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We present the finite amplitude method (FAM), originally proposed in Ref. [17], for superfluid systems. A
Hartree-Fock-Bogoliubov code may be transformed into a code of the quasiparticle-random-phase approximation
(QRPA) with simple modifications. This technique has advantages over the conventional QRPA calculations, such
as coding feasibility and computational cost. We perform the fully self-consistent linear-response calculation for
the spherical neutron-rich nucleus 174Sn, modifying the HFBRAD code, to demonstrate the accuracy, feasibility,
and usefulness of the FAM.
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I. INTRODUCTION

Elementary modes of excitation in nuclei provide valuable
information about the nuclear structure. The random-phase
approximation (RPA) based on energy density functionals
(EDFs) is a leading theory applicable both to low-lying
excited states and giant resonances [1,2]. Although the fully
self-consistent treatment of the residual (induced) interactions
for the realistic energy functionals is becoming more and more
prevalent [3–13], the RPA calculations for deformed nuclei are
still computationally demanding. At present, the quasiparticle
random-phase approximation (QRPA) for deformed superfluid
nuclei are limited only to axially deformed cases [10–15],
except for Ref. [16] with an approximate treatment of the
pairing interaction.

Recently, there has been a renewed interest in the solution
of the RPA problem [17–19]. In Ref. [17], the finite amplitude
method (FAM) was proposed as a feasible method for a
solution of the RPA equation. The FAM allows us to calculate
all the induced fields using a finite difference method,
employing a computational program of the static mean-field
Hamiltonian. Recently, the FAM has been applied to the
electric dipole excitations in nuclei using the Skyrme energy
functionals [18]. There has been also a calculation making
use of the iterative Arnoldi algorithm for a solution of the
RPA equation [19]. These newly developed technologies in
conjunction with fast-solving algorithms for linear systems
open the possibility to systematically explore the nuclear
excitations over the entire nuclear chart.

So far, these new techniques [17–19] have been developed
for solutions of the RPA without the pairing correlations.
It is well known, however, that almost all but magic nuclei
display superfluid features. Therefore, a further improvement
is highly desirable to make these methods applicable to the
QRPA equations including correlations in the particle-particle
and hole-hole channels. The purpose of the present paper is to
generalize the FAM to superfluid systems, which enables us
to perform a QRPA calculation utilizing a static Hartree-Fock-
Bogoliubov (HFB) code with minor modifications. Our final
goal would be the construction of a fast computer program

for the fully self-consistent and triaxially deformed QRPA.
This paper is a first step toward this goal; to present the basic
equations of the FAM for the QRPA and to show the first
results for spherical nuclei. We use the spherically symmetric
HFB code called HFBRAD [20] to be converted into the QRPA
code.

This paper is organized as follows: In Sec. II, the QRPA
equation is derived as the small-amplitude limit of the time-
dependent HFB (TDHFB) equations. In Sec. III, we obtain
the FAM formulas for the calculation of the induced fields.
In Sec. IV, we summarize all the relevant formulas for
practical application of the FAM. In Sec. V, we apply the
FAM to the HFBRAD and compare the result with that of
another self-consistent calculation. Section VI is devoted to
the conclusions.

II. SMALL-AMPLITUDE LIMIT OF THE TDHFB

In this section, we recapitulate the basic formulation of
the TDHFB and its small-amplitude limit. In general, we will
follow the notation in Ref. [1] unless otherwise specified. We
also use h̄ = 1 in the following equations.

We start from the energy functional E[ρ, κ, κ∗] which is a
functional of the density matrix and pairing tensor:

ρkl = 〈�|c†l ck|�〉, κkl = 〈�|clck|�〉, (1)

where |�〉 is the HFB state. The single-particle Hamiltonian
h and the pairing potential � are obtained with a variation of
the energy functional with respect to ρ and κ∗, respectively:

hkl[ρ, κ, κ∗] = ∂E
∂ρlk

, �kl[ρ, κ, κ∗] = ∂E
∂κ∗

kl

. (2)

The Bogoliubov quasiparticles, (aμ, a†
μ), have a linear connec-

tion to the bare particles, (ck, c
†
k); a†

μ = ∑
k(Ukμc

†
k + Vkμck).

