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A semi-microscopic model for nucleon pairing in nuclei is presented starting from the ab initio BCS gap
equation with the Argonne v18 force and the self-consistent energy density functional method basis characterized
by the bare nucleon mass. The BCS theory is formulated in terms of the model space S0 with the effective
pairing interaction calculated from the first principles in the subsidiary space S ′. This effective interaction is
supplemented with a small phenomenological addendum containing one phenomenological parameter, universal
for all medium and heavy atomic nuclei. We consider the latter as a phenomenological way to take into account
approximately both the many-body corrections to the BCS theory and the effective mass effects. For protons,
the Coulomb interaction is introduced directly. Calculations made for several isotopic and isotonic chains of
semi-magic nuclei are compared with empirical gap values derived from odd-even mass differences. The average
disagreement is of the order of 0.1–0.2 MeV. The role of the self-consistent basis is analyzed.
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I. INTRODUCTION

In the last few years, some progress has been made in the
microscopic theory of pairing in nuclei by the Milan Group
[1–3] and by Duguet et al. [4,5]. In the first paper of the Milan
series, the BCS gap equation for neutrons with the Argonne
v14 potential was solved for the nucleus 120Sn, which is located
in the middle of the tin isotopic chain, and it is a traditional
benchmark for the nuclear pairing problem. The Saxon-Woods
shell-model basis with the bare neutron mass m∗ = m was
used, and the discretization method in a spherical box was
applied to take into account the continuum states restricted to
the limiting energy Emax = 600 MeV. Rather optimistic results
were obtained for the gap value �BCS = 2.2 MeV. Although
it is bigger than the experimental one �exp � 1.3 MeV, the
difference is not so dramatic and left the hope of achieving a
good agreement by developing corrections to the scheme. In
Refs. [2,3], the basis was enlarged, i.e., Emax = 800 MeV,
and, what is more important, the effective mass m∗ �= m

was introduced into the gap equation. The new basis was
calculated within the Skyrme-Hartree-Fock (SHF) method
with the SLy4 force [6], that makes the effective mass m∗(r)
coordinate dependent, that is substantially different from the
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bare one m. For example, in nuclear matter, the Sly4 effective
mass is equal to m∗ = 0.7m. As it is well known, in the
so-called weak-coupling limit of the BCS theory, the gap is
exponentially dependent, i.e., � ∝ exp(1/g), on the inverse
dimensionless pairing strength g = m∗VeffkF/π

2, where Veff is
the effective pairing interaction and kF is the Fermi momentum.
Therefore, a strong suppression of the gap takes place in the
case of m∗ < m. The value of �BCS = 0.7 MeV was obtained
in Ref. [2], and �BCS = 1.04 MeV in Ref. [3]. The difference
between these two values is probably due to the use in [2] of
a version of the SLy4 force with a slightly modified spin-orbit
parameter. In both cases, the too small value of the gap
was explained by invoking various many-body corrections
to the BCS approximation. The main correction is due to
the exchange of low-lying surface vibrations (“phonons”),
contributing to the gap about 0.7 MeV [2], so that the total gap
turns out to be � = 1.4 MeV, very close to the experimental
value. In [3], the contribution of the induced interaction caused
by the exchange of the high-lying in-volume excitations was
added, together with that of phonons, to the BCS value reduced
by the Z factor taken from [2]. The total gap is equal again
to � � 1.4 MeV. Thus, the calculations of Refs. [2,3] showed
that the effects of m∗ �= m and of many-body corrections to
the BCS theory are necessary to explain the difference of
(�BCS − �exp). In addition, they are of different signs and
partially compensate each other. Unfortunately, both effects
contain large uncertainties. Indeed, the calculations of [2,3]
were carried out using the Skyrme force parameters, that are
fixed only in the vicinity of the Fermi surface, whereas the
BCS gap equation involves the function m∗(k) at momenta
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k � kF. The same is true for the induced interaction. In this
case, the situation is even worse since the spin channel in
the high-frequency response function is important, but the
corresponding combinations of Skyrme force parameters are
not known sufficiently well even at the Fermi surface. More
detailed analysis of these problems can be found in Ref. [7].
On the other hand, a similar compensation between self-energy
and vertex corrections is found in the calculation of pairing in
nuclear matter [8,9], supported with a Monte Carlo calculation
of the gap [10]. Serious problems persist also in a consistent
theory of the phonon contribution. To our knowledge, the most
advanced calculation of these corrections in the gap problem
was carried out in Ref. [2]. But it possesses some deficiency
connected with the absence of the so-called tadpole diagrams.
Up to now, they were consistently taken into account within
the self-consistent finite Fermi systems (FFS) theory [11] only
for magic nuclei where pairing is absent. It turned out that their
contribution is usually important and often is of the opposite
sign to the usual diagrams, diminishing the total value of the
effect under consideration. This formalism was generalized
for superfluid nuclei in Ref. [12], but numerical applications
are still absent.

