Determination of the half-life of the ground state of ²²⁹Th by using ²³²U and ²³³U decay series

H. Kikunaga,^{1,2,*,†} T. Suzuki,³ M. Nomura,³ T. Mitsugashira,⁴ and A. Shinohara¹

¹Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

²Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan

³Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan

⁴Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan

(Received 21 January 2011; revised manuscript received 17 May 2011; published 18 July 2011)

The half-life of the ground state of ²²⁹Th (²²⁹Th^g) has become an important factor in nuclear technology, for example, in the geological disposal of nuclear spent fuel. However, the values reported in two previous studies are not in agreement. This study reevaluates the half-life of ²²⁹Th^g by using a simple and reliable method. The ²³²U/²³³U activity ratio of a ^{232,233}U sample was measured by high-resolution α -particle spectrometry. Next, the ²²⁸Th/²²⁹Th^g activity ratio of the Th sample, which was grown from the ^{232,233}U sample, was also measured. The half-life of ²²⁹Th^g was calculated from these activity ratios, the growth time, and the half-lives of ²³²U, ²³³U, and ²²⁸Th. From the results of these five measurements, the half-life of ²²⁹Th^g is determined to be 7932 ± 55 yr at a confidence level of 2σ .

DOI: 10.1103/PhysRevC.84.014316

PACS number(s): 21.10.Tg, 23.60.+e, 27.90.+b

I. INTRODUCTION

The ground state of ²²⁹Th (²²⁹Th^g) is an α -decay nuclide of the neptunium series, and the ²²⁹Th^g half-life is an important property for various fields. In spent nuclear fuel, ²³⁷Np and ²³³U, which are produced in neutron capture reactions, yield ²²⁹Th^g, which becomes a major α emitter after millions of years [1]. The intensity and peak time of the 229 Th^g activity depend on its half-life. Meanwhile, ²²⁹Th^g does not exist naturally and can be detected with good sensitivity both by an ion-counting method, such as mass spectrometry, and by α -particle spectrometry because of its half-life of thousands of years. Therefore, it can be used as a good tracer and spike for isotope dilution mass spectrometry to determine the ²³²Th and ²³⁰Th concentrations in environmental samples [2]. In this case, the value of the half-life is important as it can be used to calculate the number of atoms of ²²⁹Th^g by measuring the radioactivity.

In addition, ²²⁹Th has a nuclear-excited state (²²⁹Th^m) with an excitation energy of several electron volts [3–6], which is much lower than that of other nuclides, and is expected to be utilized for a very precise nuclear clock [7]. Direct observation of ultraviolet photons from ²²⁹Th^m is a desirable method to precisely determine the excitation energy of ²²⁹Th^m. Several different groups attempted to detect the direct photons from ²²⁹Th^m [8,9] but were not successful due to radiation-induced fluorescence from the materials around the radioactive ²³³U source [10,11]. We have also attempted to detect the direct photons by using a pure ²²⁹Th source [12]. However, the most recent value of the excitation energy, 7.6 ± 0.5 eV [6], suggests that decay via the internal conversion process is allowed, which implies that emission of ultraviolet photons may become a minor process. Information about the exact half-life of ²²⁹Th^g enables the estimation of the fluorescence background caused by α particles from ²²⁹Th^g.

There are two reported values of the half-life of ²²⁹Th^g: 7340 ± 160 yr [13] and 7880 ± 120 yr [14] (summarized in Ref. [15]). Hagemann et al. [13] determined the ²²⁹Th^g half-life by an indirect method. They produced ²²⁹Th^g by decaying a known amount of freshly purified ²³³U. A known amount of ²³⁴Th was added as a chemical tracer, and then the thorium isotopes were isolated from ²³³U. Activity of ²²⁹Th^g grown from 233 U was calculated using α -particle spectrometry after corrections for chemical yields and ²²⁸Th impurity. The half-life of ²²⁹Th^g was calculated from the measured activity of ²²⁹Th^g, the amount of ²³³U, and the growth time. On the other hand, Goldstein et al. [14] measured the half-life of ²²⁹Th^g by a mass-spectrometry technique. They added a known amount of 232 Th to 229 Th^g standard solutions for α -particle spectrometry and measured the isotopic ratio of the mixture by isotopic-dilution mass spectrometry. The half-life of ²²⁹Th^g was calculated from the activity of the standard solution and the measured isotopic concentration of ²²⁹Th^g. However, there is a difference of approximately 7% between these results. About 2% of the difference is explained by the ²³³U half-life used in Ref. [13], which is greater than the presently accepted half-life of ²³³U. The source of the remaining difference is unclear, although there is speculation that the difference is caused by the underestimation of the effect of impurities such as ²²⁸Th [14].