Here, the index k indicates the adopted basis such as
the harmonic oscillator states or the coordinate space. The
quasiparticles aμ are chosen so as to diagonalize the HFB
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Hamiltonian [1]:

H0 = 1

2
( c† c)

(
h − λ �

−�∗ −(h∗ − λ)

)(
c

c†

)
=

∑
μ

Eμa†
μaμ.

(3)

Here, the normal ordering is assumed.
In a similar manner, the time-dependent quasiparticles

a†
μ(t) are characterized by the time-dependent wave functions

(U (t), V (t)) by a†
μ(t) = ∑

k{Ukμ(t)c†k + Vkμ(t)ck}. The time
evolution of the quasiparticles under a one-body external
perturbation F (t) are determined by the following TDHFB
equation:

i
∂aμ(t)

∂t
= [H (t) + F (t), aμ(t)], (4)

where the TDHFB Hamiltonian is given by

H (t) =
∑
kl

{hkl(t) − λδkl}c†kcl

+
∑
k>l

{�kl(t)c
†
kc

†
l + �∗

kl(t)clck}

= 1

2
( c† c)

(
h(t) − λ �(t)

�†(t) −(h∗(t) − λ)

)(
c

c†

)
. (5)

Here and hereafter, the constant shift is neglected, since it does
not play any role in the TDHFB Eq. (4). h(t) and �(t) become
time dependent, since they depend on the densities, ρ(t) =
V ∗(t)V T (t) and κ(t) = V ∗(t)UT (t) = −U (t)V †(t), which are
time dependent. Note that the static quasiparticles correspond
to a quasistatic solution of Eq. (4), aμ(t) = aμeiEμt , with
F (t) = 0.

Let us assume that the nucleus is under a weak external
field of a given frequency ω:

F (t) = η{F (ω)e−iωt + F †(ω)eiωt }, (6)

F (ω) = 1

2

∑
μν

{
F 20

μν(ω)A†
μν + F 02

μν(ω)Aμν

}+
∑
μν

F 11
μν(ω)Bμν,

(7)

where A†
μν ≡ a†

μa†
ν and Bμν ≡ a†

μaν . A small real parameter
η is introduced for the linearization. In the small-amplitude
limit, the second term (B part) in Eq. (7) can be omitted,
because it does not contribute in the linear approximation. The
Bogoliubov transformation of the external fields [F 20

μν(ω) and
F 02

μν(ω)] is given in Appendix A2.
The external perturbation F (t) induces a density oscillation

around the ground state with the same frequency ω. The
density oscillation, then, produces the induced fields in the
single-particle Hamiltonian, h(t) = h0 + δh(t), and in the pair
potential, �(t) = � + δ�(t). Thus, the Hamiltonian Eq. (5)
is decomposed into static and oscillating parts: H (t) = H0 +
δH (t).

δH (t) = η{δH (ω)e−iωt + δH †(ω)eiωt }, (8)

δH (ω) = 1

2

∑
μν

{
δH 20

μν(ω)A†
μν + δH 02

μν(ω)Aμν

}
. (9)

Here, the B part is again neglected in Eq. (9). See Appendix A1
for the derivation of δH (ω). Explicit expressions for δH 20

μν(ω)
and δH 02

μν(ω) are found in Eqs. (A8) and (A9), respectively.
The time-dependent quasiparticle operators are decom-

posed in a similar manner:

aμ(t) = {aμ + δaμ(t)}eiEμt , (10)

where δaμ(t) can be expanded in the quasiparticle creation
operators:

δaμ(t) = η
∑

ν

a†
ν( Xνμ(ω)e−iωt + Y ∗

νμ(ω)eiωt ). (11)

It should be noted that δaμ can be expanded only in terms of
the creation operators because the annihilation operators on the
right-hand side of Eq. (11) simply represent the transformation
among themselves, aμ(t) = ∑

ν Cμν(t)aν , and do not affect
ρ and κ . The amplitudes X and Y must be antisymmetric to
satisfy the fermionic commutation relation, {aμ(t), aν(t)} = 0.
Keeping only linear terms in η, Eq. (4) becomes

i
∂δaμ(t)

∂t
= Eμδaμ(t) + [H0, δaμ(t)] + [δH (t) + F (t), aμ].

