
in the [N + 2] model space) close to midshell, and changing
again to a spherical character when approaching A ∼ 192. This
behavior is very pronounced for the yrast 0+

1 , 2+
1 , 4+

1 states
but changes for the higher spin states and in particular for
the J = 8+ state, which retains its [N + 2] intruder character
along the whole region 172 � A � 192 (except for 194Pt which
is regular). This makes the J = 8+ state the ideal reference
state to redraw the energy spectra of the Pt nuclei and study
their evolution [54,55]. Similarly scaled energy spectra can be
obtained for other nuclei exhibiting this systematic behavior.
Hence, rescaling the energy spectra of the adjacent isotones
with neutron number N = 106 [with w1(J = 0, N) ∼ 30%
for 184Pt] gives a most interesting illustration that reveals the
mixing effects in the ground-state and lower-spin yrast states
(see Fig. 5). It shows that the energy of the 0+ ground state
and some of the lower-spin yrast states relative to a higher
lying, more pure, reference state is particularly sensitive to the
[N + 2] configuration space wave function components. This
is studied in more detail in Sec. IV. It is also clear that the
yrast band in 184Pt shows a very strong correspondence with
the intruder band structure in 186Hg.

Going back to Fig. 4, where we also plotted the regular
component of the 0+

2 state, one clearly notices its complemen-
tary behavior compared to the 0+

1 state. This has an important
consequence on the study of the hindrance factor for α decay
from the Hg ground state into the 0+

1,2 states in the Pt nuclei,
as will be discussed in Sec. IV B.

C. Energy spectra

Having discussed the wave function content in terms of the
[N ] and [N + 2] configurations in the previous section, as a
next step we study the configuration mixed energy spectra in
more detail. Especially the energies up to Ex ∼ 1.5 MeV are
of interest because the extra states coming from the intruder
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FIG. 5. Energy spectra in the N = 106 isotones from 70Yb up
to 80Hg, relative to the energy of the yrast 8+ state. The numbers
between parentheses denote the value of h̄2/(2J ) deduced from the
energy differences.

configuration do not show up in an obvious way (in contrast
to, e.g., the Pb and Hg nuclei in Figs. 1 and 2, respectively).
Therefore, we diagonalize the Hamiltonian (1) without the
mixing term in the separate model spaces [N ] and [N + 2].
This results in the wave functions

�(k, JM)N =
∑

l

ck
l (J ; N )ψ

[
(sd)Nl ; JM

]
, (8)

(and similarly for N + 2) with corresponding energies
E(k, J [N ]) and E(l, J [N + 2]). This method has been de-
scribed in detail [56–58] and results in “so-called” unperturbed
bands that are an intermediate step before obtaining the full,
configuration-mixed, wave functions and their corresponding
excitation energies. These bands are the equivalent of the
unperturbed bands extracted from phenomenological band
mixing studies that have been carried out in this mass region
[59,60]. The introduction of the coupling term V̂ N,N+2

mix leads to
a mixing of these unperturbed bands. The intermediate basis of
a set of unperturbed “bands” is particularly useful to detect the
effects caused by the remaining mixing term and its influence
on the final energy spectra.

In the next figures we illustrate these various steps
highlighting the way in which the energy spectra result.
We consider, as examples, the nuclei 174Pt, 180Pt, 186Pt, and
192Pt which are positioned around neutron midshell N = 104.
Starting with 174Pt (N = 96), we present the unperturbed
bands resulting from diagonalizing in the [N ] space (called
“Regular”) and in the [N + 2] space (called “2p-2h”) on
the left-hand side of Fig. 6. The lowest unperturbed regular
bands correspond to the less collective structure, whereas the
higher lying unperturbed 2p-2h bands have a rotational-like
structure, including bands that resemble excited Kπ = 2+ and
Kπ = 0+ bands. The inclusion of the mixing then leads to the
energy spectra (called CM for “configuration mixed”) on the
right-hand side of the figure. On each of the levels, the weight
wk(J,N) ≡ ∑

i | ak
i (J ; N ) |2 (see Sec. II B for its definition)

of the regular [N ] part of the model space is displayed.
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FIG. 6. Unperturbed regular and intruder (“2p-2h”) energy levels
together with the theoretical fully mixed calculation (“CM”) for 174Pt.
The small numbers in the CM column correspond to the regular
component percentage.