In this study, the half-life of ²²⁹Th^g is reevaluated using a simple and reliable method described below. Generally, a ²³³U sample contains ²³²U produced by nuclear reactions as an impurity. A thorium sample grown from a purified ^{232,233}U sample contains ²²⁸Th and ²²⁹Th^g with a rate depending on the growth time of Th isotopes. The ²³²U/²³³U and ²²⁸Th/²²⁹Th^g activity ratios are comparatively easily determined by α particle spectrometry because the energy difference of α particles emitted from these isotopes is larger than approximately 300 keV. The half-life of ²²⁹Th^g can be calculated from these activity ratios, the half-lives of ²³²U, ²³³U, and

^{*}kikunaga@lns.tohoku.ac.jp

[†]Present address: Research Center for Electron Photon Science, Tohoku University, Sendai, Miyagi 982-0826, Japan.

²²⁸Th, and the growth time of Th isotopes from U isotopes (details are given in Results and Discussion). Note that this method does not require absolute values of radioactivity and addition of tracer isotopes to determine the number of atoms of ²²⁹Th^g. Thus, this method is little affected by experimental errors such as those in detection efficiency and operation. The half-lives of ²³²U, ²³³U, and ²²⁸Th are determined to be 68.9 \pm 0.4 yr [16], (1.592 \pm 0.002) \times 10⁵ yr [16], and 1.9116 \pm 0.0016 yr [16], respectively; these values are determined with satisfactory accuracy to determine the half-life of ²²⁹Th^g</sup>.

II. EXPERIMENTAL PROCEDURES

For the determination of the ²³²U/²³³U activity ratio, a ^{232,233}U sample was purified by anion-exchange procedures and subjected to α -particle spectrometry. The $UO_2(NO_3)_2 \cdot 6H_2O$ sample containing 4.7 mg of ²³³U was dissolved in 1 ml of 9 M HCl. The solution was passed through an anion-exchange column [Muromac(R) 1×8 , 200–400 mesh, 8 mm $\phi \times$ 50 mm] to adsorb uranium. The resin with adsorbed uranium was washed with 12.5 ml of 9 M HCl to eliminate thorium and its daughters. The uranium was eluted from the column with 15 ml of 0.5 M HCl, and the solution was evaporated to dryness. This purification was repeated two times. About 2 μ g of the purified uranium was dissolved in 1 ml of 9 M HCl. The solution was passed through an anionexchange column [Muromac(R) $1 \times 8, 200-400$ mesh, 5 mm ϕ \times 10 mm]. The resin with adsorbed uranium was washed with 3 ml of 9 M HCl and then eluted from the column with 4 ml of 0.5 M HCl. The uranium isotopes were coprecipitated with samarium hydroxide by adding 10 μ g of samarium and 15 M NH₄OH in that order. The precipitate was collected on an 18-mm-diameter alumina filter (Whatman, ANODISC membrane, 0.02- μ m pore size) to prepare a counting source [17]. The filter was fixed on a stainless-steel supporting ring and dried on a hot plate at 150°C. α -particle spectrometry was performed using a Canberra model 7401 α -particle spectrometer and a 2048-channel pulse-height analyzer system assisted by a personal computer. The α -particle spectrometer was equipped with an ion-implanted planar silicon detector (Canberra, A450-18AM). The accumulation of an α -particle spectrum for 1 h was successively repeated more than 16 times. The cycle of purification and α -particle spectrometry with 2 μ g of the uranium was separately performed three times.