(12)

Substituting Eqs. (6)–(11) into Eq. (12), we obtain the linear-
response equations:

(Eμ + Eν − ω)Xμν(ω) + δH 20
μν(ω) = F 20

μν(ω),

(Eμ + Eν + ω)Yμν(ω) + δH 02
μν(ω) = F 02

μν(ω).
(13)

In Eq. (13), setting the frequency complex, ω → ω + iγ /2,
we can introduce a smearing with a width γ .

Expanding δH 20(ω) and δH 02(ω) in terms of the forward
and backward amplitudes X and Y , we obtain a familiar
expression of the equation [1]:[(

A B

B∗ A∗

)
− ω

(
II 0

0 −II

)] (
X(ω)

Y (ω)

)
=

(
F 20(ω)

F 02(ω)

)
. (14)

This matrix formulation requires us to calculate the QRPA
matrix elements, Aμν,μ′ν ′ and Bμν,μ′ν ′ . This is a tedious
task and their dimension, which is equal to the number of
two-quasiparticle excitations, becomes huge, especially for
deformed nuclei. Instead, in the FAM [17], we keep the form of
Eq. (13) and calculate the induced fields δH 20(ω) and δH 02(ω)
using numerical differentiation. We explain this trick in the
next section.

III. FINITE AMPLITUDE METHOD
FOR THE INDUCED FIELDS

The expressions for δH 20 and δH 02 in Eq. (13) are given in
Eqs. (A8) and (A9), respectively. Thus, we need to calculate
δh(ω) and δ�(±)(ω) for a given X and Y . We perform this
calculation following the spirit of the FAM [17].

From Eqs. (10) and (11), we obtain the time-dependent
quasiparticle wave functions:(

Uμ(t)

Vμ(t)

)
=

(Uμ(t)

Vμ(t)

)
e−iEμt , (15)
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where

Ukμ(t) = {U + η(V ∗X∗eiωt + V ∗Ye−iωt )}kμ, (16)

Vkμ(t) = {V + η(U ∗X∗eiωt + U ∗Ye−iωt )}kμ. (17)

First, let us discuss how to obtain δh(ω). The time-
dependent single-particle Hamiltonian h(t) depends on the
densities which are determined by the wave functions
(U (t), V (t)). Therefore, h(t) can be regarded as a functional
of wave functions as

h[U ∗(t), V ∗(t); U (t), V (t)] = h[U∗(t),V∗(t);U(t),V(t)].

(18)

Here, it should be noted that the phase factors eiEμt in Eq. (15)
do not play a role. This is because h is a functional of
densities ρ, κ , and κ∗, which are given by products of one
of (U,V ) and one of the complex conjugate (U ∗, V ∗), such
as ρ = V ∗V T and κ = V ∗UT . Therefore, the time-dependent
phases in Eq. (15) are always canceled, and can thus be omitted.

Now, we take the small-amplitude limit, keeping only the
linear order in η:

h(t) = h[U∗(t),V∗(t);U(t),V(t)]

= h[U ∗, V ∗; U,V ] + η{δh(ω)e−iωt + H.c.}. (19)

Here, δh(ω) can be obtained using Eqs. (16) and (17),
expanding up to the first order in η and collecting terms
proportional to e−iωt , as

δh(ω) = ∂h

∂U ∗ · V X + ∂h

∂V ∗ · UX + ∂h

∂U
· V ∗Y + ∂h

∂V
· U ∗Y.

(20)

The calculation of the derivatives such as ∂hkl/∂U ∗
k′μ is a

tedious task and requires a large memory capacity for their
storage in the computation. In the FAM, we avoid this explicit
expansion and instead write the same quantity as follows:

δh(ω) = h[Ū ∗
η , V̄ ∗

η ; Uη, Vη] − h[U ∗, V ∗; U,V ]

η
+ O(η2),

(21)

where Ū ∗
η , V̄ ∗

η , Uη, and Vη are given by

Ū ∗
η ≡ U ∗ + ηV X, V̄ ∗

η ≡ V ∗ + ηUX,
(22)

Uη ≡ U + ηV ∗Y, Vη ≡ V + ηU ∗Y.

This is the FAM formula for the calculation of δh(ω). All we
need in the computer program is a subroutine to calculate
the single-particle Hamiltonian as a function of the wave
functions, h[Ū ∗, V̄ ∗; U,V ].