A “blow-up” was produced in 2008 by Duguet and Lesinsky
[4] who solved the ab initio BCS gap equation for a lot of
nuclei on the same footing. It should be noted that the main
difficulty of the direct method of solving the nuclear pairing
problem comes from the rather slow convergence of the sums
over intermediate states λ in the gap equation, because of the
short range of the free NN force. Evidently, this is the reason
why the authors of Refs. [2,3] concentrated only on a single
nucleus, i.e., 120Sn. To avoid the slow convergence, the authors
of Refs. [4,5] used the “low-k” force Vlow k [13] which is, in
fact, very soft. It is defined in such a way that it describes
correctly the NN -scattering phase shifts at momenta k < �,
where � is a parameter corresponding to the limiting energy
Elim � 300 MeV. Moreover, the force Vlow k rapidly vanishes
for k > �, so that in the gap equation, one can restrict the
energy range to Emax � 300 MeV. In addition, a separable
version of this force was constructed that made it possible to
calculate neutron and proton pairing gaps for a lot of nuclei.
Usually the low-k force is found starting from some realistic
NN potential V with the help of the renormalization group
method, and the result does not practically depend on the
particular choice of V [13]. In addition, in Ref. [4], Vlow k was
found starting from the Argonne potential v18, that is different
only a little bit from Argonne v14, used in Ref. [3]. Finally,
in Ref. [4], the same SLy4 self-consistent basis was used as
in Ref. [3]. Thus, the inputs of the two calculations look very
similar, but the results turned out to be strongly different. In
fact, in Ref. [4], the value �BCS � 1.6 MeV was obtained
for the same nucleus 120Sn which is already bigger than the
experimental one by �0.3 MeV. In Refs. [7,14], we analyzed
the reasons for these contradictions. This point was discussed
also in Ref. [5]. It turned out that, in fact, these two calculations
differ in the way they take into account the effective mass.
Namely, in Refs. [2,3], the effective mass m∗ = m∗

SLy4 was

used for all momenta up to kmax = √
2m∗Emax � 6 fm−1. On

the other hand, in Refs. [4,5], this mass is used only for k <

� � 3 fm−1, and the prescription m∗ = m is, in fact, imposed
for larger momenta. This is a relevant prescription since the
gap � depends not only on the value of the effective mass at the
Fermi surface, as it follows from the above exponential formula
for the gap, but also on the behavior of the function m∗(k) in
a wide momentum range. Unfortunately, this quantity is not
known sufficiently well even in nuclear matter. In Brueckner-
Hartree-Fock calculations, the behavior of m∗(k) depends on
the method used to treat the nucleon-nucleon interaction at
large k. In Ref. [7], the interaction is taken up to asymptotically
large momenta along a variable step grid. In Ref. [5], the
interaction is first developed according to the renormalization
group equations down to a smooth cutoff � = 6 fm−1. This
renormalized interaction is then used to calculate the G matrix.
The two procedures lead to substantially different functions
m∗(k). The first one presents strong variations at k < 3 fm−1,
and then, it increases very slowly reaching the value of
m∗ � 0.85m at k � 6–7 fm−1. That in [5] depends partially
on the cutoff � but, on average, justifies the recipe of [4] with
m∗(k) = m for k > 3 fm−1. This makes rather uncertain the
predictions of the calculations with any ad hoc function m∗(k).
Similar problems appear if one tries to use an explicit form
of the Z factor, which is an additional ingredient of the gap
equation, not only in the combination yielding the complete
effective mass m∗(k) [7]. In the sequel, speaking for brevity
about the effective mass, we mean often both the k mass and E

mass. To avoid all uncertainties discussed above, we suggest
a semi-microscopic model for nuclear pairing containing a
single phenomenological parameter. It starts from the ab initio
BCS gap equation with the Argonne force v18 treated with the
two-step method. The complete Hilbert space S of the problem
is split into the model subspace S0 of low-energy states and
the complementary one S ′. The gap equation is solved in the
model space with the effective interaction Veff which is found
in the complementary subspace. This ab-initio term of Veff is
supplemented by a small one-parameter addendum that should
hopefully embody all corrections to the simplest BCS scheme
with m∗ = m. Preliminary results of this model are reported
in Ref. [15]. It can be doubted that the correction produced
by this simple term could reproduce the staggering of the gap
values due to the particular structure of each nucleus, and only
an average smooth trend could be catched. In this exploratory
paper, we take the attitude of “try and see.” In any case, we
will get an estimate of the correction needed to reproduce the
experimental gap values.

II. OUTLINE OF THE FORMALISM

We start from the general form of the many-body theory
equation for the pairing gap [16],

�τ = U τGτG
s
τ�τ , (1)

where τ = (n, p) is the isotopic index, U τ is the NN -
interaction block irreducible in the two-particle τ -channel,
and Gτ (Gs

τ ) is the one-particle Green function without
(with) pairing. A symbolic multiplication, as usual, denotes
the integration over energy and intermediate coordinates and
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summation over spin variables as well. We have used above
the term “BCS theory” meaning that, first, the block U of
irreducible interaction diagrams is replaced with the free NN

potential V in Eq. (1), and, second, the simple quasiparticle
Green functions for G and Gs are used, i.e., those without
phonon corrections and so on. In this case, Eq. (1) turns
greatly simplified and can be reduced to the form usual in
the Bogolyubov method:

�τ = −Vτ
κτ , (2)

where

κτ =
∫

dε

2πi
GτG

s
τ�τ (3)

is the anomalous density matrix which can be expressed
explicitly in terms of the Bogolyubov functions u and v:

κτ (r1, r2) =
∑

i

uτ
i (r1)vτ

i (r2). (4)

The summation in Eq. (4) scans the complete set of Bo-
golyubov functions with eigenenergies Ei > 0.