To estimate the interference on the determination of the $^{232}U/^{233}U$ ratio from other uranium isotopes, isotope analysis using thermal-ionization mass spectrometry (TIMS) was conducted. A Finnigan MAT-261 magnetic sector mass spectrometer with a double-filament (Re-Re) ion source and a Faraday cup detector was used. About 10 μ g of the purified ^{233}U sample in nitrate form was loaded on a sample filament and evaporated by applying a filament current of 2.1–2.4 A. An ionization filament that parallels the sample filament was operated at 5.1–5.3 A. The uranium ions were extracted on an analyzing magnet by applying an extraction voltage of 10 kV. The ratios of the five uranium isotopes, namely, ^{233}U , ^{234}U , ^{235}U , ^{236}U , and ^{238}U , were calculated as the average of ten measurements.

The ratios of ²²⁸Th and ²²⁹Th^g produced by ²³²U and ²³³U α -particle decay, respectively, were determined as described below. The purified ^{232,233}U sample was dissolved in 2 ml of 9 M HCl. The solution was passed through an anion-exchange column [Muromac(R) 1 \times 8, 200–400 mesh, 8 mm ϕ \times 50 mm], which adsorbed uranium. The resin with adsorbed uranium was washed with 10 ml of 9 M HCl to eliminate thorium. The uranium was eluted from the column with 10 ml of 0.5 M HCl, and the solution was concentrated to near dryness. This purification was repeated two times to eliminate thorium completely. The purified ^{232,233}U sample was left to stand for 0.8–289 d to allow the growth of 228 Th and 229 Th^g. The ^{232,233}U sample that included fresh thorium isotopes was dissolved in 2 ml of 9 M HCl. The solution was passed through an anion-exchange column [Muromac(R) 1×8 , 200–400 mesh, 8 mm $\phi \times$ 50 mm] to adsorb uranium. The thorium isotopes were eluted from the column with 5 ml of 9 M HCl. To eliminate the remaining uranium in the thorium fraction, the eluate was passed through an anion-exchange column [Muromac(R) 1×8 , 200–400 mesh, 5 mm $\phi \times 40$ mm]. The elimination procedure for ^{232,233}U was repeated two to five times. The thorium fraction was heated to dryness, and the residue was dissolved in 8 M HNO₃. The solution was passed through an anion-exchange column [Muromac(R) 1×8 , 200–400 mesh, 5 mm $\phi \times 40$ mm], which adsorbed thorium. The resin with adsorbed thorium was washed with 7 ml of 8 M HNO₃ to eliminate radium. The thorium was eluted from the column with 5 ml of 2 M HCl. The thorium isotopes were prepared for α counting by using a samarium hydroxide coprecipitation method [17], as described above. The accumulation of an α -particle spectrum for 1 h was successively repeated 100 times. A counting source was placed at a distance of 13-41 mm from the detector and measured with a 10-20 mm collimator in order to adjust the count rate for each sample. The measurements for the 228 Th/ 229 Th^g ratio were separately conducted six times with various growth times of thorium isotopes and the number of elimination procedures for ^{232,233}U.

III. RESULTS AND DISCUSSION

An example of the α -particle spectra of the ^{232,233}U samples measured for 35 h is shown in Fig. 1. The ²³³U, ²³²U, and slight ²²⁸Th peaks are seen in the spectrum. The ²³³U peak at 4824 keV has a full width at half maximum (FWHM) value of less than 20 keV in all measurements, and the ²³²U and ²³³U peaks are clearly separated from each other. The α events in the regions of 4627-4860 and 5122-5355 keV are considered to be from ²³³U and ²³²U, respectively. The background counts in these regions are assumed to be linear functions. The ²²⁸Th peak at 5340 keV is overlapped with the ²³²U peak at 5320 keV, which is corrected, although the correction is less than 0.1%. From TIMS results, the atomic ratios are determined to be $99.5287\% \pm 0.0008\%$ for ²³³U, $0.1858\% \pm 0.0004\%$ for ²³⁴U, $0.0628\% \pm 0.0002\%$ for ²³⁵U, $0.0143\% \pm 0.0004\%$ for ²³⁶U, and $0.2084\% \pm 0.0002\%$ for ²³⁸U at a confidence level of 2σ . The peaks of 234 U are overlapped with the peaks of 233 U, which is also corrected, although the correction is about 0.2%. From

