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α-cluster structure and density waves in oblate nuclei
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Pentagon and triangle shapes in 28Si and 12C are discussed in relation to nuclear density waves. In the
antisymmetrized molecular dynamics calculations, the Kπ = 5− band in 28Si and the Kπ = 3− band in 12C are
described by the pentagon and triangle shapes, respectively. These negative-parity bands can be interpreted as the
parity partners of the Kπ = 0+ ground bands and they are constructed from the parity-asymmetric-intrinsic states.
The pentagon and the triangle shapes originate in 7α- and 3α-cluster structures, respectively. In a mean-field
picture, they are described also by the static one-dimensional density waves at the edge of the oblate states. In
analyses with ideal α-cluster models using Brink-Bloch cluster wave functions and that with a simplified model,
we show that the static edge density waves for the pentagon and triangle shapes can be understood by spontaneous
breaking of axial symmetry, i.e., the instability of the oblate states with respect to the edge density waves. The
density wave is enhanced in the Z = N nuclei due to the proton-neutron coherent density waves, while it is
suppressed in Z �= N nuclei.
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I. INTRODUCTION

In light nuclei, some negative-parity rotational bands with
high K quanta are discussed in relation to specific symmetry
of intrinsic states. One of the most famous examples is the
3− state at 9.64 MeV in 12C, which has been discussed for a
long time in connection to an equilateral triangle configuration
of 3α-cluster structure. The 3− state is the lowest negative-
parity state, and its spin contradicts the naive expectation from
shell-model calculations. The reason for the low-lying 3− state
can be understood by the point group D3h symmetry of the
equilateral triangle 3α-cluster structure [1–3] [see Fig. 1(a)],
which is characterized by the n-fold symmetry with n = 3
of the intrinsic structure. The 3− state is interpreted as the
bandhead of the Kπ = 3− band constructed by the parity and
total-angular-momentum projection from the D3h symmetry
of the intrinsic state. Although the 4− state in the Kπ = 3−
band has not yet been confirmed, a possible assignment of 4−
for the level at 13.35 MeV was suggested [4]. In microscopic
3α-cluster models, the Kπ = 3− band is considered to form a
parity doublet with the Kπ = 0+ ground band [5].

In 28Si, the Kπ = 5− rotational band starting from the
5−

1 state at 9.70 MeV was reported in γ -ray measurements
by Glatz et al. [6], and it was discussed with a 7α-cluster
structure with a pentagon shape [7,8]. In the 7α-cluster model
with Brink-Bloch (BB) α-cluster wave functions [1], an oblate
solution for negative parity shows the D5h symmetry [see
Fig. 1(b)]. Since a Kπ = 5− band can be constructed from
the D5h symmetry of the intrinsic state, the existing Kπ = 5−
band might be indirect evidence of the pentagon shape and
may be regarded as the parity partner of the Kπ = 0+ ground
state.

In spite of the reasonable description of the Kπ = 5− band
in 28Si with the 7α-cluster model, the BB α-cluster model
is too simple to quantitatively describe the low-lying energy

spectra of 28Si [8]. Moreover, the validity of the ansatz that
28Si consists of seven α clusters is not obvious but it should be
checked within frameworks without any cluster assumptions
because α clusters might be dissociated or melted down due
to the spin-orbit force in sd-shell nuclei [9].

Recently, more sophisticated calculations of 28Si were
performed by one of the authors with antisymmetrized
molecular dynamics (AMD) [10,11], which is a framework
free from cluster assumptions. The calculations reproduce
well low-lying positive-parity levels of the oblate ground band
and the excited prolate band by incorporating the spin-orbit
force with a proper strength. Interestingly, the Kπ = 5− band
is constructed from the oblate state with a pentagon shape
even though existence of any clusters is not assumed in the
calculations [11]. This means that the pentagon shape can
be induced by α-cluster correlation in the oblate intrinsic state
of 28Si.

From the viewpoint of the symmetry breaking, the pentagon
shape in the intrinsic state is regarded as the spontaneous
breaking of axial symmetry. The surface density is oscillating
along the edge of the oblate shape, that is, spontaneous
symmetry breaking (SSB) occurs in the rotational invariance
around the symmetric axis. In relation to SSB, this structure
is associated with density waves (DWs) in nuclear matter,
in which SSB of the translational invariance occurs. Density
waves in nuclear matter have been discussed for a long
time [12–14], and it was suggested that a one-dimensional
DW could be stable in low-density nuclear matter [14].
Nonuniform nuclear matter with density oscillations has also
been investigated with cluster models such as α-cluster matter
[15–17]. In analogy to nuclear matter DWs, the pentagon
shape can be interpreted as the static one-dimensional DW
at the edge of the oblate state. Our aim is to give a description
of the pentagon and triangle shapes in terms of DWs with

014313-10556-2813/2011/84(1)/014313(16) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.014313


YOSHIKO KANADA-EN’YO AND YOSHIMASA HIDAKA PHYSICAL REVIEW C 84, 014313 (2011)

1

5(b)(a)

1

3

6

7
4

2

3

2

FIG. 1. The schematic figures for spatial configurations of cluster
centers of (a) a triangle structure consisting of three α clusters in 12C
and (b) a pentagon structure of seven α clusters in 28Si.

wave numbers five and three, respectively, to discuss the
relation of the 7α- and 3α-cluster structures to the static edge
DWs, i.e., spontaneous axial symmetry breaking of the oblate
states.

In this paper, we report AMD calculations of 28Si while
focusing on the pentagon shape in the oblate states. By
analyzing single-particle wave functions of the obtained AMD
wave functions, we show that the pentagon shape is expressed
by one-particle and one-hole excitations of an oblate state
with a wave number five; this can be interpreted as a one-
dimensional DW. To see the instability of axial symmetry
with respect to the pentagon shape, analyses of ideal cluster
models using BB wave functions are performed. Similarly,
by focusing on the triangle shape of the 3α-cluster structure,
structures of 12C are also discussed. We introduce a simplified
model for a one-dimensional DW in the oblate state by
truncating active orbits for particle and hole states, and we
show that the proton-neutron coherent DWs in Z = N nuclei
promote the instability of the oblate states with respect to the
pentagon and triangle shapes. The suppression mechanism of
cluster structures in neutron-rich nuclei is discussed from the
viewpoint of proton DWs with excess neutrons.