As mentioned in the Introduction, we use a two-step
renormalization method of solving the gap equation in nuclei
to overcome the slow convergence problem. We split the
complete Hilbert space of the pairing problem S into the model
subspace S0, including the single-particle states with energies
less than a fixed value of E0, and the subsidiary one S ′. The
gap equation is solved in the model space:

�τ = V τ
effGτG

s
τ�τ |S0 , (5)

with the effective pairing interaction V τ
eff instead of the block

U τ in the original gap equation (1). It obeys the Bethe-
Goldstone type equation in the subsidiary space:

V τ
eff = U τ + U τGτGτV

τ
eff|S ′ . (6)

In this equation, the pairing effects can be neglected pro-
vided the model space is sufficiently large. That is why we
replaced the Green function Gs

τ for the superfluid system
with its counterpart Gτ for the normal system. In the BCS
approximation, the block U τ in Eq. (6) should be replaced by
Vτ . To solve this BCS version of Eq. (6) in nonhomogeneous
systems, we have found a new form of the local approximation,
the local potential approximation (LPA). Originally, it was
developed for semi-infinite nuclear matter [17], then for the
slab of nuclear matter (see review articles [18,19]), and, finally,
for finite nuclei [7,14]. It turned out that, with a very high
accuracy, at each value of the average center of mass coordinate
R = (r1 + r2 + r3 + r4)/4, one can use in Eq. (6) the formulas
of the infinite system embedded into the constant potential well
U = U (R). This explains the term LPA, and also significantly
simplifies the equation for Veff, in comparison with the initial
equation for �. As a result, the subspace S ′ can be chosen
as large as necessary to achieve the convergence. From the
comparison of the direct solution of Eq. (6) in the slab with
the LPA, it was shown that the LPA has high accuracy, even
in the surface region, for sufficiently large model space, E0

(�20–30 MeV). For finite nuclei, including 120Sn, the validity
of the LPA was also checked [7,14]. In this case, the boundary
energy should be made larger up to E0 = 40 MeV. In this

paper, we use the LPA with this choice of E0 for systematic
calculations of the gap in spherical nuclei. ForV , we use, just as
in Ref. [7], the Argonne potential v18. To make the calculations
more treatable, we use the separable representation [20] of the
v18 potential. Even in this simplified version, the calculations
of the set of matrix elements of Veff for a single nucleus require
about 30 h of the cpu with 50 processors of the multiprocessor
system of the Kurchatov Institute.

Let us notice that the use of the low-k force Vlow k could
be also interpreted in terms of the two-step renormalization
scheme of solving the gap equation (1), with E0 � 300 MeV
and with free nucleon Green’s functions G in Eq. (6) [i.e.,
U (R) = 0]. Then, (with U→V) one obtains Veff → Vlow k

(see Ref. [21] where the usual renormalization scheme is used
to find Vlow k instead of the renormalization group equation).
Now, the comparison of the direct solution of the gap equation
(1) [or (2)] in Ref. [3] using the Argonne NN potential V
and with the “renormalized” equation (5) using Veff = Vlow k

shows that the difference appears because, in the subsidiary
subspace S ′, the effective mass m∗ �= m is used in the first
case, and m∗ = m in the second one. Thus, the resulting gap
depends not only on the value of the effective mass at the Fermi
surface, but also on the behavior of the function m∗(k) in a
wide momentum range. This dependence was demonstrated
explicitly in Refs. [7,14]. The use of the SHF effective mass
corresponding to the SLy4 force, or to any other version of the
Skyrme force, could hardly be accepted. Indeed, these effective
forces were introduced and fitted to describe systematically
nuclear masses and radii. As a rule, the description of the
single-particle spectrum near the Fermi surface with Skyrme
forces is rather poor, and it is expected not to be less poor at
those high momenta that are involved in the gap equation (1).
This point makes tricky the problem of determining the pairing
gap completely from first principles, because the many-body
theory of Eq. (1) contains, in addition to the “k mass” of the
SHF method, the “E mass” (inverse Z factor) [8,22,23], that
is not sufficiently well known even in nuclear matter [7–9].
The corrections to the BCS version of Eq. (1) include also
the difference of the block U from the potential V , mainly
due to the so-called induced interaction. The attempt in
Ref. [3] to determine the latter from the SLy4 force together
with the nuclear mean field looks questionable. Indeed, the
SLy4 parameters were fitted to the nuclear mass table data
mainly related to the scalar Landau–Migdal (LM) amplitudes
f, f ′. As to the spin amplitudes g, g′, they remain practically
undetermined in the SHF method. But the contribution of the
spin channel to the induced interaction is not smaller than that
of the scalar one [3]. Parameters g, g′ are well known from
the calculations of nuclear magnetic moments within the FFS
theory [24] but, as for the Skyrme parameters, only at the Fermi
surface. However, single-particle states distant from the Fermi
surface are important for calculating the in-volume component
of the induced interaction. It can be analyzed approximately
on the basis of calculations made for nuclear matter where
the spin-isospin response function plays the main role due to
the “geometrical” factor (2S + 1)(2T + 1). It was analyzed
in terms of the LM theory in Refs. [25,26]. Due to strong
repulsive character of the corresponding LM amplitude g′ � 1,
the strength of the response function S(ω, q) is spread over a
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wide region of excitation energies ω of the order of the Fermi
energy εF and momenta q � 2kF. That is why the collective
states with excitation energies up to 30 MeV were taken into
account for this aim in [3]. As it was found in this article, the
induced interaction contributes only into the matrix elements
�λλ of the gap for the states λ close to the Fermi energy, but
it’s in-volume component is determined mainly by the states
distant from the Fermi surface. The induced interaction for
such states has only been determined in nuclear matter within
the microscopic Brueckner theory [9]. At last, let us imagine
getting from phenomenology the functions m∗(k), Z(k) and
all the LM amplitudes far from the Fermi surface. Even in
this case, the use of so many phenomenological ingredients
devalues significantly the ab initio starting point, i.e., the free
NN potential V in the pairing gap calculation.