FIG. 1. An example of the α -particle spectra of 232,233 U samples.

the results, the 232 U/ 233 U counts ratio and atomic ratio of the 232,233 U sample used in this study are determined to be (1.060 ± 0.005) $\times 10^{-3}$ and (4.590 ± 0.026) $\times 10^{-7}$, respectively.

An example of the α -particle spectra of the ^{228,229}Th samples measured for 100 h is shown in Fig. 2. The ²²⁹Th^g, ²²⁸Th, and their daughters are seen in the spectrum. The ²²⁸Th peak at 5423 keV has a FWHM of less than 18 keV in all measurements. The α events in the regions of 4650–5100 and 5110–5490 keV are considered to be from ²²⁸Th and ²²⁹Th^g, respectively. The background counts in these regions are assumed in the same manner as in the measurement for the ^{232,233}U sample. The component in the high-energy side of the ²²⁸Th peak at 5423 keV is due to the ²²⁴Ra peak at 5449 keV, which has an α branch of 5.06% \pm 0.04% [16]. The α counts of this component are estimated from the ²²⁴Ra peaks at 5685 keV, which has an α branch of 94.92% \pm 0.04% [16], and subtracted from the α counts of ²²⁸Th.

The half-life of 229 Th^g is calculated as described below. The activities of 228 Th and 229 Th^g at the end of the growth time are given by the following equations:

$$A_{228} = \frac{\lambda_{228}\lambda_{232}}{\lambda_{228} - \lambda_{232}} N_{232} (e^{-\lambda_{232}T} - e^{-\lambda_{228}T}), \qquad (1)$$

$$A_{229} = \frac{\lambda_{229}\lambda_{233}}{\lambda_{229} - \lambda_{233}} N_{233} (e^{-\lambda_{233}T} - e^{-\lambda_{229}T}), \qquad (2)$$

FIG. 2. An example of the α -particle spectra of ^{228,229}Th samples.

where A₂₂₈ and A₂₂₉ are the activities of ²²⁸Th and ²²⁹Th^g, respectively; N₂₃₂ and N₂₃₃ are the numbers of atoms of ²³²U and ²³³U, respectively; λ_{228} , λ_{229} , λ_{232} , and λ_{233} are the decay constants of ²²⁸Th, ²²⁹Th^g, ²³²U, and ²³³U, respectively; and *T* is the growth time of thorium. Assuming that the counting efficiencies of ²²⁸Th and ²²⁹Th^g are equal, the ratio of the α events from ²²⁸Th and ²²⁹Th^g is given by the following equation:

$$\frac{C_{228}}{C_{229}} = \frac{\int_{t_1}^{t_1 + \Delta t} A_{228} e^{-\lambda_{228} t} dt}{\int_{t_1}^{t_1 + \Delta t} A_{229} e^{-\lambda_{229} t} dt},$$
(3)

where C_{228} and C_{229} are counts of ²²⁸Th and ²²⁹Th^g, respectively, t_1 is the elapsed time from the end of the growth time to the start time of the measurement, and Δt is the measurement time. Here, assuming that the numbers of atoms of ²³³U and ²²⁹Th^g do not decrease during the growth time of thorium and the number of atoms of ²²⁹Th^g does not decrease during the measurement time, Eqs. (2) and (3) are represented by

$$A_{229} = \lambda_{229} \lambda_{233} N_{233} T \tag{4}$$

and

$$\frac{C_{228}}{C_{229}} = \frac{A_{228}}{A_{229}} \frac{\int_{t_1}^{t_1 + \Delta t} e^{-\lambda_{228} t} dt}{\Delta t},$$
(5)

TABLE I. Obtained half-lives of ²²⁹Th^g and the experimental conditions. The ^{232,233}U elimination shows the number of times the ^{232,233}U elimination procedure was performed (see text). The first term of the $T_{1/2}$ error is the statistical uncertainty, and the second is systematic uncertainty.