The paper is organized as follows: In the next section, we
explain the AMD calculations for 28Si and 12C. Analyses with
ideal cluster models using BB α-cluster wave functions are
given in Sec. III, and those using extended BB wave functions
in Sec. IV. Discussions with a simplified model for the one-
dimensional DW are given in Sec. V. Finally, in Sec. VI, a
summary and an outlook are given.

II. AMD CALCULATIONS FOR 28Si AND 12C

A. Method of AMD calculations

The AMD method has been applied for various nuclei and
has been successful in describing shell-model structures and
cluster structures of ground and excited states in the light-mass
region [18–20]. Here we briefly describe a simple version of
the AMD method and its application to 28Si and 12C [10,18],
focusing on cluster features of the oblate bands. The details
of the previous AMD calculations for 28Si are described in
Refs. [10,11], in which the energy levels of the Kπ = 0+

1 ,
Kπ = 0+

2 , Kπ = 3−, and Kπ = 5− bands are well reproduced.
An AMD wave function for an A-nucleon system is given

by a Slater determinant of Gaussian wave packets,

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the ith single-particle wave function is written as

ϕi = φZi
Xi , (2)

φZi
(rj ) ∝ exp

[
− ν

(
rj − Zi√

ν

)2]
. (3)

Here Xi is the spin-isospin function and fixed to be p ↑,

p ↓, n ↑, or n ↓. The spatial part is represented by complex
variational parameters, Zxi , Zyi , Zzi , which indicate the
centers of the ith Gaussian wave packet. The parameter ν

is chosen to be ν = 0.15 fm−2 and ν = 0.175 fm−2 for 28Si
and 12C so as to minimize the energy of the positive-parity
state.

In the AMD model, all the centers {Z1, Z2, . . . , ZA}
of single-nucleon Gaussians are treated independently as
complex variational parameters. Thus, the AMD method is
based completely on single nucleons and therefore it is free
from such assumptions as cluster existence or axial symmetry.
Nevertheless, if a cluster structure is favored in a system, the
cluster structure can be described as an optimum solution of
AMD wave functions because BB cluster wave functions are
included in the AMD model space. For instance, α-cluster
formation is expressed by the concentration of Gaussian
centers for four nucleons, p ↑, p ↓, n ↑, and n ↓, at a certain
position.

By using an effective Hamiltonian,

Heff =
∑

i

Ti +
∑
i<j

vij +
∑

i<j<k

vijk, (4)

consisting of kinetic terms and two-body and three-body inter-
action terms as effective nuclear forces, the energy variation is
performed within the AMD model space to obtain the optimum
solutions, which correspond to the intrinsic wave functions for
low-lying states. As in Refs. [10,11,18], the energy variation
is done after parity projection by operating (1 ± Pr ) on the
AMD wave function. After obtaining the energy variation for
(1 ± Pr )�AMD(Z) with respect to Z the optimized intrinsic
wave functions, �AMD(Z(+)) and �AMD(Z(−)), are obtained
for the positive- and negative-parity states, respectively. Then,
the total-angular-momentum projection, P J

MK , is operated on
the obtained AMD wave functions, P J

MK (1 ± Pr )�AMD, to
calculate expectation values of parity and angular-momentum
eigenstates, J±.

The adopted effective nuclear forces are the same as those
in Refs. [10,11] with which AMD calculations reproduce the
energy levels of 28Si, namely, the MV1 force (case 1) [21],
which consists of finite-range two-body and zero-range three-
body forces, with a parameter set (b = h = 0,m = 0.62) used
for the central force. As for the spin-orbit force, the spin-
orbit term of the G3RS force [22] with strengths uI = −uII =
2800 MeV is adopted. The Coulomb force is approximated by
seven Gaussians.

Using these interactions, the binding energies of 28Si and
12C are calculated to be 207.5 and 80.6 MeV, respectively,
with the AMD calculations. The calculations somehow un-
derestimate the experimental binding energies, 236.53 and
92.16 MeV. For quantitative reproduction, fine tuning of
interaction parameters is possible. However, the intrinsic
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structures and energy levels are not so sensitive to such
parameter tuning and the following results should be almost
unchanged.

B. AMD results for 28Si

In the present work, we focus only on the oblate rotational
bands, Kπ = 0+

1 , Kπ = 3−
1 , and Kπ = 5−

1 , though the prolate
excited Kπ = 0+

2 band exists in 28Si [10]. We adopt the
oblate solutions of the intrinsic wave functions �AMD(Z(+))
and �AMD(Z(−)) obtained by energy variation after positive-
and negative-parity projections. �AMD(Z(+)) and �AMD(Z(−))
correspond to the intrinsic states of the lowest positive- and
negative-parity bands. The density distributions of these AMD
wave functions are shown in Fig. 2. Interestingly, the wave
function �AMD(Z(+)), which corresponds to the Kπ = 0+
ground band, shows the pentagon shape due to the 7α-like
structure even though α clusters are not a priori assumed in the
framework. We should comment that α clusters in �AMD(Z(+))
are somehow dissociated due to the spin-orbit force as dis-
cussed in Ref. [10]. From these two intrinsic states �AMD(Z(+))
and �AMD(Z(−)), we calculate the J± states by performing
parity and angular-momentum projections and diagonalizing
the Hamiltonian and norm matrices with respect to P J

MK (1 ±
Pr )�AMD(Z(+)) and P J

MK (1 ± Pr )�AMD(Z(−)). Here, states
with each parity are described by a linear combination of the
parity and angular-momentum eigenstates projected from both
�AMD(Z(+)) and �AMD(Z(−)). The calculated energy levels of
28Si compared with the experimental data of the members
in the oblate bands Kπ = 0+

1 , Kπ = 3−
1 , and Kπ = 5−

1 are
shown in Fig. 3. The experimental energy levels are reproduced
rather well by the calculations. The calculated in-band E2
transition strengths also reproduce well the experimental data
(see Table. I). The ground band, Kπ = 0+

1 , and the lowest
negative-parity band, Kπ = 3−

1 , are dominantly constructed
from �AMD(Z(+)) and �AMD(Z(−)), respectively. The Kπ =
5−

1 band is mainly constructed from �AMD(Z(+)) having the
pentagon shape though the Kπ = 5−

1 band member states
have significant mixing with the Kπ = 3−

1 band members.
This means that the Kπ = 0+

1 and the Kπ = 5−
1 bands can

be interpreted as parity partners constructed from the parity-
asymmetric-intrinsic state �AMD(Z(+)) with the pentagon
shape.