Instead, we suggest introducing in the effective pairing
interaction a small phenomenological addendum which em-
bodies, of course approximately, all the corrections to the
BCS scheme discussed above. The simplest ansatz for it is
as follows:

Vτ
eff(r1, r2, r3, r4)=V BCS

τ,eff (r1, r2, r3, r4)

+ γ τC0
ρ(r1)

ρ̄(0)
δ(r1−r2)δ(r1−r3)δ(r2−r4).

(7)

Here, ρ(r) is the density of nucleons of the kind under
consideration, and γ τ are dimensionless phenomenological
parameters. To avoid any influence of the shell fluctuations in
the value of ρ(0), the average central density ρ̄(0) is used in
the denominator of the additional term. It is averaged over the
interval of r < 2 fm. The first, ab initio, term in the right-hand
side of Eq. (7) is the solution of the BCS version of Eq. (6)
(with U → V) in the framework of the LPA method described
above, with m∗ = m in the subspace S ′. We will see below
that a rather small value of the phenomenological parameter
γn = γp � 0.06 is sufficient to produce the necessary effect
of suppressing theoretical gaps predicted by the ab initio
calculation.

Let us discuss arguments in favor of the ansatz (7), in
addition to the simplicity and smallness of the phenomeno-
logical addendum. As it was discussed, there are three main
contributions to the latter. The induced interaction caused
with high-lying excitations is mainly in-volume and should
be short range and universal for all heavy nuclei; therefore,
this form for the corresponding addendum term looks natural.
Of course, the linear density dependence could be replaced
with, say, ρα, α = 1/3, 2/3, . . . , but such modification is not
important for the result. Similar arguments are true for the
contribution of the mean-field effective mass m∗ �= m. Indeed,
as it is visualized in the weak-coupling limit formula for the
gap, the product m∗Veff is relevant for the gap value; therefore,
a variation of m∗ is effectively equivalent to the corresponding
change of Veff . Then, the relation [m∗(r) − m] ∝ ρ(r) is valid
for Skyrme force, but, in fact, it is more general. There is one
additional argument in favor of the choice of m∗ = m as a
starting point for calculating Veff . It is natural to use the same
basis for calculating Veff and the gap itself. The gap equation
is very sensitive to the single-particle spectrum near the Fermi

FIG. 1. Fermi average effective pairing interaction VF
eff (R) for

120Sn and 200Pb nuclei, at γ = 0 (dashed curves) and γ = 0.06 (solid
curves).

level. The SHF calculations concentrate on the mass and radii
description and often give no attention to the comparison of the
single-particle levels to phenomenology. On the contrary, in the
self-consistent FFS theory [11], these spectra in magic nuclei
were analyzed in detail. Phonon contributions were included
into analysis with the addition of the tadpole terms. The k mass
and E mass were introduced together, strongly compensating
each other. The best fit was obtained with m∗

n = 0.95m and
m∗

p = 1.05m. Therefore, the use of m∗ = m near the Fermi
surface looks realistic. The third correction term coming from
phonons is the most weak point of the ansatz (7). First, it could
be irregular depending on the collectivity of the 2+

1 phonon.
Second, the effect should be concentrated near the surface,
and a dependence [∝(dρ/dr)2] looks more reasonable. The
addition of such a term in Eq. (7) is associated with the
introduction of a new parameter, and at the first stage, we prefer
to avoid that. A more consistent scheme should, evidently,
include the explicit inclusion of the low-lying phonons, as, e.g.,
in [2], but taking into account the tadpole diagrams [12]. In
this case, the phenomenological constant γ should, of course,
change.

The smallness of the phenomenological addendum to the
effective interaction itself is demonstrated in Fig. 1 where
the localized “Fermi average” effective interaction is drawn
for γ = 0 and γ = 0.06 values for two heavy nuclei. In the
mixed coordinate-momentum representation, this quantity is
defined as follows: Veff(k1, k2, r1, r2) → VF

eff(R = r1)δ(r1 −
r2)δ(r1 − r3)δ(r2 − r4), where

VF
eff(R) =

∫
d3tVeff[k1 = k2 = kF(R), R − t/2, R + t/2],

(8)

with kF(R) = √
2m[μ − U (R)], provided μ − U (R) � 0, and

kF(R) = 0 otherwise. Here, μ and U (R) are the chemical
potential and the potential well, respectively, of the kind
of nucleons under consideration. A similar quantity was
considered in [18,27] for the nuclear slab to visualize the
effective interaction properties. At a glance, the difference
between the interaction strengths for γ = 0 and γ = 0.06 is
negligible, but it produces noticeable effects in the gap, due
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to the exponential dependence of the gap on the force, as
discussed in the Introduction.