This nicely illustrates the gradual degrading of the [N ]
percentage when going up the yrast band (see also Fig. 4). The
configuration mixing also explains the fact that the rotational-
like structures observed for the lowest-lying unperturbed 2p-2h
band members, become highly distorted in the final spectrum.
This is illustrated by means of the the particular [N ] percentage
distribution in Fig. 6. We stress that the bands were constructed
as sequences of levels connected through large B(E2) reduced
transition probabilities. We also mention that only the lowest
three bands are shown in the CM spectrum as we focus on those
bands which appear mostly below ∼1.5 MeV. Finally, it is clear
that the CM spectrum strongly resembles that of the regular
configuration even though the energies are more compressed.
Evidently the wave functions are largely different in both
cases.

In Fig. 7 we illustrate the situation for 180Pt (N = 102),
which is situated close to neutron midshell N = 104. Here
one clearly notices two things as compared with 174Pt: (i) the
inversion of the energies of lowest 2p-2p unperturbed bands
with the regular unperturbed bands and (ii) the change in
structure of the regular unperturbed bands. When comparing
with the CM spectrum, one notices that the yrast band has its
main components within the [N + 2] model space, becoming
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FIG. 7. The same as Fig. 6 but for 180Pt.
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FIG. 8. The same as Fig. 6 but for 186Pt.

gradually pure with increasing angular momentum. The even
angular momentum states in the two excited bands in the CM
spectrum retain mostly a [N + 2] character but with a much
larger contribution from the [N ] components as compared
to the yrast band. In fact, they result mostly from strong
mixing between the lowest unperturbed regular band and the
two excited unperturbed 2p-2h bands. In 186Pt (N = 108, see
Fig. 8) the unperturbed bands are almost degenerate. This is
reflected in the composition of the wave functions, in particular
for the lower spin states where strongly mixed configurations
result. For both 180Pt and 186Pt, the strong mixing of the
unperturbed bands conceals the presence of the two different
configurations for the bands in the CM spectrum starting off
well below 1.5 MeV.

For comparison, we also present in Fig. 9 the results for
192Pt (N = 114), a nucleus well past the neutron midshell N =
104. In this case, the 2p-2h unperturbed bands have moved
up considerably compared to the regular bands which exhibit
a clear O(6) structure in this mass region. Even though the
unperturbed regular and 2p-2h bands seem well separated at
first sight, the states above the 2+

1 level remain quite mixed in
the spectrum resulting after configuration mixing.

As a conclusion to this part of our study, in which we
investigated the unperturbed bands (regular and 2p-2h) and
subsequently added the mixing interaction, we state that a
very strong mixing of the bands for the Pt nuclei close to
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FIG. 9. The same as Fig. 6 but for 192Pt.

neutron midshell makes it virtually impossible to distinguish
between the regular and 2p-2h configurations. Because of the
strong mixing in the Pt nuclei, in particular in the midshell
region, (i) it is hard to distinguish the precise nature of a band
by just observing the energy systematics and (ii) remarkably,
the energy spectra resulting from the IBM-CM calculation,
below ∼1.5 MeV, resemble spectra that can be described with
an IBM Hamiltonian in the [N ] space.

D. Electric quadrupole transitions

More detailed information on the admixture of the wave
functions can be obtained from the E2 transition matrix
elements. Whereas the wave functions in Eq. (7) are expressed
using the [N ] and [N + 2] basis states, we can equally well
express them using the eigenfunctions corresponding with the
unperturbed regular and intruder bands, as given in Eq. (8).
Under this basis transformation, the E2 transition matrix
elements are decomposed into corresponding E2 transition
matrix elements within the unperturbed bands each having
a certain weight factor. This allows us to filter out those
transitions in the unperturbed bands that contribute most to
a certain transition in the fully configuration mixed bands and
provides additional information on the admixture in the wave
function.