Next we analyze the single-particle wave functions in the
pentagon intrinsic state. The single-particle wave functions
ϕi in Eq. (2) written in terms of Gaussian wave packets
are nonorthogonal to each other. We can make a linear
transformation from the set {ϕi} to an orthonormal basis set
{ϕ′

i} by keeping the Slater determinant unchanged except
for normalization, det{ϕ′

i} ∝ det{ϕi} = �AMD(Z). From this
orthonormal basis, we construct the Hartree-Fock (HF) single
particles {ϕHF

i }, which diagonalize the HF single-particle
Hamiltonian as described in Ref. [23]. Analysis of {ϕHF

i } is
helpful to discuss intrinsic states in a mean-field picture.

Among the HF single-particle wave functions in the
intrinsic wave function, �AMD(Z(+)), we find single-particle
orbits with pentagon density distributions (see Fig. 4). The
pentagon orbits show parity asymmetry, indicating mixing of

28Si(+) 28Si(−)

12C(+)

(b)

C(−)12

(c) (d)

(a)

FIG. 2. Density distributions of the AMD wave functions for the
positive- and negative-parity states in 28Si and 12C.

positive-parity and negative-parity components. We extract
each parity component from the pentagon orbits, and we
find that about a 5% negative-parity component is mixed in
with the dominant positive-parity component in each orbit.
As shown in Fig. 4, both the positive- and negative-parity
components show donut shapes in their density distributions,
and the pentagon orbits can be roughly described by a
linear combination cφ(0,0,±2) + c′φ(0,0,∓3) with |c′|2 ∼ 0.05
for |c|2 + |c′|2 = 1, in terms of harmonic oscillator (H.O.)
single-particle orbits labeled by quantum numbers (nz, nρ , ml)
in cylinder coordinates. (See Appendix A for the expressions
of φ(0,0,±2) and φ(0,0,±3).) In the pentagon state of 28Si, a
total of eight pentagon orbits are found, corresponding to
cφ(0,0,±2) + c′φ(0,0,∓3) occupied by four species of nucleons,
p ↑, p ↓, n ↑, and n ↓.
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FIG. 3. (a) Energy levels calculated with AMD calculations and
the experimental levels of the Kπ = 0+

1 , Kπ = 3−
1 , and Kπ = 5−

1

bands in 28Si. (b) Energy levels of the Kπ = 0+
1 and Kπ = 3−

1 bands
in 12C. The experimental data are taken from Refs. [4,6].
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TABLE I. The calculated and the experimental values of E2
transition strengths in 28Si. The values in Weisskopf units, W.u. =
5.05 e2fm−4 are listed. The B(E2) values are calculated with the
AMD method. The experimental data are taken from Ref. [6].

Initial Final B(E2)

J ±
f J ±

i exp. calc.

Kπ = 0+
1 → 0+

1

2+
1 0+

1 12.7(+0.4, −0.3) 10.6
4+

1 2+
1 13.6(+1.4, −1.2) 15.1

6+
1 4+

1 9.4(+3.6, −2.0) 16.2

Kπ = 3−
1 → 3−

1

4−
1 3−

1 32.4(+9.6, −6.4) 22.4
5−

2 3−
1 >3.4 2.0

5−
2 4−

1 13.7
6−

2 4−
1 >6.1 2.5

6−
2 5−

2 >12 16.9
7−

2 5−
2 5.2

7−
2 6−

2 16.9
8−

2 6−
2 7.8

Kπ = 5−
1 → 5−

1

6−
1 5−

1 17(+8, −4) 14.4
7−

1 5−
1 >2.5 7.7

7−
1 6−

1 >16.5 13.8
8−

1 6−
1 10.1

Kπ = 5−
1 → 3−

1

5−
1 3−

1 0.034(+0.01, −0.01) 4.0
5−

1 4−
1 2(+0.2, −0.2) 7.1

7−
1 5−

2 >2.3 2.8
6−

1 4−
1 7.7

C. AMD results for 12C

The calculations for 12C with the AMD model are described
in Ref. [19], where the Kπ = 0+

1 and Kπ = 3−
1 bands are

constructed from triangle states with oblate deformations. In
the present work, we use the same effective interactions as
those for 28Si.

Both of the intrinsic wave functions �AMD(Z(+)) and
�AMD(Z(−)) for positive and negative parity show equilateral
triangle shapes because of the 3α structure. As seen in density
distributions shown in Figs. 2(c) and 2(d), the development of
the 3α-cluster structure is more remarkable in the negative-
parity intrinsic state, �AMD(Z(−)), than in the positive-parity
intrinsic state, �AMD(Z(+)). To calculate energy levels, we
perform parity and angular-momentum projections and obtain
the rotational Kπ = 0+

1 and Kπ = 3−
1 bands constructed from

the triangle intrinsic states, �AMD(Z(+)) and �AMD(Z(−)),
respectively. If we tolerate the difference of the degree of
the cluster development between positive- and negative-parity
states, the Kπ = 0+

1 and Kπ = 3−
1 bands are roughly inter-

preted as the parity partners of the parity-asymmetric-intrinsic
state with the triangle shape as argued in Ref. [5]. Then, we can
say that the triangle shape of 12C has an analogy to the pentagon
shape of 28Si constructing the parity partner Kπ = 0+

1 and
Kπ = 5−

1 bands.

28Si(+) n  (1+P )+ r φk φkφk

12C(+) n  (1+P )+ r φk φkφk

(a) (b) (c)

− rn  (1−P )

(d) (e) (f)

− rn  (1−P )

FIG. 4. (a) Density of the highest single-particle orbit ϕHF
k in

�AMD(Z(+)) of 28Si. (b) and (c) Density for the positive- and negative-
parity components of the highest orbit. Each component is normalized
to be 1 by multiplying npm with 1/n2

± = 〈ϕHF
k |(1 ± Pr )2|ϕHF

k 〉. (d)
Density of the highest single-particle orbit in �AMD(Z(+)) for 12C. (e)
and (f) Density for the positive- and negative-parity components of
the highest orbit. Each component is normalized to be 1.