In the case of proton pairing (τ = p), we retain in Eq. (6)
only the “strong” part of the pp potential Vp and, then, add
the “bare” Coulomb potential VC to the BCS term of Eq. (7):

VBCS
p,eff = VBCS

s,eff + VC. (9)

Such an approximation is valid because the mixed strong-
Coulomb term of Eq. (6) is short range, just as the strong
term itself, but it is proportional to the small parameter
of the fine structure constant α = 1/137. For matrix ele-
ments 〈λ1λ2|VC|λ3λ4〉 of the bare Coulomb force, this small
parameter is partially compensated for in the diagonal case
λ1 = λ2 = λ3 = λ4 = λ, due to its long-range character. Such
matrix elements can be estimated as �e2/R, where R is the
nuclear radius. For example, for the N = 82 isotonic chain, it is
of the order of 15 to 20% of the main diagonal matrix elements.
It results in an a � 30% suppression of the proton gap value.
So strong contribution of the Coulomb interaction to the proton
pairing was reported recently in Ref. [5]. The above arguments
to neglect the renormalization of Coulomb interaction are valid
also inside the model space. In particular, the photon vertex
T (q) does not change in the long-range (small q) limit, due
to the Ward identity. In other words, the large (long-range)
Coulomb matrix elements are not changed by the strong
interaction. Small (short-range) matrix elements do change,
but they can be neglected. Thus, we can put γp = γn = γ in
Eq. (7) after adding the bare Coulomb interaction to the BCS
term for protons.

Then, the gap equation (5) in the model space is solved
in the λ representation, with the self-consistent basis de-
termined within the generalized energy density functional
(GEDF) method [28–32], where m∗ = m is assumed, with the
functional DF3 [31,32]. As it was discussed above, the latter
is of principal importance for our approach: first, because it
makes the results less model dependent, all effects of m∗ �= m

in both model and subsidiary subspaces being attributed to the
in-medium corrections beyond the pure BCS approximation,
and second, because single-particle spectra of the GEDF
method are, as a rule, in a better agreement with experiment
than those of the popular versions of the SHF method [33] (see
for comparison Ref. [34]). The quality of the single-particle
spectrum nearby the Fermi surface is very important for
obtaining the correct value of the gap calculated from Eq. (2).

III. RESULTS

We solved the equations of the previous section using the
self-consistent λ basis of the GEDF method with the DF3
functional of Refs. [31,32]. The discretization method for the
continuum states was used in the spherical box of radius R =
16 fm with the grid step h = 0.05 fm. The model space S0 was
extended up to the energy E0 = 40 MeV, the subsidiary one S ′,
up to Emax = 1000 MeV. The numerical stability of the results
was checked by increasing the parameters up to E0 = 60 MeV,
Emax = 1200 MeV, and R = 24 fm, and we found for the gap
value a numerical accuracy of 0.01 MeV.

TABLE I. Neutron gap �n
F (MeV) in Pb isotopes and 44Ca nucleus.

Nucleus �n
F �exp

γ = 0 0.06 0.08

182Pb 1.79 1.33 1.20 1.30
184Pb 1.79 1.33 1.20 1.34
186Pb 1.78 1.32 1.19 1.30
188Pb 1.76 1.31 1.17 1.25
190Pb 1.73 1.29 1.16 1.24
192Pb 1.68 1.22 1.09 1.21
194Pb 1.62 1.16 1.03 1.13
196Pb 1.53 1.09 0.96 1.01
198Pb 1.43 1.00 0.87 0.94
200Pb 1.31 0.90 0.80 0.87
202Pb 1.16 0.79 0.69 0.78
204Pb 0.95 0.64 0.56 0.71
44Ca 1.83 1.50 1.41 1.54

In this paper, we limit ourselves to semi-magic nuclei.
There are several reasons for such a choice. The first one is
of a technical nature, namely, we have only spherical code for
the gap equation, and all or almost all semi-magic nuclei are
spherical. The second one is that in nuclei with both nonmagic
subsystems, there are often very “soft” low-lying 2+ states
whose contributions to different quantities, in particular to the
gap value, can be rather strong and nonregular. In such cases,
it is difficult to expect that the simple ansatz (7) will work with
a universal parameter γ . For neutron pairing, we consider the
lead, tin, and calcium chains. The formulas above correspond
to the so-called “developed pairing” approximation [16], that
amounts to imposing the equality of the �+ and �− operators
and to neglecting the particle-number nonconservation effects.
Therefore, we limit ourselves to nuclei having, as a minimum,
four particles (holes) above (below) the magic core. For this
reason, only the isotope 44Ca was considered in the calcium
chain.