In Fig. 10 we present the ratio R for (a) 174Pt, (b) 180Pt,
(c) 186Pt, and (d) 192Pt. This quantity R is defined as the
ratio of a contributing reduced transition matrix element
of the Ji(i ′) → Jf (f ′) transition in the unperturbed regular
band 〈(f ′, Jf )N || T̂ (E2) || (i ′, Ji)N 〉 (and similar for N + 2)
times its weight factor, with respect to the reduced transi-
tion matrix element of the corresponding transition in the
fully configuration-mixed system 〈(f, Jf ) || T̂ (E2) || (i, Ji)〉
it contributes to (f ′, i ′, f, i being rank numbers). We have
plotted the most important contributions (ratios), such that,
when adding them we arrive to within 10% of the full
matrix element. The inset legend in Fig. 10 gives the specific
contributions in the unperturbed band. For example, in blue
(N, 1) → (N, 1), the contributing ratio

R(N ) = W
〈(1, J − 2)N || T̂ (E2) || (1, J )N 〉
〈(k, J − 2) || T̂ (E2) || (k, J )〉 , (9)

with W the weight factor (see [57,58] for the detailed
expression), is shown (the same can be defined for [N + 2]).
The effective charges used for these decompositions are
taken from Table I, except for 174Pt where arbitrary charges
eN = eN+2 = 1 have been used.

Inspecting the transitions in the yrast band [i.e., 2(1)–0(1),
4(1)–2(1), and 6(1)–4(1)], we observe a pattern to be expected
from the discussion of the energy spectra in Sec. II C.
Whereas the largest contributions are coming from the
unperturbed regular yrast band for 174Pt and 192Pt, with
an increasing contribution from the unperturbed intruder
yrast band when going to higher spin, the transitions in the
yrast band of 180Pt and 186Pt are almost entirely determined
by the contribution of transition in the unperturbed 2p-2h
yrast band.
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FIG. 10. (Color online) Decomposition of the E2 matrix elements for 174Pt (a), 180Pt (b), 186Pt (c), and 192Pt (d). The E2 ratio R is defined
as in [58]. The initial and final state are indicated as Ji(i)–Jf (f ) at the bottom of the figure. The color coding for the contributions of the
corresponding transition from Ji(i ′) to Jf (f ′) in the unperturbed regular band [indicated as (N, i ′) → (N, f ′)] is given on the right-hand side
of the figure (similar for contributions in the unperturbed 2p-2h band).

The transitions in the first excited band are more interesting.
Starting with 192Pt, we notice that those transitions are
dominated by the corresponding transitions in the first excited
unperturbed regular and 2p-2h band. Though this may seem
surprising at first sight from inspection of the spectrum, one
should keep in mind that the intruder part of the Hamiltonian
is very close to the case of O(6) symmetry and that selection
rules for the transitions will apply. For the other nuclei,
the decomposition of the E2 matrix elements looks more
complicated. For 180Pt and 186Pt [excluding the 2(2)–0(2)
transition for the moment], the relatively largest contribution
is coming from the transitions in the first excited unperturbed
intruder band, followed by contributions from transitions in the
unperturbed yrast regular band and some smaller contributions.
Indeed, the strong lowering of the unperturbed intruder bands
around neutron midshell and the typical spreading of the
energies in the unperturbed bands brings the 4+ and 6+ states
of the unperturbed regular yrast band and of the unperturbed
first excited 2p-2h band pretty close in energy. Even though
one would also expect a nonnegligible contribution from the
transitions involving the second excited unperturbed 2p-2h
band from comparison of the unperturbed energies, they do
not or barely contribute. In 174Pt, finally, the unperturbed 2p-2h
bands have moved up in energy again and the E2 transitions in
the first excited band of the CM spectrum contain contributions

from both yrast and first excited unperturbed regular and 2p-2h
band, indicating a wider “spreading” of the wave function.
Finally, note that the 2(2)–0(2) transition, being an interband
transition, often has a structure that slightly differs from the
rest of the second excited band. Hence, we may state that
the decomposition of the E2-transition matrix elements gives
some more insight into the precise spreading of the wave
function in the basis of the unperturbed states. The relative
purity of the E2 ratios within the yrast band also hints at the
possibility to describe those transitions in a reduced [N] space.
From inspection of the more complex structure of the E2
ratios in the first excited band and especially for the interband
transition, one would expect differences between calculations
with different model spaces to show up.