For the pair potential, basically, the same arguments lead
to the FAM formulas for δ�(±). The time-dependent pair
potential �(t) can be written as

�(t) = �[U∗(t),V∗(t);U(t),V(t)] = �[U ∗, V ∗; U,V ]

+ η{δ�(+)(ω)e−iωt + δ�(−)(ω)eiωt }. (23)

Here, δ�(+) and δ�(−) are independent, since �(t) is non-
Hermitian in general. δ�(+) can be written in the same form

as Eq. (21):

δ�(+)(ω)= �[Ū ∗
η , V̄ ∗

η ;Uη, Vη]−�[U ∗, V ∗; U,V ]

η
+ O(η2),

(24)

where Ū ∗
η , V̄ ∗

η , Uη, and Vη are given by Eq. (22).
The expression for δ�(−) is also obtained from Eq. (23),

collecting terms proportional to eiωt . It is given by the same
expression as Eq. (24):

δ�(−)(ω)= �[Ū ∗
η , V̄ ∗

η ;Uη, Vη]−�[U ∗, V ∗; U,V ]

η
+ O(η2).

(25)

However, (Ū ∗
η , V̄ ∗

η ; Uη, Vη) here are different from Eq. (22)
and given by

Ū ∗
η ≡ U ∗ + ηV Y ∗, V̄ ∗

η ≡ V ∗ + ηUY ∗,
(26)

Uη ≡ U + ηV ∗X∗, Vη ≡ V + ηU ∗X∗.

The essential trick of the FAM is to calculate the induced
fields, δh(ω) and δ�(±), according to Eqs. (21), (24), and
(25) with a small but finite parameter η. Of course, the η2

and higher-order terms bring some numerical errors, but they
are negligible. Therefore, for a given X and Y , we are able to
calculate these induced fields by using the static HFB code with
some minor modifications. δH 20(ω) and δH 02(ω) of Eq. (13)
in the quasiparticle basis can be calculated with Eqs. (A8)
and (A9), respectively. Then, we may solve the QRPA linear-
response equation (13) to obtain the self-consistent amplitudes
X and Y utilizing an iterative algorithm (see Sec. IV).

A. Induced fields in terms of densities

Although the basic formulas of the FAM has been provided
in Sec. III, we may need to modify them in the practical
implementation of the FAM. For instance, some HFB codes
such as HFBRAD contain subroutines to calculate mean fields as
functions of densities, not of wave functions. In this subsection,
we rewrite Eqs. (21), (24), and (25) in terms of densities.

The density δρ(t) is written up to linear order in η as

ρ(t) = V ∗(t)V T (t) = ρ0 + η(δρ(ω)e−iωt + H.c.), (27)

where

δρ(ω) = UXV T + V ∗Y T U †. (28)

This can be written in the FAM form:

δρ(ω) = ρη − ρ0

η
+ O(η2)

= V̄ ∗
η V T

η − V ∗V T

η
+ O(η2), (29)

where V̄ ∗
η and Vη are given in Eq. (22).

The pair tensor κ(t), which is non-Hermitian, can be
expressed in a similar manner:

κ(t) = V ∗(t)UT (t)

= κ0 + η(δκ (+)e−iωt + δκ (−)eiωt ). (30)
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Here, κ (±) can be given in explicit form as

δκ (+)(ω) = UXUT + V ∗Y T V †, (31)

δκ (−)(ω) = V ∗X†V † + UY ∗UT , (32)

and in FAM form as

δκ (±)(ω) = κ (±)
η − κ0

η
+ O(η2)

= V̄ ∗
η UT

η − V ∗UT

η
+ O(η2), (33)

where V̄ ∗
η and Uη are given in Eq. (22) for κ (+)

η while they are
given by Eq. (26) for κ (−)

η .
Now, let us present how to obtain the induced fields in terms

of the densities. In general, h(t) and �(t) may depend on ρ, κ ,
and κ∗:

h(t) = h[ρ(t), κ(t), κ∗(t)], �(t) = �[ρ(t), κ(t), κ∗(t)].