Sample	<i>T</i> (d)	<i>t</i> ₁ (s)	^{232,233} U elimination	C_{229}/C_{228}	<i>T</i> _{1/2} (yr)
1	0.823	10410	2	0.2377 ± 0.0023	$7493 \pm 77 \pm 12$
2	28.9	18000	3	0.2296 ± 0.0004	$7970 \pm 37 \pm 13$
3	289	16500	4	0.2612 ± 0.0005	$7994 \pm 36 \pm 12$
4	45.9	17040	4	0.2326 ± 0.0004	$7944 \pm 35 \pm 12$
5	253	21854	5	0.2599 ± 0.0005	$7887 \pm 37 \pm 12$
6	32.9	18093	5	0.2339 ± 0.0004	$7866\pm36\pm12$

FIG. 3. The half-life values of 229 Th^g. Our results are compared with the literature values (Hagemann 1950: [13]; Goldstein 1989: [14]). The values in Table I are also plotted with 1 σ confidence level (samples 1–6).

respectively. Therefore, assuming that the counting efficiencies of 232 U and 233 U are equal, the decay constant of 229 Th^g is given by the following equation:

$$\lambda_{229} = \frac{C_{232}}{C_{233}} \frac{C_{229}}{C_{228}} \frac{(e^{-\lambda_{232}T} - e^{-\lambda_{228}T})}{(\lambda_{228} - \lambda_{232})T} \frac{e^{-\lambda_{228}t_1} - e^{-\lambda_{228}(t_1 + \Delta t)}}{\Delta t},$$
(6)

where C_{232} and C_{233} are counts of ^{232}U and ^{233}U , respectively. The values of the $^{229}Th^g$ half-life calculated by Eq. (6) are tabulated in Table I with the experimental conditions. The errors of the $^{229}Th^g$ half-life have been separated into two parts: one is statistical uncertainty, and the other is systematic uncertainty derived from the uncertainty in the branching ratio of ^{224}Ra and in the half-lives of ^{228}Th and ^{232}U . The statistical uncertainty mainly derives from the counts of ^{232}U (approximately 0.85% per one measurement). The values of the $^{229}Th^g$ half-life are not dependent on the growth time. Note that the value of the $^{229}Th^g$ half-life obtained by conducting the $^{232,233}U$ elimination procedure two times is smaller than other values. This suggests that the counting source included the uranium isotopes that passed through the anion-exchange columns (the α peaks of ^{233}U and $^{229}Th^g$

overlap). Considering that the other values of the ²²⁹Th^g half-life are comparable regardless of the number of times the ^{232,233}U elimination procedure was conducted, it may be expected that the ²³³U contaminant is negligible after conducting the ^{232,233}U elimination procedure more than three times. From the results, except for the value of sample 1, the half-life of ²²⁹Th^g is determined to be 7932 ± 34 yr at a confidence level of 2σ .

However, the deviation in the values of ²²⁹Th^g half-life in Table I is larger than the statistical error of each data point. The reduced chi-square value of the half-lives obtained is 2.3, which means that the half-lives contain not only the statistical error estimated above but also other random errors. Therefore, we have estimated the statistical uncertainty from the scatter of the five half-lives obtained. As a result, the statistical uncertainty containing random errors is determined to be ±49 yr at a confidence level of 2σ . The half-life of ²²⁹Th^g is determined to be 7932 ± 55 yr at a confidence level of 2σ by the square root of the sum of squares of the statistical and systematic uncertainties.