III. EFFECT OF CONFIGURATION MIXING ON THE
SYSTEMATICS OF ENERGY LEVELS

In this section we concentrate on how the strong mixing ef-
fects discussed in Secs. II B–II D give rise to the characteristic
energy systematics of the even-even Pt nuclei.

In (a), (b), and (c) of Fig. 11 we plot the energy systematics
of, respectively, the unperturbed 0+

1,2, 2+
1,2, and 4+

1,2 states. The
energies are plotted relative to the energy of the unperturbed
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FIG. 11. (Color online) Energy systematic of the unperturbed (IBM-CM) first regular and intruder states [full line for regular, while dashed
line for intruder states in (a), (b), and (c)], (a) 0+

1,2 energies relative to the energy of the 0+ regular state, (b) 2+
1,2 energies relative to the energy

of the 0+ regular state, (c) 4+
1,2 energies relative to the energy of the 0+ regular state, (d) 0+

2 energies relative to the energy of the 0+
1 state,

(e) 2+
1 energies relative to the energy of the 0+

1 state, (f) 4+
1 energies relative to the energy of the 0+

1 state. (g) Corresponds to the full (including
now all states) IBM-CM calculation and (h) shows the experimental data of the yrast band states plus the 0+

2 state.

regular 0+ state, which enhances the parabolic behavior of the
energy intruder band. To compare those unperturbed energies
to the final spectrum, we should plot them relative to the
energy of the 0+ state that is lowest in energy. The unperturbed
energies of the 0+

2 , 2+
1 , and 4+

1 states with respect to the energy
of the 0+ state are plotted in Figs. 11(d), 11(e), and 11(f),
respectively. We observe a very striking tendency due to the
crossing of the 0+

1 and 0+
2 states. The evolution of 0+

2 state
is mexican hat shaped, whereas the 2+

1 and 4+
1 states exhibit

an almost flat behavior around midshell. This characteristic
behavior is exclusively due to the crossing of 0+

1 and 0+
2

states. Upon inclusion of the mixing interaction, it is clear that
the mixing effect will be maximal near the crossing at mass
number A = 178 and A = 186, in particular for the 0+ states
and likewise for the higher angular momentum states. It is the
interplay of the crossing with subsequent mixing for the 0+
states that largely determines the final behavior of the energy
systematics. The resulting spectra up to spin 8+ are shown in
Fig. 11(g) and still clearly display the very specific pattern of
the 0+

2 and 4+
1 states after the mixing. When comparing those

same states with the experimental systematics [see Fig. 11(h)],
a clear-cut correspondence shows up.

Therefore, we can conclude that the crossing of the set of
unperturbed regular and intruder bands is of major importance
in describing the energy systematics as observed in the Pt
nuclei, even though the configuration mixing effects are highly
concealed in the energy levels and B(E2) values of a given
nucleus.

IV. STUDY OF OBSERVABLES SENSITIVE TO
CONFIGURATION MIXING

Following from our discussion in the previous sections, it
should be clear that nuclear structure effects caused by the
strongly changing character of the wave function in the [N ]
and [N + 2] space are to be expected for a number of variables.
Indeed, observables such as charge radii, gyromagnetic factors,
and α-decay hindrance factors are sensitive to an increased
number of active protons (generated through particle-hole pair
excitations across the Z = 82 closed shell), or to a change to-
ward more explicit prolate deformation near neutron midshell
(N = 104). Therefore, we will focus on these experimental
quantities as they allow to probe precisely those components
of the nuclear wave functions.

A. Gyromagnetic factors

For our purpose, a particularly interesting set of data are
the g-factor measurements for the 2+

1 state in the midshell
184,186,188Pt nuclei [20]. The data display a rather flat behavior
as a function of the neutron number in the vicinity of midshell.
Early calculations by Kumar and Baranger that were quite
consistent with the data [61] indicated a change from a
prolate toward a more oblate ground-state shape between
A = 188 and A = 190 and were later substantiated by studies
from Bengtsson et al. [62]. Stuchbery et al. [20] analyzed
gyromagnetic factors starting from the two-band mixing study
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carried out by Dracoulis et al. [63], in which the mixing
between a regular and an intruder configuration consistent
with the measured B(E2) and with E0 measurements by
Xu et al. [64] was extracted. The calculations by Stuchbery
et al. [20] pointed out that the data cannot be described
using only a single configuration but are consistent with the
mixing of two configurations. In particular, the need of an
increased number of active proton pairs for the description
of the A = 184, 186, 188 results was demonstrated. The same
conclusion was reached by Harder et al. [38]. More recently,
Bian et al. [21] carried out projected shell-model calculations
starting from a deformed basis, concentrating on g factors for
the 2+