In a similar way to 28Si, we analyze the HF single particles
{ϕHF

i } in �AMD(Z(+)) and find the parity-mixing single-particle
orbits with triangular shape. The density distribution of ϕHF

i

for the triangle shape is shown in Fig. 4(d), and those of
the positive- and negative-parity components extracted from
this triangle orbit are shown in Figs. 4(e) and 4(f). Both the
positive- and negative-parity components show donut-shape
densities, and the triangle orbit can be roughly interpreted as
a linear combination cφ(0,0,±1) + c′φ(0,0,∓2) with |c′|2 ∼ 0.06
for |c|2 + |c′|2 = 1, in terms of H.O. single-particle orbits
expressed by cylinder coordinates (see Appendix A). In the
triangle structure of 12C, a total of eight triangle orbits are
found, corresponding to cφ(0,0,±1) + c′φ(0,0,∓2) occupied by
p ↑, p ↓, n ↑, and n ↓.

III. ANALYSIS WITH BRINK-BLOCH α-CLUSTER
MODELS

As described in the previous section, the pentagon and
triangle shapes are found in the AMD results of 28Si and 12C,
respectively. The AMD calculations show that these shapes
originate in the 7α- and 3α-cluster features in which the α

clusters are somehow dissociated because of the spin-orbit
force. The AMD wave functions for the bandhead states of the
Kπ = 0+ and Kπ = 5− bands of 28Si have 30% overlap with
a pentagon 7α BB wave function projected onto J± = 0+ and
5− states, while those of the Kπ = 0+ and Kπ = 3− bands of
12C have more than 90% overlap with a triangle 3α BB wave
function projected onto J± = 0+ and = 3− states. The reason
for the smaller overlap in 28Si than that in 12C is caused by the
breaking of α clusters in the AMD wave functions for 28Si.
The fact that the 7α- and 3α-like structures are actually formed
in the AMD calculation without a priori assuming any clusters
indicates that these cluster structures are favored in 28Si
and 12C.
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The pentagon and triangle shapes are interpreted as sponta-
neous breaking of axial symmetry of oblate 28Si and 12C. In this
section, to understand the mechanism of symmetry breaking,
we investigate properties of ideal 7α- and 3α-cluster states by
using BB α-cluster wave functions [1].

A. Brink-Bloch α-cluster wave functions

Brink-Bloch α-cluster wave functions �BB
Xα for even-even

Z = N nuclei with mass number A = 4X are described by
Xα-cluster wave functions consisting of (0s)4 α clusters
[1,3]. The ith α cluster is located around a certain position Si ,
and �BB

Xα is characterized by a spatial configuration of center
positions of Xα clusters, {S1, . . . , SX}.

A BB α-cluster wave function �BB
Xα for an Xα state

can be expressed also by an AMD wave function with a
specific configuration of Gaussian centers {Z}. When Xi is
chosen to be p ↑, p ↓, n ↑, and n ↓ for i = {1, . . . , X},
i = {X + 1, . . . , 2X}, i = {2X + 1, . . . , 3X}, and i = {3X +
1, . . . , 4X}, respectively, and Gaussian centers for four nucle-
ons (p ↑, p ↓, n ↑, n ↓) are common and real values, Zi =
Zi+X = Zi+2X = Zi+3X = Si/

√
ν (i = 1, . . . , X), the AMD

wave function is equivalent to the corresponding BB α-cluster
wave function for X α clusters localizing at the positions
S1, S2, . . . , SX.

B. Pentagon 7α Brink-Bloch wave functions

Let us consider the pentagon structure of a 7α system. The
α-cluster centers Si of α clusters are taken to have the pentagon
configuration illustrated in Fig. 1(b) as

Si =
(

d
√

ν cos

(
2π

5
i

)
, d

√
ν sin

(
2π

5
i

)
, 0

)
(5)

for i = 1, . . . , 5, and

Si = (0, 0,±d ′√ν) (6)

for i = 6, 7. Here d is the dimensionless pentagon size.
Thus, the defined �BB

7α is determined by three parameters,
ν, d, and d ′, and hence we denote the pentagon 7α wave
functions by �BB

7α (ν, d, d ′).
Next we explain the relation between �BB

7α and shell-model
wave functions by transforming the single-particle wave
functions of �BB

7α in the expansion with respect to the pentagon
size d. In general, when α-cluster centers {Si} are located
around the origin, the BB wave function can be connected to
a H.O. shell-model wave function by using invariance of a
Slater determinant det{φi(rj )} = n0 det{φ′

i(rj )} under a linear
transformation φi(r) → φ′

i(r). Here n0 is a normalization
factor.

For oblate systems, we use H.O. single-particle wave
functions φ(nz,nρ ,ml ) in the expression of cylinder coordi-
nates described in Appendix A. In the small-d ′ limit, the
spatial wave functions for spin-up protons in �BB

7α (ν, d, d ′)
can be transformed to det{φ′

i(rj )}, which is given by the
Taylor expansion with respect to the pentagon size d as

follows:

det{φZ1 , φZ2 , · · · , φZ7} = n0 det{φ′
1, φ

′
2, . . . , φ

′
7},

φ′
1 = φ(0,0,0) + O(d2),

φ′
2 = φ(1,0,0) + O(d2),

φ′
3 = φ(0,0,+1) + O(d2),

φ′
4 = φ(0,0,−1) + O(d2),

(7)
φ′

5 = φ(0,1,0) + O(d2),

φ′
6 = φ(0,0,−2) − d√

6
φ(0,0,+3) + O(d2),

φ′
7 = φ(0,0,+2) + d√

6
φ(0,0,−3) + O(d2),

where n0 has O(d9, d ′). From the AMD results in Sec. II B, the
typical values of d and d ′ are found to be d ∼ 0.5 and d ′ ∼ 0.2,
resulting in only d2/6 = 5% amplitude of the higher shell
orbit (φ(0,0,+3)) in the next leading term. Therefore, the above
expansion of the BB wave function may be reasonable for the
pentagon structure of 28Si. We define φ