The current results and the previous results [13,14] are shown in Fig. 3. The half-life of 7932 ± 55 yr is in agreement with the value 7880 ± 120 yr [14] and not 7340 ± 160 yr [13]. Goldstein *et al.* [14] conjecture that 5% of the difference between the ²²⁹Th^g half-life of Hagemann *et al.* [13] is due to underestimation of the effect of impurities such as ²²⁸Th. However, it seems that the effect of the ²²⁹Th impurity on the net counts of ²²⁹Th^g was less than 1%, considering the energy spectrum of ²²⁸Th and ²²⁹Th^g in Ref. [13], although we do not have sufficient information on the correction for the ²²⁸Th impurity applied by Hagemann *et al.* [13]. In contrast to Goldstein *et al.* [14], we suggest that the difference was caused by the impurities derived from the inadequate separation of ²³³U, as in sample 1 of our experiment.

In conclusion, we measured the half-life of ²²⁹Th^g by using ²³²U and ²³³U decay series. From the results, the half-life of ²²⁹Th^g is determined to be 7932 \pm 55 yr at a confidence level of 2σ . This value is consistent with 7880 \pm 120 yr [14] and has fewer uncertainties than the previous experimental value. Thus, our results have experimentally determined the half-life of ²²⁹Th^g and improved the reliability of the value of the half-life of ²²⁹Th^g.

- [1] S. Anand, D. S. Singh, and V. K. Sharma, Radiat. Prot. Dosim. 138, 52 (2010).
- [2] S. J. Goldstein, A. I. Abdel-Fattah, M. T. Murrell, P. F. Dobson, D. E. Norman, R. S. Amato, and A. J. Nunn, Environ. Sci. Technol. 44, 1579 (2010).
- [3] R. G. Helmer and C. W. Reich, Phys. Rev. C 49, 1845 (1994).
- [4] V. Barci, G. Ardisson, G. Barci-Funel, B. Weiss, O. El Samad, and R. K. Sheline, Phys. Rev. C 68, 034329 (2003).
- [5] Z. O. Guimarães-Filho and O. Helene, Phys. Rev. C 71, 044303 (2005).
- [6] B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, Phys. Rev. Lett. 98, 142501 (2007).

- [7] W. G. Rellergert, D. DeMille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, Phys. Rev. Lett. **104**, 200802 (2010).
- [8] G. M. Irwin and K. H. Kim, Phys. Rev. Lett. 79, 990 (1997).
- [9] D. S. Richardson, D. M. Benton, D. E. Evans, J. A. R. Griffith, and G. Tungate, Phys. Rev. Lett. 80, 3206 (1998).
- [10] S. B. Utter, P. Beiersdorfer, A. Barnes, R. W. Lougheed, J. R. Crespo López-Urrutia, J. A. Becker, and M. S. Weiss, Phys. Rev. Lett. 82, 505 (1999).
- [11] R. W. Shaw, J. P. Young, S. P. Cooper, and O. F. Webb, Phys. Rev. Lett. 82, 1109 (1999).

DETERMINATION OF THE HALF-LIFE OF THE GROUND ...

- [12] Y. Kasamatsu, H. Kikunaga, K. Takamiya, T. Mitsugashira, T. Nakanishi, Y. Ohkubo, T. Ohtsuki, W. Sato, and A. Shinohara, Radiochim. Acta 93, 511 (2005).
- [13] F. Hagemann, L. I. Katzin, M. H. Studier, G. T. Seaborg, and A. Ghiorso, Phys. Rev. 79, 435 (1950).
- [14] S. J. Goldstein, M. T. Murrell, and R. W. Williams, Phys. Rev. C 40, 2793 (1989).
- [15] E. Browne and J. K. Tuli, Nucl. Data Sheets **109**, 2657 (2008).
- [16] Table of Isotopes, 8th ed., edited by R. B. Firestone and V. S. Shirley (Wiley, New York, 1996).
- [17] H. Kikunaga, Y. Kasamatsu, K. Takamiya, T. Ohtsuki, H. Yuki, A. Yokoyama, T. Nakanishi, and T. Mitsugashira, Appl. Radiat. Isot. 67, 539 (2009).