1 state throughout the rare-earth region, that is, from
Gd up to the Pt nuclei. Although they obtained a rather good
agreement for most of the region, the calculated results show
a distinct set of too low g factors in the Pt nuclei in the mass
region 184 � A � 198. Only by means of an artificial increase
of the deformation could one improve the agreement. Thus, g
factors are sensitive observables to the precise configuration
content of the nuclear wave function describing the 2+

1 state.
Within an IBM context, magnetic moments can be calcu-

lated with the IBM-2 [65,66], which differentiates between
proton (π ) and neutron bosons (ν). The M1 operator can then
be written as

T̂ (M1) =
√

3

4π

[
P̂

†
N

(
gπ

NL̂π + gν
NL̂ν

)
P̂N

+ P̂
†
N+2

(
gπ

N+2L̂π + gν
N+2L̂ν

)
P̂N+2

]
. (10)

Using the standard microscopic values for the g factors [67],
that is, gν

N = gν
N+2 = 0 and gπ

N = gπ
N+2 = μN , the M1 opera-

tor reduces to

T̂ (M1) =
√

3

4π
[P̂ †

N (L̂π )P̂N + P̂
†
N+2(L̂π )P̂N+2]μN. (11)

The calculation of the matrix element of this operator cannot be
accomplished directly with IBM-1, but if one assumes F-spin
symmetry for the IBM-2 Hamiltonian [66], it can be readily
shown that the gyromagnetic factor can be written as [38]

g(2+
1 )

μN

= 1

2μN

μ(2+
1 )

= Nπ

N
ω1(2, N) + Nπ + 2

N + 2
[1 − ω1(2, N)], (12)

where Nπ is the number of protons out of the closed shell
divided by two and ω1(2, N) is that part of the wave function of
the 2+

1 state within the [N ]-boson (regular) space (see Sec. II B
for its definition). In Fig. 12 we present the calculated g factors
and the experimental values. This figure is qualitatively similar
to the one in [38], but displays a better agreement with the
experimental data. Note that this calculation is parameter free
once the wave functions are determined. As a reference, we
also plotted the limits corresponding to wave function with
either fully regular [N ] character or intruder [N + 2]. The
theoretical results obtained after the mixing calculation should
be situated between both lines. Note that, according to the
IBM, this flat behavior of the g factors is necessarily explained
by a strong mixing between the regular and intruder 2p-2h
configurations.
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FIG. 12. (Color online) Gyromagnetic factor for the even-even
Pt isotopes (experimental data from [21]). Full circles for the
experimental data, full and dashed lines for [N ] and [N + 2]
unperturbed results, respectively, and red full diamonds with full
line for the IBM-CM calculations.

B. α-decay hindrance factors

In the Pb region the most interesting results were obtained
when the content of the nuclear wave functions was tested
through α-decay measurements. It was shown by Andreyev
et al. [68] that α decay was instrumental as a sensitive probe
to prove the presence of a triplet of 0+ states in 186Pb, each
corresponding to a different shape.

Wauters et al. [22,23] carried out experiments on the
α decay from the Po, Pb, and Hg nuclei to the Pb, Hg,
and Pt nuclei, respectively, concentrating in particular on
the N = 104 midshell region. α decay is a highly sensitive
fingerprint, precisely because an α particle is emitted in the
decay, a process which requires the extraction of two protons
and two neutrons from the initial nucleus. The comparison of
s-wave l = 0 α-decay branches from a given parent nucleus
(the Hg 0+ ground state in the present situation) to 0+ states
in the daughter nucleus (the Pt 0+ ground state and excited
0+ states) is important in that respect. The reduced α-decay
widths themselves are very difficult to calculate on an absolute
scale, but hindrance factors reflect possible changes among the
wave functions describing various 0+ states in a given daughter
nucleus [24] well. Hindrance factors of an α-decay branch to
an excited state with a strength Iex, relative to the α-decay
branch to the ground state with intensity Igs are defined by the
ratio