′(0)
1,2,3,4,5,6,7 ≡ φ(0,0,0),

φ(1,0,0), φ(0,0,+1), φ(0,0,−1), φ(0,1,0), φ(0,0,+2), φ(0,0,−2). In the
small-d limit, single-particle orbits φ′

i approach φ
′(0)
i and

the 7α wave function becomes equivalent to the following
0h̄ω shell-model wave function with s2

πs2
νp

6
πp6

ν(sd)6
π (sd)6

ν

configuration,

�BB
7α (ν, d ′, d)→�

(0h̄ω)
7α ≡ n4

0

∏
τσ

det
{
φ

′(0)
1 Xτσ , . . . , φ

′(0)
7 Xτσ

}
,

(8)

where τ = {p, n} and σ = {↑,↓}. In this limit, �
(0h̄ω)
7α has the

axial symmetric oblate shape. Hereafter we consider only the
small-d ′ limit and investigate properties of �BB

7α (ν, d, d ′) as
functions of ν and d, �BB

7α (ν, d). In particular, the symmetry
breaking of the oblate shape caused by finite d is discussed.

Let us consider the pentagon shape described by �BB
7α with

a finite pentagon size d. As the pentagon size d increases, the
pentagon shape develops and the axial symmetry breaking of
the oblate state enlarges. The leading terms of the deviation
from �

(0h̄ω)
7α are contained in φ′

6 and φ′
7. The orbits φ′

6 and φ′
7

are the parity-mixed orbits, and they show density with the
pentagon shape as expressed in the following explicit form of
the density:

φ′∗
6 (r)φ′

6(r) = φ′∗
7 (r)φ′

7(r)

= 1

2(πb2)3/2

(
ρ

b

)4

e−r2/b2

×
(

1 + d

3
√

2

ρ

b
cos(5φ) + O(d2)

)
. (9)

The second term, cos(5φ), gives the density oscillation with
a wave number five along the edge of the oblate shape and
shows the pentagon feature. The orbits φ′

6 and φ′
7 are given

by linear combinations of φ(0,0,∓2) and φ(0,0,±3). Due to the
mixing of φ(0,0,±3) in φ(0,0,∓2) of amplitude d2/6, the density
of these orbits changes from the axial symmetric density
to the oscillating density. This is nothing but the symmetry
breaking of the rotational invariance around the z axis. If
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we associate the rotational invariance with the translational
invariance of uniform matter, and the z-component of the
angular momentum ml with the momentum k, then we find
a good correspondence of the φ′

6 and φ′
7 orbits with the

single-particle wave functions of the nuclear matter DW
proposed by Overhauser [12]. In other words, the pentagon
shape can be interpreted as the static DW at the edge of
the oblate state. As shown below, �BB

7α (ν, d) is expressed by
coherent particle-hole configurations from �

(0h̄ω)
7α .

We show the particle-hole representation of �BB
7α (ν, d)

below. We assume that �
(0h̄ω)
7α is the Hartree-Fock vacuum

|0〉F, and φ(0,0,±3)Xτσ and φ(0,0,±2)Xτσ are the levels above
and below the Fermi level, respectively. We define the particle
and hole operators as

a
†
±k,τσ = c

†
±k,τσ , b

†
±q,τσ = c∓q,τ−σ , (10)

where the labels k ≡ 3 and q ≡ 2 indicate ml for particles and
holes. When higher order terms, O(d2), in the single-particle
wave functions φ′ are ignored, �BB

7α (ν, d) can be approximated
to be

�BB
7α (ν, d) ≈

∏
χ

(
1 + d√

6
a
†
−k,χb

†
−q,−χ

)

×
(

1 − d√
6
a
†
+k,χb

†
+q,−χ

)
|0〉F, (11)

with χ = τσ and −χ = τ − σ . As clearly seen, the product
of the particle and hole operators, a

†
±k,χb

†
±q,−χ , brings quanta

K = ±5.

C. Triangle 3α Brink-Bloch wave functions

In a similar way to the pentagon 7α state �BB
7α (ν, d),

the equilateral triangle 3α state is related to axial sym-
metry breaking of the oblate state in the p shell, and
the triangle shape is described by parity-mixed orbits. In
the BB α-cluster wave function �BB

3α for the 3α structure, the
parameters Si (i = 1, . . . , 3) with a triangle configuration are
written as

Si =
(

d
√

ν cos

(
2π

3
i

)
, d

√
ν sin

(
2π

3
i

)
, 0

)
. (12)

�BB
3α is specified by the parameters ν, d as �BB

3α (ν, d), where d

is the dimensionless triangle size. With a proper transformation
φZi

(r) → φ′
i(r) and a Taylor expansion of the transformed

single-particle orbits φ′
i(r) with respect to the triangle size d,

we can rewrite the spatial wave function for three identical
nucleons,

det{φZ1 , φZ2 , φZ3} = n0 det{φ′
1, φ

′
2, φ

′
3}, (13)

with

φ′
1 = φ

′(0)
1 ,

φ′
2 = φ

′(0)
2 + d

2
φ(0,0,+2) + O(d2), (14)

φ′
3 = φ

′(0)
3 − d

2
φ(0,0,−2) + O(d2),

where

φ
′(0)
1 ≡ φ(0,0,0),

φ
′(0)
2 ≡ φ(0,0,−1), (15)

φ
′(0)
3 ≡ φ(0,0,+1).