(34)

In order to obtain the induced fields, all we need to do is to
replace ρ by ρη defined in Eqs. (29), and κ by κ (±)

η in Eq. (33),
as follows:

δh(ω) = h[ρη, κ
(+)
η , κ (−)∗

η ] − h[ρ, κ, κ∗]

η
, (35)

δ�(+)(ω) = �[ρη, κ
(+)
η , κ (−)∗

η ] − �[ρ, κ, κ∗]

η
, (36)

δ�(−)(ω) = �[ρ†
η, κ

(−)
η , κ (+)∗

η ] − �[ρ, κ, κ∗]

η
, (37)

where the terms of the second and higher orders in η are
neglected.

IV. SUMMARY OF THE FINITE AMPLITUDE METHOD

Here we provide a summary of the FAM for the QRPA
linear-response calculation for a prompt application. Later, we
discuss applications of the FAM to the Skyrme functionals;
however, the FAM formulated in this and previous sections
is applicable to any kind of energy density functional (mean-
field) models.

A. Numerical procedure

The aim is to solve the linear-response equation (13) for
a given external field F . In order to obtain the forward
and backward amplitudes X and Y , we resort to an itera-
tive algorithm. Namely, we start from the initial guess for
(X, Y ) = (X(0), Y (0)) ≡ �x(0), and calculate δh(ω) and δ�(±)(ω)
according to formulas, (21), (24), and (25). Then, they are
converted into δH 20(ω) and δH 02(ω), using Eqs. (A8) and
(A9), respectively. In this way, we can evaluate the left- and
right-hand sides of Eq. (13) for a given (X, Y ).

Since Eq. (13) is equivalent to Eq. (14), it is a linear alge-
braic equation for the vector �x ≡ (X, Y ), in the form of A�x = �b.
Many different algorithms are available for the solution of
linear systems. In this paper, we resort to a procedure based on

Krylov spaces called the generalized conjugate residual (GCR)
method [21]. Within these kinds of methods, a succession of
approximate solutions (�x(0), �x(1), �x(2), . . .) converging to the
exact solution is obtained by iteration. The GCR algorithm
consists in a series of steps, each containing the operation of
the matrix A on a given vector, and sums and scalar products
of two vectors. For the given �x = (X, Y ), A�x is equal to the
left-hand side of Eq. (13). Therefore, the quantity A�x can be
calculated without the explicit knowledge of the QRPA matrix
itself.

Here, we summarize the formulas. The linear response
equation is given by A�x = �b, where

�x ≡
(

Xμν

Yμν

)
, �b ≡

(
F 20

μν

F 02
μν

)
,

and

A�x =
(

(Eμ + Eν − ω)Xμν(ω) + δH 20
μν(ω)

(Eμ + Eν + ω)Yμν(ω) + δH 02
μν(ω)

)
,

where

δH 20
μν(ω) = U †δhV ∗ − V †δ�(−)∗V ∗ + U †δ�(+)U ∗

−V †δhT U ∗,
δH 02

μν(ω) = −V T δhU + UT δ�(−)∗U − V T δ�(+)V

+UT δhT V .

Denoting h and � collectively as H ≡ (h,�), the induced
fields δH are calculated by the FAM formulas,

δH = H[Ū ∗
η , V̄ ∗

η ; Uη, Vη] − H[U ∗, V ∗; U,V ]

η
, (38)

where (Ū ∗
η , V̄ ∗

η ; Uη, Vη) are given by

Ū ∗
η ≡ U ∗ + ηV X, V̄ ∗

η ≡ V ∗ + ηUY ∗,
Uη ≡ U + ηV ∗X∗, Vη ≡ V + ηU ∗X∗,

for the calculation of δh(ω) and δ�(+). For δ�(−), they are

Ū ∗
η ≡ U ∗ + ηV X, V̄ ∗

η ≡ V ∗ + ηUX,

Uη ≡ U + ηV ∗Y, Vη ≡ V + ηU ∗Y.

The final result does not depend on the parameter η, as long
as it is in a reasonable range. The choice of η is discussed in
Sec. V.

B. Calculation of the strength function

Using the solution (X, Y ), we can calculate the strength
function following the same procedure as Ref. [17]:

dB(ω; F )

dω
≡

∑
n>0

|〈n|F |0〉|2δ(ω − En) = − 1

π
ImS(F ; ω).