In accordance with the recipe of Ref. [3], we represent the
theoretical gap with the “Fermi average” combination:

�F =
∑

λ

(2j + 1)�λλ

/ ∑
λ

(2j + 1), (10)

where the summation is carried out over the states λ in
the interval of |ελ−μ| < 3 MeV. The “experimental” gap is
determined by the usual five-term mass difference, Eq. (A3)
of the Appendix. As it is argued in the Appendix, the
relevance of the mass difference to the gap has an accuracy of
�(0.1–0.2) MeV. Therefore, it is reasonable to try to achieve
the agreement of the gap within such limits.

Let us begin from the lead chain. Results are presented in
Table I. At the end of this table, the results are shown for the
44Ca nucleus which is the lightest one among the scope “from
calcium to lead” considered in this article. We try to find a
value of γ which will be universal for the whole region.

In Table I, the strong effect of the small phenomenological
addendum in Eq. (7) is shown. The ab initio BCS result
(γ = 0) significantly overestimates the gap. Switching on this
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TABLE II. Neutron gap �n
F (MeV) in Sn isotopes.

Nucleus �n
F �exp

γ = 0 0.06 0.08

106Sn 1.35 0.95 0.83 1.20
108Sn 1.52 1.13 1.01 1.23
110Sn 1.65 1.26 1.14 1.30
112Sn 1.74 1.34 1.23 1.29
114Sn 1.80 1.40 1.28 1.14
116Sn 1.82 1.43 1.31 1.10
118Sn 1.83 1.44 1.32 1.25
120Sn 1.80 1.42 1.31 1.32
122Sn 1.74 1.38 1.28 1.30
124Sn 1.65 1.30 1.21 1.25
126Sn 1.51 1.19 1.10 1.20
128Sn 1.31 1.02 0.94 1.16

term with γ = 0.06–0.08 suppresses the gap by 30 to 40%, in
agreement with the data. The rms deviation of the theoretical
values of the gap from the data for 13 nuclei, presented in
Table I, is

√
(δ�)2 � 0.045 MeV for γ = 0.06 and 0.103 MeV

for γ = 0.08. It has a minimum
√

(δ�)2 � 0.037 MeV at
γ = 0.064, but, according to the above estimate, it is not
reasonable to push the accuracy too much. In any case, we
may consider the parameter γ � 0.06 as an optimal one for
this set of nuclei.

Let us consider now the tin chain. The results are presented
in Table II. Again we see a strong suppression with γ =
0.06–0.08, in this case by 20 to 40%, but the agreement now is
remarkably poorer than in the lead case. Now, the rms deviation
is

√
(δ�)2 � 0.165 for γ = 0.06 and 0.169 for γ = 0.08, and

the minimal value
√

(δ�)2 � 0.158 MeV for γ = 0.07 is also
too large.

Let us move now to protons. The effect of the Coulomb
interaction to the proton gap is shown in Table III for the
isotonic chain of nuclei with the magic neutron number
N = 82. It is seen that, indeed, it is rather strong �0.5 MeV,
in accordance with [5]. Again at γ = 0.06, the agreement is
almost perfect for the most part of nuclei, and only for the two
heaviest isotones, the disagreement is of the order of 0.2 MeV.

TABLE III. Proton gap �
p

F (MeV) for the isotone gap N = 82.

Nucleus �
p

F �exp

Vp

eff = V0
eff Vp

eff = V0
eff + VC

γ =0 0.06

136Xe 1.65 1.19 0.87 0.75
138Ba 1.80 1.33 0.98 0.87
140Ce 1.90 1.42 1.03 0.97
142Nd 1.99 1.48 1.06 1.00
144Sm 2.01 1.49 1.05 1.02
146Gd 2.02 1.50 1.05 1.13
148Dy 2.01 1.50 1.06 1.19
150Er 1.98 1.48 1.07 1.22
152Yb 1.92 1.44 1.05 1.29

In this case, a possible explanation is that we are close to
the phase transition to a deformed state (at A � 150). Due to
the contribution of these “bad” cases, the average difference
between the theoretical and experimental gaps for the N = 82
chain is rather high,

√
(δ�)2 = 0.124 MeV. The average error

for all 34 nuclei considered is equal to
√

(δ�)2 � 0.086 MeV.
As it follows from the analysis discussed in the Appendix, this
value is within the accuracy of the experimental values of the
gap extracted from the five-term formula (A3).

IV. THE ROLE OF THE SINGLE-PARTICLE SPECTRUM

We consider the poor agreement for the tin chain as a
troubling point. Indeed, this chain is a traditional benchmark
for the pairing problem in nuclei, and the most strong deviation
takes place for the 116Sn nucleus which is in the very center
of the chain where the scheme used should work especially
well. In searching for the reasons for such a drawback,
we paid attention to a new version of the DF3 functional,
called DF3a [34], in which the spin-orbit and effective tensor
terms of the original DF3 functional were changed to fit
new data on the spin-orbit splitting in magic nuclei [35].
The matter is that the details of neutron paring in the chain
under consideration depend essentially on the position of
the “intruder” state 1h11/2, which, in turn, is determined
mainly by these components of the functional. We repeated
the calculations for this functional DF3a and found that the
agreement became much better. The optimal value γ = 0.052
with

√
(δ�)2 � 0.056 MeV is now a little less than for the lead

chain, but for γ = 0.06 chosen above, the agreement is also
reasonably good,

√
(δ�)2 � 0.084 MeV. In Fig. 2 is displayed

the comparison of the theoretical predictions for the pairing
gap in the tin chain (both versions of the functional under
consideration) with the experimental data.