In the small-d limit, �BB
3α (ν, d) becomes equivalent to the 0h̄ω

shell-model wave function,

�BB
3α (ν, d) → n4

0�
(0h̄ω)
3α ,

�
(0h̄ω)
3α ≡

∏
τσ

det{φ′(0)
1 Xτσ , . . . , φ

′(0)
3 Xτσ }. (16)

The orbits φ′
2 and φ′

3 are the parity-mixed orbits, and their
density shows a triangle shape with the form

φ′∗
2 (r)φ′

2(r) = φ′∗
3 (r)φ′

3(r)

= 1

(πb2)3/2

(
r

b

)2

e−r2/b2

×
(

1 + d

2
√

2

r

b
cos(3φ) + O(d2)

)
. (17)

Similarly to the particle-hole representation of the 7α wave
function, �BB

3α (ν, d) of order d can be written in the particle-
hole representation by using alternative definitions k ≡ 2, q ≡
1, and |0〉F ≡ �

(0h̄ω)
3α (ν, d),

�BB
3α (ν, d) ≈

∏
χ

(
1 − d

2
a
†
−k,χb

†
−q,−χ

)

×
(

1 + d

2
a
†
+k,χb

†
+q,−χ

)
|0〉F. (18)

D. Development of the 7α and 3α states

We calculate energies of the 7α pentagon state �BB
7α (ν, d)

and the 3α triangle state �BB
3α (ν, d) as functions of ν and d.

The energies are evaluated by calculating expectation values
of the Hamiltonian Heff given in Sec. II A with respect to the
intrinsic state �BB

7α (ν, d), and also the positive-parity projected
state (1 + Pr )�BB

7α (ν, d), the negative-parity projected state
(1 − Pr )�BB

7α (ν, d), and the Kπ = 0+ projected one P K=0(1 +
Pr )�BB

7α (ν, d). The parity projection corresponds to the
restoration of the broken parity symmetry of the intrinsic state,
and the K = 0 projection restores the broken axial symmetry.
The energy minimum state of P K=0(1 + Pr )�BB

7α (ν, d) may
relate to the structure of the Kπ = 0+

1 band in 28Si, while that of
(1 − Pr )�BB

7α (ν, d) corresponds to the Kπ = 5−
1 band because

(1 − Pr )�BB
7α (ν, d) is equivalent to the Kπ = 5− projected

state at least in case of small d. Note that the projected
states may contain higher correlations beyond a single Slater
determinant.

The contour plots of energy surfaces are shown in Fig. 5 as
functions of ν and d2/6. It is found that the energy minimum
of the energy surface for �BB

7α (ν, d) with no projection is
located at d2/6 ∼ 0.1. The finite pentagon size d of the
energy minimum indicates the development of pentagon
shape, namely, the spontaneous breaking of axial symmetry
in the intrinsic structure. As seen in the minima of the energy
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FIG. 5. (Color online) (a) Energy expectation values of �BB
7α (ν, d)

plotted as functions of d2/6 and ν. (b), (c), and (d) Energy expectation
values of the positive-parity state, the negative-parity state, and the
K = 0 state projected from the intrinsic wave function �BB

7α (ν, d).
The parameter d ′ is taken to be a small value, d ′/

√
ν = 0.1 fm.

surfaces shown in Figs. 5(d) and 5(c), the development of the
pentagon shape is enhanced in the Kπ = 0+ projected state,
and it is largest in the negative-parity projected state.

The value d2/6 indicates approximately the mixing am-
plitude of the negative-parity component in the pentagon
orbits, φ′

6 and φ′
7, as given in Eq. (7). The value d2/6 ∼ 0.1

at the energy minimum of the positive-parity projected state
indicates ∼10% mixing, which is comparable to 5% mixing
of the negative-parity component in the pentagon orbits in the
AMD wave function �AMD(Z+) for 28Si. The main reason for
the smaller mixing in the AMD result than that in the ideal
7α-cluster model may be α-cluster dissociation effects in the
AMD calculations.

We also calculate the energy of the equilateral triangle 3α

state �BB
3α (ν, d) as functions of ν and d. Energies are calculated

with respect to the intrinsic state �BB
3α (ν, d), the positive-

parity projected state (1 + Pr )�BB
3α (ν, d), the negative-parity
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FIG. 6. (Color online) (a) Energy expectation values of �BB
3α (ν, d)

plotted as functions of d2/4 and ν. (b), (c), and (d) Energy
expectation values of the positive-parity state, the negative-parity
state, and the K = 0 state projected from the intrinsic wave
function �BB

3α (ν, d). The parameter d ′ is taken to be a small
value, d ′/

√
ν = 0.1 fm.

projected state (1 − Pr )�BB
3α (ν, d), and the Kπ = 0+ projected

one P K=0(1 + Pr )�BB
3α (ν, d). The energy minimum state of

P K=0(1 + Pr )�BB
3α (ν, d) describes the structure of the Kπ =

0+
1 band in 12C, while that of (1 − Pr )�BB

3α (ν, d) corresponds
to the Kπ = 3−

1 band.
The contour plots of the energy surfaces are shown in

Fig. 6 as functions of ν and d2/4. d2/4 is approximately the
mixing amplitude of φ0,0,∓2 in φ0,0,±1 as described in Eq. (13).
The finite d2/4 value of the energy minimum indicates the
development of a 3α-cluster structure. The energy minimum of
the energy surface for �BB

3α (ν, d) with no projection is located
at d2/4 ∼ 0.1. The cluster development is slightly enhanced
in the Kπ = 0+ projected state, and it is most remarkable
in the negative-parity projected state. This is consistent with
the AMD calculations of 12C shown in Fig. 2. One of the
interesting features of �BB

3α (ν, d) is that the energy surface is
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quite shallow against the large triangle size d at ν ∼ 0.20. This
corresponds to 3α-cluster breakup.

E. Roles of the parity and Kπ projections in a mean-field picture

As mentioned before, in the particle-hole representation
based on |�(0h̄ω)

7α 〉 = |0〉F, �BB
7α (ν, d) can be approximately

expressed as Eq. (11). At least in the order d, the negative-
parity projected state is nothing but a linear combination of
1p-1h states,

(1 − Pr )
∣∣�BB

7α (ν, d)
〉

≈ d√
6

∑
χ

(a†
−k,χb

†
−q,−χ − a

†
+k,χb

†
+q,−χ )|0〉F. (19)

Thus, (1 − Pr )�BB
7α (ν, d) is described by the coherent sum of

the 1p-1h states, a
†
−k,χb

†
−q,−χ |0〉F and a

†
+k,χb

†
+q,−χ |0〉F. This

indicates that the negative-parity state can be described by
the Kπ = 5− vibration mode of the oblate shape. This is an
alternative interpretation of the Kπ = 5− band. However, as
already discussed, since the axial symmetry of the oblate state
is already broken in the intrinsic state before the negative-
parity projection (see Fig. 5), the Kπ = 5− band is regarded as
the static pentagon “shape” instead of the Kπ = 5− vibration
of the oblate state.