(39)

Here, S(F ; ω) is obtained from the solution (X, Y ). For the
operator in the form of Eq. (A10), we may calculate S(F ; ω)
as

S(F ; ω) = tr{f †δρ(ω)}, (40)
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For the operator in the form of Eq. (A13), we have

S(F ; ω) = tr{g†δκ (+)(ω) + g
′†δκ (−)∗(ω)}. (41)

For both cases, in the two-quasiparticle basis, Eqs. (40) and
(41) can be written in the unified expression

S(F,ω) = 1

2

∑
μν

{
F 20∗

μν Xμν(ω) + F 02∗
μν Yμν(ω)

}
, (42)

where F 20 and F 02 are given by Eqs. (A11) and (A12) for the
former case, and by Eqs. (A14) and (A15) for the latter.

V. APPLICATION OF THE FAM TO HFBRAD

In order to assess the validity of the FAM, we install the
FAM in the HFBRAD code [20]. It has to be noted that the
formalism of HFBRAD is slightly different from the one used in
this paper which follows the notations in Ref. [1]. In particular,
the wave functions (ϕ1μ, ϕ2μ), the pairing tensor ρ̃, and the pair
potential h̃ are defined in a different manner; ϕ1μ(k) = Ukμ,
ϕ2μ(k) = Vk̄μ, ρ̃kl = κkl̄ , and h̃kl = �kl̄ , where k̄ is the time-
reversal state of k. A detailed discussion on the difference
among the two notations can be found in Ref. [22].

The HFBRAD [20] is a well known code which solves
the HFB in the radial coordinate space assuming spherical
symmetry. It has been designed to provide fast and reliable
solutions for the ground state of spherical even-even nuclei.
For these nuclei, the time-odd densities are identically zero
and thus they have not been implemented in the code. In
order to render the QRPA fully self-consistent, we have to
add the time-odd terms into the calculation of the induced
fields. This task can be simplified for a case of the presence
of spherical and space-inversion symmetry, such as in the
case of monopole excitations. For this case, the only time-odd
terms with nonzero contribution are those due to the current
density [23]; moreover, the only nonvanishing component of
the current density is radial.

We calculate the strength function of the isoscalar monopole
for a neutron-rich nucleus, 174Sn. To check the self-consistency
by looking at the spurious component, we also calculate the
strength of the nucleon number operator. Both operators are
given by the form of Eq. (A10) with fkl = 〈k|r2|l〉 for the
isoscalar monopole operator and fkl = δkl for the number
operator.

In order to obtain the strength function, we first have to
solve the HFB equations to construct the ground-state wave
functions (U,V ). This is accomplished by using the HFBRAD

code. The parameters of the present calculation are adjusted
to the values used by Terasaki and coworkers in Ref. [6];
The box size is Rbox = 20 fm, the quasiparticle energy cutoff
is Ec

qp = 200 MeV, the maximum angular momenta of the
quasiparticle states are jn

max = 21/2 for neutrons, and j
p
max =

15/2 for protons. We use the Skyrme functional with the SkM*
parameter set [24] in the ph-channel and a delta interaction of
the volume type with the strength V0 = −77.5 MeV fm3 for
the pp- and hh-channels.

The next step is solving the linear-response equation
for a given external field of the frequency ω. At first, we

build the induced fields δh(ω) and δ�(±)(ω), starting from a
guess choice of the QRPA amplitudes (X(0), Y (0)), according
to Eq. (38). In the present calculation, we choose either
X(0) = Y (0) = 0 or the values of X and Y at the previously
calculated energy ω. We resort to the iterative algorithm
of the GCR method to solve Eq. (13). We include all the
two-quasiparticle states (μν) within the HFB model space
defined above (Eμ(ν) � 200 MeV). The two-quasiparticle
space amounts to 12 632 states for Jπ = 0+. Note that this
number becomes much larger if we treat deformed systems.
We set the accuracy of the convergence to be ε < 10−5,
where ε ≡ ‖A�x − �b‖2/‖�b‖2. The number of iterations needed
depends on ω; at low energies, about 50–60 iterations are
enough to reach the convergence, while, close to the central
peak at 12 MeV, more than 300 iterations are needed.