We see that, indeed, the new calculation is now in nice
agreement with the data. To find the reason for so large a
difference of the results for these two versions of essentially
the same functional, we examined the corresponding single-
particle spectra along the chain, comparing them with existing
experimental data. Dealing with an even ASn isotope, there is
a dilemma of how to consider a state |i〉 under consideration,
either the hole state (i.e., the excitation of the A−1Sn nucleus)
or the particle one (the excitation of the A+1Sn nucleus). We

FIG. 2. Neutron gap in Sn isotopes.
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FIG. 3. h11/2 level position accounted for from the ground state
in Sn isotopes.

use a simple recipe: the state |i〉 is considered as a hole state
if the inequality v2

i > 0.5 takes place and as a particle state
otherwise. Note that in the case of v2

i � 0.5, the difference
between the particle and hole energies is, as a rule, quite small.
In general, both functionals reproduce the experimental low-
lying levels sufficiently well. In particular, the spin of the
ground state of odd isotopes is always reproduced correctly
for both calculations. But there is a noticeable difference for
the 1h11/2 state in the left part of the chain, till 122Sn (see
Fig. 3).

In this region, its position is systematically lower than the
experimental one for the DF3 functional and systematically
higher for the DF3a functional. To estimate what is more
dangerous for the gap equation, it is to worth writing down
the simple BCS formula for the anomalous density which
appears in Eq. (2): κλ = uλvλ = �λ/2Eλ. It is clear that the
terms with small values of Eλ play the main role in the gap
equation, and their values influence the gap value much more
than those corresponding to “large” Eλ values. We see that the
main reason for the too large value of the DF3 gap for 114,116Sn
nuclei is the too low position of the 1h11/2 state. Of course,
this statement should not be considered literally. Indeed, in
the 118Sn nucleus, the level under consideration for the DF3
functional is already higher than the experimental one, but the
corresponding gap is also larger than the experimental one. Of
course, other levels also contribute, and, evidently, for some
“true” spectrum, the optimal value of γ should be changed.

FIG. 4. 114Sn spectrum.

FIG. 5. 116Sn spectrum.

In addition, as it discussed in the Appendix, the experimental
gap is known only with accuracy of �0.1–0.2 MeV. The only
statement which can be made surely is the high sensitivity of
the gap equation to the single-particle energies of the basis
used, especially of high j levels. This is in agreement with
the Milan Group experience. Indeed, as it was mentioned in
the Introduction, they obtained in the 120Sn nucleus with the
SLy4 force, �BCS

F = 0.70 in [2] and �BCS
F = 1.04 MeV in [3],

where the original SLy4 spin-orbit parameter was changed. No
doubt, the main effect of this change took place for the 1h11/2

state under discussion.
In Fig. 4, the quasiparticle spectrum of the 114 Sn nucleus

calculated for the two versions of the functional is compared
with the experimental one. The first two experimental levels,
g7/2 and d5/2, are taken from the 113Sn spectrum, the next two,
d3/2 and h11/2, from the 115Sn one. This follows from the above
“v2

i -recipe.” In principle, it could be that the prescriptions of the
DF3 and DF3a functionals contradict each other. Fortunately,
in our case, they coincide. The same is true for the 116Sn
nucleus, whose spectrum is displayed in Fig. 5. In this case,
the experimental levels d3/2 and h11/2 are taken from the 117Sn
spectrum, whereas the g7/2 and d5/2 ones, from the 115Sn
spectrum. Each theoretical level is supplemented with the
(2ji + 1)uivi factor that determines mainly the contribution
of the i level to the gap equation. We see that for all other
states |i〉, these factors are rather close for the two versions
of the functional, but for the 1h11/2 state the difference is
rather strong. As for the heavy tin isotopes for which this level
becomes the ground state for both functionals, the predictions
for the gap value are quite close (see Fig. 2).

This analysis shows the great sensitivity of the gap value
to the single-particle spectrum near the Fermi level, especially
to the position of levels with high j value. Therefore, it is
interesting to examine which effect is to be expected in the
other cases of going from the initial DF3 functional to this
new version. It is illustrated in Fig. 6 for the lead isotopes. We
see that in this case the overall agreement for the new version
of the functional becomes worse. Evidently, again the position
of high j levels is different, in favor of the DF3 functional in
this case.

A bad situation for the DF3a functional arises for the
N = 82 isotone chain (see Fig. 7). The analysis shows that
again the 1h11/2 level is guilty, now for protons. For the DF3a
functional, it is again higher than the experimental position,
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FIG. 6. Neutron gap in Pb isotopes.

and for 144Sm and 146Gd nuclei much higher. As the result, it
does not practically contribute to the gap equation resulting in
a too small gap value.