The positive-parity projected state corresponds to the
mixing of 2p-2h states having K = 0 and K = ±10 into the
dominant �

(0h̄ω)
7α state. The high K components do not affect

the Kπ = 0+ ground band, and actually they are dropped in
the K = 0 projection. Consequently, the Kπ = 0+ projected
state contains only the 2p-2h states with K = 0,

P K=0(1 + Pr )
∣∣�BB

7α (ν, d)〉

≈ |0〉F − d2

6

∑
χ

∑
χ ′

a
†
−k,χb

†
−q,−χa

†
+k,χ ′b

†
+q,−χ ′ |0〉F. (20)

The contained 2p-2h states are k and −k particle pairs and q

and −q hole pairs, and they are associated with Cooper pairs
in BCS theory [24]. Let us remind the reader that the normal
pairings in nuclear systems are considered to be neutron-
neutron pairing and proton-proton pairing in the spin S = 0
channel. However, the 2p-2h terms in Eq. (20) have not only
spin-zero nn and pp pairs but also spin-one np pairs. Namely,
an (S, T ) = (1, 0) (spin-one isoscalar) particle-particle pair
and an (S, T ) = (1, 0) hole-hole pair couple to be totally S = 0
and T = 0, while an (S, T ) = (0, 1) (spin-zero isovector)
particle-particle pair and an (S, T ) = (0, 1) hole-hole pair
couple to be S = 0 and T = 0. Because of the large number
of coherent pairs, the Kπ = 0+ state projected from the
7α-cluster state may gain much correlation energy.

In these analyses, we can say that, in both the negative-
parity and Kπ = 0+ states, the coherent particle-hole configu-
rations due to the coherent edge DWs of four kinds, χ = p ↑,
p ↓, n ↑, and n ↓, play an important role in the development
of the pentagon shape. We will show the importance of the
coherence for SSB in later sections.

IV. EXTENSION OF BRINK-BLOCH α-CLUSTER MODELS

As discussed in the previous section, the coherent proton
and neutron edge DWs are essential to develop the pentagon
and triangle shapes. In this section, we investigate the
development of the pentagon and triangle shapes without
the proton-neutron coherence by considering a pentagon or
triangle neutron structure with a frozen proton structure.
Toward this aim, we extend the BB α-cluster wave functions
for the pentagon 7α- and the triangle 3α-cluster states as
follows: We assume the pentagon configurations of proton
and neutron structures for a Z = N = 14 system but take
the pentagon size d in Eq. (5) independently for protons and
neutrons. We take a small enough value of the pentagon size dp

for protons and vary the size dn for neutrons. Thus, the defined
wave function can be written in an expansion of order dn as

�7α−n(ν, dn)

≈ n′
0

∏
σ

det
{
φ

′(0)
1 Xpσ , . . . , φ

′(0)
7 Xpσ

}∏
σ

det

×{
φ

′(0)
1 Xnσ , . . . , φ

′(0)
5 Xnσ , φ′

6Xnσ , φ′
7Xnσ

}
,

φ′
6 = φ(0,0,−2) − dn√

6
φ(0,0,+3) + O

(
d2

n

)
,

φ′
7 = φ(0,0,+2) + dn√

6
φ(0,0,−3) + O

(
d2

n

)
. (21)

In a similar way, we also assume the triangle configurations
of proton and neutron structures for a Z = N = 6 system by
taking the triangle size d in Eq. (12) independently for protons
and neutrons. We take a small enough value of the triangle
size dp for protons and vary the size dn for neutrons. Then the
wave function can be written in an expansion of order dn as

�3α−n(ν, dn) ≈ n′
0

∏
σ

det
{
φ

′(0)
1 Xpσφ

′(0)
2 Xpσφ

′(0)
3 Xpσ

}
×

∏
σ

det
{
φ

′(0)
1 Xnσφ′

2Xnσφ′
3Xnσ

}
,

φ′
2 = φ

′(0)
2 + dn

2
φ(0,0,+2) + O

(
d2

n

)
,

φ′
3 = φ

′(0)
3 − dn

2
φ(0,0,−2) + O

(
d2

n

)
. (22)

Moreover, we consider the triangle proton structure in a
Z = 6 and N = 14 system to study the proton edge DW in
a neutron-rich system. For the frozen neutron structure, we
adopt a pentagon configuration for the neutron part with a small
enough pentagon size dn. The proton structure is assumed to be
a triangle structure with triangle size dp, which is a variational
parameter. The wave function can be written in an expansion
of order dp as

�20C-p(ν, dp) ≈ n′
0

∏
σ={↑,↓}

det
{
φ

′(0)
1 Xpσ , φ′

2Xpσ , φ′
3Xpσ

}
×

∏
σ={↑,↓}

det
{
φ

′(0)
1 Xnσ , . . . , φ

′(0)
7 Xnσ

}
,

φ′
2 = φ

′(0)
2 + dp

2
φ(0,0,+2) + O

(
d2

p

)
,

φ′
3 = φ

′(0)
3 − dp

2
φ(0,0,−2) + O

(
d2

p

)
. (23)
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This model corresponds to a 3α core structure in the 20C
system.

We calculate energies of �7α−n(ν, dn), �3α−n(ν, dn), and
�20C-p(ν, dp) states and compare the results with �BB

7α (ν, d)
and �BB

3α (ν, d). The energies are evaluated by calculating
expectation values of the effective Hamiltonian Heff for these
states with no projection, the positive- and negative-parity
projected states, and the Kπ = 0+ projected states.