We studied the convergence quality of the solutions as a
function of the parameter η used for the numerical derivative.
This is shown in Table I. If η is too big (η � 10−4) the deriva-
tive of the FAM becomes inaccurate and the linearity of the
procedure is partially broken. The residue ‖A�x − �b‖ reaches
a plateau where increasing the number of iterations cannot
improve it anymore. For 10−5 � η � 10−9, the calculations
converge well and the resulting strength function is stable. If η

becomes smaller than 10−10, the numerical precision limits
are reached and the GCR procedure can no longer obtain
the required precision. Therefore, we may conclude that the
parameter η in the range of 10−5 � η � 10−9 is appropriate
to obtain the induced fields accurately. Although the constant
value η = 10−8 is adopted in this paper, we may use a more
sophisticated choice, such as the ω-dependent η values [17,18].

We report the strength function of the isoscalar monopole
mode. To smear the strengths at discrete eigenenergies, we add
an imaginary term to the energy: ω → ω + iγ /2, where γ =
1.0 MeV. This procedure is almost equivalent to smearing the
strength function with a Lorentzian function with a width equal
to γ . The calculated energy-weighted strengths are summed
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FIG. 1. (Color online) Calculated transition strength of the
isoscalar monopole 0+ excitations in 174Sn (solid red curve), com-
pared with the result in [6] with cutoff (iii) (green dashed curve). The
transition strength associated to the number operator, magnified by
a factor of 10 000, in units of MeV−1, is shown by the blue dotted
curve. See text for details.
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TABLE I. Convergence properties of the calculation. The obtained accuracy ε = ‖A�x − �b‖2/‖�b‖2 and GCR iteration number Niter to reach
ε < 10−5 are shown for different values of η. The initial vector is chosen as �x(0) = (X(0), Y (0)) = (0, 0) and the maximum number of iterations
is set at Niter = 1000.

174 Sn, 0+

ω = 4 MeV ω = 12 MeV ω = 20 MeV

η ε Niter ε Niter ε Niter

10−2 0.44 1000 1.63 × 10−1 1000 8.84 × 10−3 1000
10−4 6.10 × 10−5 1000 1.76 × 10−5 1000 <10−5 469
10−5 <10−5 161 <10−5 439 <10−5 469
10−8 <10−5 161 <10−5 439 <10−5 469
10−9 <10−5 161 <10−5 439 <10−5 469
10−10 <10−5 161 1.19 × 10−5 1000 1.46 × 10−5 1000

up to 300 MeV and we found that they exhaust 99.6 % of the
theoretical sum-rule value given by 2

m
A〈r2〉.

In Fig. 1, we compare our results (solid red curve) with the
one in Ref. [6] (dashed green curve). The self-consistent result
obtained by Terasaki et al. [6] also employs the HFB solutions
calculated with HFBRAD. However, in Ref. [6], the QRPA
matrix is calculated in the canonical-basis representation
and an additional truncation of the two-quasiparticle space
is introduced for the construction of the QRPA matrix. In
contrast, we introduce no additional truncation for our FAM
calculation. We compare our results with the one of cutoff
(iii) in Ref. [6], which takes into account the highest number
of states for the construction of the QRPA matrix; all the proton
quasiparticles up to 200 MeV and the neutron canonical levels
with occupancy v2 > 10−16.

In the first two peaks at E ∼ 5 and 8.5 MeV, the two curves
are almost perfectly overlapping. The peaks between 11 MeV
and 18 MeV occur at the same energy for the two calculations
while their height is slightly different. The bump close to zero
energy resulting from our calculations has to be attributed to
the presence of a spurious mode. To check the position of the
spurious mode related to the pairing rotation of the neutrons,
we included in Fig. 1 the transition strength associated to the
number operator by the blue dashed line. The spurious mode
is well localized close to zero energy.