HF = δ2
gs

δ2
ex

= IgsPex

IexPgs
, (13)
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FIG. 13. A schematic view of the α decay proceeding from the
0+ Hg ground state in the 0+

1,2 states in the Pt nuclei. The inset boxes
present the experimental α decay hindrance factors, which were taken
from [22–24] and from Nuclear Data Sheets.

where δ2
i is the reduced α width, Pαi

the penetration probability
through the combined Coulomb and centrifugal barrier [24],
and Ii the α-decay intensity (with i = gs, ex for the ground
state and excited state, respectively). They indicated that, in
the neutron midshell region, the 0+ ground state in the Pb and
Hg nuclei is essentially consistent with a closed Z = 82 core
and a two-proton hole configuration in the Z = 82 core [22,23]
(see upper part of Fig. 13; only the proton structure is depicted,
as one does not expect the neutron part to be different in the
final states). However, α-decay feeding into the first-excited
0+

2 state exhibits a hindrance factor which is increasing with
decreasing mass number (see Fig. 13, lower part). (The specific
values of the hindrance factors are the adopted values as given
in Nuclear Data Sheets, starting from the original data [22,23].)
The observed large increase in hindrance when moving toward
N = 100 (A = 178) is consistent with the two-band mixing
calculations by Dracoulis et al. [63] which results in a 0+
ground state exhibiting an increasing regular [N ] configuration
weight of ≈50% for mass A = 180 and A = 178 up to ≈80%
for mass A = 176. This is consistent with the results presented
in Fig. 4, where the the 0+

1 ground state is progressively
becoming a regular [N ] configuration, moving from mass
A = 180 (with ≈30% of [N ] component) toward A = 178
(≈45% of [N ] component) and A = 176 (≈75% of [N ]
component). The important point here, as also stressed by
Van Duppen and Huyse [24], is the consistent picture that
results when treating the Po, Pb, Hg, and Pt nuclei jointly.
More detailed calculations have been carried out by Delion
et al. [69,70], and more recently by Karlgren et al. [71], and
by Xu et al. [72], emphasizing the need for a microscopic

QRPA description that encompasses both neutron and proton
pairing vibrations and that includes proton 2p-2h excitations
across the Z = 82 closed shell. They calculated hindrance
factors for α decay into the neutron-deficient Po, Pb, Hg, and
Pt nuclei. The hindrance factors for decay into the 176,178,180Pt
first excited 0+

2 state exhibit a large increase when moving
down from mass A = 180 toward A = 176, corroborating the
results from a simple two-level analysis [23]. Thus, α-decay
hindrance factors can serve as a sensitive fingerprint to test
structural changes of the nuclear wave functions.

C. Isotopic shifts

Experimental information about ground-state charge radii is
also available for both the even-even and odd-mass Pt nuclei.
Combined with similar data for the adjacent Pb and Hg as
well as the odd-mass Bi, Tl, and Au nuclei the systematic
variation of the charge radii supplies invaluable information
on the ground-state wave function [73]. In particular, detailed
studies by Hilberath et al. [74] for the 183–198Pt nuclei and by Le
Blanc et al. [75] have extended the charge radii measurements
down to 178Pt. We illustrate the relative changes defined as
�〈r2〉A ≡ 〈r2〉A+2 − 〈r2〉A in Fig. 14 and the overall behavior
of 〈r2〉A relative to the radius at mass A = 194 in Fig. 15.
The mean-square charge radius exhibits a clear-cut change at
and below mass A = 188 with respect to the almost linear
decrease for the heavier mass Pt nuclei, as can be seen in
Fig. 15. This kink gives rise to a pronounced dip in the relative
difference of charge radii for mass A = 186 and A = 184,
as illustrated in Fig. 14. An extrapolation of the linear trend
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FIG. 14. (Color online) Experimental data and theoretical values
for the isotope shifts �〈r2〉A = 〈r2〉A+2 − 〈r2〉A for the even-even Pt
isotopes (from [74] and [75]).
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FIG. 15. (Color online) Experimental and theoretical variation
of the mean-square charge radii (relative to mass A = 194). The
dotted line is an extrapolation of the linear decrease for masses above
A = 192 (from [74,75]).