In conclusion of this Section, it is worth stressing that the
theoretical quasiparticle spectra of even-even nuclei shown
above should be considered as the first and rather primitive
approximation to real excitation spectra of odd nuclei. More
consistent theory should, first, start from the self-consistent
calculation in the odd neighboring nucleus with the blocking
of the single-particle state under consideration. Second, which
is more important and more difficult, the phonon corrections
should be included consistently, taking into account the tadpole
diagrams. Up to now, such a program was realized practically
only for magic nuclei [11]. For superfluid nuclei under
consideration, the corresponding equations are much more
complicated [12] and were not yet numerically solved. Another
difficult point is the following one. The phenomenological
functionals, such as the SLy4 one in [2,3] or DF3 and DF3a
ones used by us, include the phonon contributions “on average”
as far as their parameters are fitted to the experimental data.
If we include phonon corrections explicitly, we must either
change the input functional parameters or try to find the
average phonon contributions by adding to the mean-field
results only the extra contributions. The complete theory of
spectra of odd nuclei, including the spread of single-particle
states and corresponding spectroscopic factors, is beyond the
scope of this article.

FIG. 7. Proton gap for N = 82 isotones.

V. CONCLUSION

In this paper we suggest a simple semi-microscopic
model for the nuclear pairing starting from the ab initio
BCS gap equation. The self-consistent GEDF method basis,
characterized by the bare nucleon mass, is employed in the
calculation. The gap equation is recast in the model space
S0, replacing the bare interaction with the effective pairing
interaction determined in the complementary subspace S ′.

The Argonne v18 potential was adopted along with the
LPA method. A small phenomenological term is added to
this effective interaction that contains one parameter which
should embody approximately the effective mass and various
corrections to the pure BCS theory. Calculations were carried
out with the DF3 functional [31,32] for semi-magic lead
and tin isotopic chains and the N = 82 isotonic chain as
well. The Coulomb interaction was explicitly included in the
proton gap equation. We found that the model reproduces
reasonably well the experimental values of the neutron and
proton gaps in semi-magic nuclei. The overall agreement
[
√

(δ�)2 � 0.13 MeV] is better than that obtained in Ref. [4],
where the authors did not introduce free parameters explicitly,
but they made it implicitly by using a specific k dependence
in the effective mass.

We examined also the role of the single-particle spectrum
in the gap equation. For this aim, we used a new modification
DF3a [34] of the functional [31,32] that changes spin-orbit
and effective tensor terms. The use of this functional gives
an agreement better for the tin chain and worse for the lead
chain and even more for the N = 82 chain. The accuracy of
the predictions depends strongly on the quality of reproducing
the positions of high j -levels in the self-consistent basis used.
We are thinking, e.g., of the 1h11/2 neutron level in the tin
isotopes and 1h11/2 proton level for the N = 82 isotones.

The model possesses obvious deficiencies. The use of the
simple ansatz (7) for the term originating from the surface
vibrations looks questionable. We plan in the future to calculate
these corrections to the BCS scheme explicitly, including
the tadpole terms [12], but retaining this ansatz for other

FIG. 8. Theoretical predictions for the mass difference δ2M/2
(triangles) versus the average gap value �F (squares) for Pb isotopes.
Both quantities are calculated within the GEDF method (see the
text).
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FIG. 9. Same as in Fig. 1, but for Sn isotopes.

corrections which are in-volume and should be regular. In
this case, the parameter γ will, of course, change. The use of
the double mass differences as the “experimental gap” values
is another weak point of our analysis. A more consistent way
would be to calculate the total binding energies, including
pairing contributions, and compare directly their differences
with the experimental ones. We also plan such developments
associated with coupling the GEDF [32] with the gap found
within the semi-microscopic model.
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APPENDIX: ACCURACY OF EXTRACTING
EXPERIMENTAL GAP VALUES FROM THE MASS

DIFFERENCES

In this Appendix, we discuss the accuracy of determination
of the “experimental” gap �exp from the mass data. Usually,
this quantity is found in terms of mass values M of neighboring
nuclei via three-term formulas:

2�+
exp(A) = δ2M

+ ≡ 2M(A + 1) − M(A + 2) − M(A)

(A1)

or

2�−
exp(A) = δ2M

− ≡ 2M(A − 1) − M(A − 2) − M(A).

(A2)

The five-term expression is usually considered more accurate,
being a half sum of them:

�exp(A) = δ2M/2 ≡ (δ2M
+ + δ2M

−)/4. (A3)

These simple recipes were used, in particular, in [2–5].
However, they originate from the simplest model of � =
const, and the accuracy of such prescription is not a priori
obvious. To clarify this point, we made a calculation which
could be considered as a “theoretical experiment.” We used the
GEDF method [32] with the functional DF3 which reproduces
the mass differences of the Eqs. (A1) and (A2) type sufficiently
well. We calculated, first, directly the right side of Eq. (A3) and,
second, the theoretical gap value with Eq. (10) within the same
GEDF method. The comparison of these two quantities is given
in Fig. 8 for the lead isotopes and in Fig. 9 for the tin isotopes.
We see that for the main part of nuclei under consideration,
the difference between values in two neighboring columns is
within 0.1 MeV. However, there are several cases where it is
of the order (or even exceeds) 0.2 MeV. Leaving aside detailed
analysis of these “bad” cases, we are forced to put a limit
of �0.1–0.2 MeV on the accuracy of the experimental gap
determined from Eq. (A3).
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