The present result demonstrates the accuracy and usefulness
of the FAM for the superfluid systems. Even if the two
codes include some differences in the truncation of the
two-quasiparticle space, the similarity of the results is very
satisfying

VI. CONCLUSIONS

The finite amplitude method for the QRPA has been
presented. The basic idea is identical to the original FAM [17]
in that we resort to a numerical differentiation to calculate the
induced fields and then solve the linear-response equation with
an iterative algorithm such as the GCR. With the FAM, an HFB
code with simple modifications can be turned into a QRPA
code. Especially, it is very easy to construct the QRPA code
which has the same symmetry of the parent HFB code whose
subroutines are used to perform the numerical derivative. All

the terms present in the TDHFB calculation, including the
time-odd mean fields, should be taken into account to construct
fully self-consistent codes. This requires some effort to update
the original HFB code. Still, the necessary task for coding
the FAM is much less than that for the explicit calculation
of the QRPA matrix elements for realistic energy functionals.
In addition, it does not require a large memory capacity,
since we do not construct the QRPA matrix. We have built
a fully self-consistent QRPA code using the HFBRAD [20]. The
iterative algorithm, for which we adopted the GCR method in
this paper, may be replaced by a better algorithm in the future.
The resulting strength functions of the isoscalar 0+ mode
of 174Sn show high similarity with the fully self-consistent
calculations in Ref. [6]. Thus, this paper shows the application
of the FAM for superfluid systems and demonstrated the
usefulness of the FAM for the construction of the QRPA code
by modifying existing HFB codes.
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APPENDIX: BOGOLIUBOV TRANSFORMATION
OF ONE-BODY FIELDS

1. Induced fields δH

The TDHFB Hamiltonian is given by Eq. (5). We consider
the small-amplitude limit, H (t) = H0 + δH (t), where H0 is
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the HFB Hamiltonian of Eq. (3) and

δH (t) = 1

2
( c† c )

(
δh(t) δ�(t)

−δ�∗(t) −δh∗(t)

) (
c

c†

)
. (A1)

Here, δh(t) and δ�(t) are oscillating as

δh(t) = η(δh(ω)e−iωt + δh†(ω)eiωt ), (A2)

δ�(t) = η(δ�(+)(ω)e−iωt + δ�(−)(ω)eiωt ). (A3)

Note that δ�(±)(ω) are antisymmetric but δh(ω) is not
necessarily Hermitian. The induced Hamiltonian, Eq. (A1),
is now expressed in the form of Eq. (8) with δH (ω) given by

δH (ω) = 1

2
( c† c)

(
δh δ�(+)

−δ�(−)∗ −δhT

) (
c

c†

)
. (A4)

Hereafter, δh(ω) and δ�(±)(ω) are denoted by δh and δ�(±),
for simplicity.

Since the Bogoliubov transformation can be written in
terms of the unitary matrix W [1] as(

a

a†

)
=

(
U † V †

V T UT

) (
c

c†

)
≡ W†

(
c

c†

)
, (A5)

we may rewrite Eq. (A4) in the quasiparticle basis:

δH (ω) = 1

2
( a† a)W†

(
δh δ�(+)

−δ�(−)∗ −δhT

)
W

(
a

a†

)
. (A6)

This transformation should provide δH 20 and δH 02 in Eq. (9):

(
δH 11 δH 20

−δH 02 −(δH 11)T

)
= W†

(
δh δ�(+)

−δ�(−)∗ −δhT

)
W. (A7)

We write here their explicit expression:

δH 20
μν(ω) = (U †δhV ∗ − V †δ�(−)∗V ∗ + U †δ�(+)U ∗

−V †δhT U ∗)μν, (A8)

δH 02
μν(ω) = (−V T δhU + UT δ�(−)∗U − V T δ�(+)V

+UT δhT V )μν. (A9)

2. External field F

The one-body field in general can be written in the form
of Eq. (7) in terms of the quasiparticle operators, neglecting a
constant. Suppose that F (ω) in Eq. (6) has the form

F =
∑
kl

fklc
†
kcl = 1

2
( c† c)

(
f 0

0 −f T

)(
c

c†

)
, (A10)

where the difference of a constant shift is neglected. Here,
the matrix fkl is a general complex matrix, since F (ω) is
non-Hermitian in general. The Bogoliubov transformation as
in Eq. (A7), then, leads to F 20 and F 02 in Eq. (7):

F 20
μν = (U †f V ∗ − V †f T U ∗)μν, (A11)

F 02
μν = (UT f T V − V T f U )μν. (A12)

In case that F (ω) has a pairing-type form

F = 1

2

∑
kl

(gklc
†
kc

†
l + g′

klclck), (A13)

the same calculation provides F 20 and F 02 by

F 20
μν = (U †gU ∗ − V †g′V ∗)μν, (A14)

F 02
μν = (UT g′U − V T gV )μν. (A15)
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