downward from mass A = 198 (see dotted line in Fig. 15),
hints toward an increased deformation of the 0+ ground state.
This experimental mass dependence is rather well reproduced
in the Hartree-Fock-Bogliubov calculations (HFB) using the
Gogny force [76,77], as illustrated in Fig. 5 and Table V in the
study by Le Blanc et al. [75].

The IBM-CM calculations that were carried out by Harder
et al. [38] as well as the present, more detailed, IBM-CM
study of the even-even Pt nuclei yield the same qualitative
results for the decomposition of the ground-state 0+ wave
function presented in Fig. 3 of [41] and in the present Fig. 4.
The regular component with N bosons becomes minimal at
A ≈ 182 (about 10% and 30% in the more schematic and more
extensive IBM-CM calculations, respectively) and reaches a
value of 80% in both calculations for masses heavier than
A = 188 and lighter than A = 176. This latter mass interval
corresponds in a qualitative way to the bump in the evolution
of the mean-square charge radii relative to the dotted-line
background. The mixing calculations carried out by Harder
et al. [38] (see their Fig. 3) are consistent with a dip in the
relative variation �〈r2〉A at the mass numbers A = 184 and
186. To calculate the isotope shifts, we have used the standard
IBM-CM expression for the nuclear radius

r2 = r2
c + P̂

†
N (γNN̂ + βNn̂d )P̂N

+ P̂
†
N+2(γN+2N̂ + βN+2n̂d )P̂N+2. (14)

The four parameters appearing in this expression are adjusted
to the experimental data. Note that only the experimental
values past midshell (A = 182) are used. The resulting values

are γN = −0.099 fm2, βN = 0.004 fm2, γN+2 = −0.059 fm2,
and βN+2 = 0.013 fm2 and are only valid for the second
half of the shell. The comparison with the experimental data
show a very good quantitative agreement, which confirms
the assumption that the balance between [N ] and [N + 2]
contributions to the wave function along the whole chain of Pt
isotopes is very well described.

V. CONCLUSIONS

Upon comparison of the level systematics of the Pb, Hg, and
Pt nuclei from the neutron closed shell at N = 126 toward very
neutron-deficient nuclei and even beyond the neutron midshell
at N = 104, some conspicuous differences show up. For the Pb
and Hg nuclei, intruding bands are observed in a compelling
way and have been explained as the occurrence of prolate and
oblate bands (coexisting with the spherical states at the Z = 82
proton closed shell Pb nuclei) within the context of mean-field
theory or as many-particle many-hole proton excitations across
the Z = 82 closed shell within a highly truncated shell-model
approach that approximates the nucleon pairs as s- and d-boson
pairs (IBM). For the Pt nuclei, however, the energy systematics
does not obviously point toward the presence of two different
structures, as was the case in the Hg nuclei.

In a former paper [41] we have extensively compared
configuration mixing IBM calculations incorporating both
2p-2h excitations [N + 2] and the regular configuration [N ]
with IBM calculations that restrict the model space to just the
regular configurations [N ]. At first sight, one would expect
to observe strong differences. However, the results showed
that, up to an excitation energy of ∼1.5 MeV, the energy
spectra, absolute B(E2) values, B(E2) branching ratios, and
quadrupole moments turned out largely similar. The point
was raised that, somehow, configuration mixing did not show
up explicitly when only considering a restricted set of data.
Therefore the name “concealed” is in order.

In the present paper we have extensively studied how
configuration mixing between two distinct model spaces,
that is, the [N ] and [N + 2] configurations, may give rise
to results that resemble those obtained when only using a
subset of the full model space. We have noticed that it is
important to have the two families of energy bands (i.e.,
the regular [N ] and the intruder 2p-2h [N + 2] bands) of
which the lowest cross at A = 176–178 and A = 186–188.
This particular crossing, reminiscent of similar situations of
inversion of regular and intruder configurations as observed,
for example, in the N = 20 and N = 28 neutron rich nuclei,
and the mixing between the regular and intruder 2p-2h bands
gives rise to a specific structure of the wave functions along
the yrast bands. Near midshell (N = 104), we observe a
progressive change of character from the higher-spin members
(at Jπ = 8+, 6+) that are almost of pure intruder character
toward more mixed configurations, though still mainly of
intruder character, at the lower spin values. With the higher
spin members retaining a rather pure intruder character for
most of the mass region studied here (with 172 � A � 192),
it is natural to redraw energy spectra relative to the higher
spin member at 8+. The changing character in the wave
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function is evident from the energy spectra, which result
from the mixing of the regular configuration, with a more
spherical character and typical energy spacing of 300–400 keV,
and the intruder 2p-2h configuration, with a more deformed
character and a typical energy spacing of 100–150 keV. We
have illustrated this for the nuclei at A = 174, 180, 186,
and A = 192, hence passing through the midshell region.
In addition to the study of energy spectra, we have also
carefully studied the decomposition of the most important E2
reduced matrix elements 〈(f, Jf ) || T̂ (E2) || (i, Ji)〉 into its
components originating from the regular and intruder bands.
In this way, the specific effect of the mixing is highlighted in
both, the appearance of the correct energy spectra and B(E2)
values, when comparing with the experimental data.

We stress in particular the importance of the crossing
of these unperturbed regular and intruder bands for the
description of the specific systematics of the energy spectra of
the Pt nuclei. They are characterized by a rather sudden drop in
the excitation energy of the 0+

2 , 4+
1 , 2+

3 , and 6+
1 levels between

neutron number N = 110 and N = 108, with energies starting
to move up again between neutron number N = 100 and
N = 98. In the intermediate region the energy spectra exhibit
a particularly flat behavior with changing neutron number and
even a slightly “upward” bump for the 0+

2 , 2+
2 , 4+

2 levels.
Within a schematic two-level model, such an effect is caused
by the mixing of a single regular band and an intruder band
that has parabolic-like evolution of the absolute energy. When
one plots the energy spectrum relative to the lowest 0+ state,
a slight bump results.

At this point, the remaining question is whether the
configuration mixing can be “unveiled,” in particular for the
lowest-lying levels such as the ground state (through study
of isotopic shifts, transfer reaction intensities, etc) and lowest
2+

1 state (g factor for instance) Therefore, we have calculated
those observables. The g factor very clearly indicates the need
for a rather strong mixing, becoming more pure in regular
[N ] character for the lightest and heaviest mass numbers.
Until present, transfer reactions are not possible yet, but α

decay can provide such overlap factors through the hindrance
factors. Even though not quantitatively verified, the changing
structure in the [N ] versus [N + 2] content of the wave
functions for the 0+

1,2 states is consistent with the change in
hindrance factor, becoming increasingly large for the excited
0+ state compared to the ground state with decreasing mass
number. The isotopic shifts are also a very direct measure
of the ground-state wave function and as such is a number

sensitive to its precise decomposition. The dip in the isotopic
shift curve at A = 186 is well reproduced by the present wave
functions, derived from the mixing calculations and containing
two different structures, a more spherical one and a more
deformed component. The variation of the mean-square radii
clearly shows a bump structure very much centered around the
midshell N = 104 neutron number.

The study of the Pt nuclei is interesting because it
demonstrates that calculations of a very different nature can
give rise to a good description of a number of properties.
However, different models working in different model spaces
and with different effective interactions should stand the test
to as many observables as possible. In this respect, the study of
the configuration mixing is quite illuminating as it consistently
describes an as large set of observables as possible. Ideally,
one would like to see transfer data, populating the Pt nuclei
through single- and double-nucleon transfer. Moreover, we
suspect that the Pt nuclei are not just an isolated case of
concealed configuration mixing. When carefully inspecting
the changing structure and systematics in the Po nuclei (which
have two protons outside the Pb core), the observed spectra
do not display an obvious presence of extra intruder bands.
However, recent studies point strongly toward the presence of
intruding 2p-2h excitations (or the presence of an oblate and
a spherical band in mean-field terminology) near A = 192
[7,14,16,19,78–80].
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