At first, we compare the pentagon size dependence of the
energies of �7α-n(ν, dn) having a frozen proton structure with
that of �BB

7α (ν, d) having proton-neutron coherent pentagon
shapes. The energy curves are shown in Fig. 7. In each system,
ν is fixed to be the optimum value at the energy minimum
solution in the ν-d plane for the positive-parity projected state.
As already discussed in the previous section, �BB

7α (ν, d) shows
a deep energy pocket around the energy minimum at a finite
d value [see Fig. 7(a)]. This indicates the development of
the pentagon shape, which corresponds to the spontaneous
breaking of the axial symmetry of the oblate state �

(0h̄ω)
7α . The

potential pockets are deeper in the projected states than in the
intrinsic state with no projection. In contrast to the energy
curve for �BB

7α (ν, d), the energy curve for �7α-n(ν, dn) with no
projection has a minimum around dn = 0, which corresponds
to the axial symmetric oblate state �

(0h̄ω)
7α . Even in the projected

states, there is no deep pocket in a finite dn region, and the
pentagon shape of the neutron structure is suppressed in the
frozen proton structure. This means that the neutron edge DW
on the oblate state �

(0h̄ω)
7α does not occur without the coherent

proton edge DW. This may lead to suppression of the pentagon
shape in Z �= N nuclei.

Next we discuss the triangle structures in Z = 6 nuclei.
In a similar way to the pentagon structure, we compare
the triangle size dependence of the energies of �3α-n(ν, dn)
having a frozen proton structure with that of �BB

3α (ν, d) having
proton-neutron coherent triangle shapes in Figs. 8(a) and 8(b).
Again we find that each energy curve for �3α-n(ν, dn) has a
minimum around dn = 0, which corresponds to �

(0h̄ω)
3α . This

is in contrast to the features of �BB
3α (ν, d), which shows a

deep energy pocket at a finite d, indicating the developed
triangle shape. We also consider the proton triangle shape
in the Z = 6, N = 14 system, �20C-p(ν, dp). The finite dp

corresponds to the development of the 3α core structure in
the 20C system with oblate proton and neutron structures.
The energy of �20C-p(ν, dp) is smallest around d = 0 and
increases as the triangle size dp becomes large. Compared
with the energy curve of �3α-n(ν, dn), the triangle proton
structure is significantly unfavored in the Z = 6, N = 14
system.

We conclude that the proton-neutron coherence is essential
in the development of the pentagon and triangle structures
of the oblate states in Z = N nuclei. Needless to say, this
is consistent with the cluster aspect of Z = N nuclei. In the
oblate state of neutron-rich C, the triangle cluster structure
is suppressed. The first reason for the quenching of cluster
structure is the lack of proton-neutron coherence. The second
reason is the expanded level spacing of proton orbits in
neutron-rich nuclei because protons are deeply bound due
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FIG. 7. (a) The energy of the 7α state �BB
7α (ν, d) as a function of

d2/6. d is the pentagon size for protons and neutrons. (b) The energy
of the Z = N = 14 state �7α-n(ν, dn) with the frozen proton structure
as a function of d2

n/6. dn is the pentagon size for neutrons. In each
system, ν is fixed to be the optimum value at the energy minimum
solution in the ν-d plane for the positive-parity projected states as
(a) ν = 0.15 fm−2 and (b) ν = 0.135 fm−2. The parameter d ′ is chosen
to be d ′/

√
ν = 0.1 fm.

to excess neutrons. Since the energy cost for 1p-1h proton
excitations increases in the neutron-rich system, the correlation
energy due to the triangle structure may not be able to
overcome the cost. We shall discuss the details in the next
section.

V. EDGE DENSITY WAVE AND SPONTANEOUS
SYMMETRY BREAKING

As already mentioned, the pentagon and triangle structures
can be interpreted as the static edge DWs at the surface
of the oblate states, which is expected to connect with
the spontaneous symmetry breaking of rotational invariance
around the symmetric axis.

Systems with strong interaction exhibit various SSB phe-
nomena such as nuclear BCS, chiral symmetry breaking, and
color superconductivities. These SSB phenomena occur both
homogeneously and inhomogeneously. In particular, inhomo-
geneous SSB phases are discussed in the framework of nu-
clear DWs, chiral DWs, and Fulde-Ferrel-Larkin-Ovchinnikov
states in the color superconducting phase [12,25–39], whose
phase breaks translational invariance and whose corresponding
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FIG. 8. (a) The energy of the 3α state �BB
3α (ν, d) as a function of

d2/4, where d is the pentagon size for protons and neutrons. (b) The
energy of the Z = N = 6 state �3α-n(ν, dn) with the frozen proton
structure as a function of d2

n/4. dn is the pentagon size for neutrons.
(c) The energy of the Z = 6, N = 14 system �20C-p(ν, dp) with the
frozen proton structure. The pentagon size dn for the frozen neutron
structure is taken to be d2

n = 0.025. In each system, ν is fixed to
be the optimum value at the energy minimum solution in the ν-d
plane for the positive-parity projected states as (a) ν = 0.175 fm−2,
(b) ν = 0.160 fm−2, and (c) ν = 0.135 fm−2.

condensation operator depends on the spatial coordinates.
More generally, SSB resulting in a spatially nonuniform
vacuum relates to condensation operators with finite momenta.
When we understand nuclear matter DW as the instability of
the Fermi surface, the condensation operator is given in the
form a

†
kF

b
†
kF

, which has momentum 2kF (where kF is the Fermi
momentum). In condensed matter physics, inhomogeneous

phases with DWs are discussed as charge DWs and spin
DWs [40,41].

These phenomena in infinite systems are discussed in
terms of the order parameters, which are characterized by
nonzero expectation values of certain operators. In finite
systems, however, the symmetry cannot be broken in the
energy eigenstates, because the symmetry is restored even if
it is broken in the intrinsic state. Nevertheless, it is useful to
discuss SSB in the state before projection or restoration by
analyzing expectation values of specific operators resembling
the condensation operators as done for the BCS phenomena
in finite nuclei. For the pentagon and triangle structures, the
expressions in Eqs. (11) and (18) are of a form similar to the
matter DW operators a

†
kF

b
†
kF

.
In this section, we describe SSB for edge DWs by

introducing a simplified model in Appendix C, and we discuss
the development and suppression of the pentagon and triangle
structures from the viewpoint of the edge DWs. In this model,
�

(0h̄ω)
7α is assumed to be the Hartree-Fock vacuum |0〉F, and the

orbits |φ(0,0,±q)Xτσ 〉 and |φ(0,0,±k)Xτσ 〉 are considered to be
active Hartree-Fock single-particle states. This means that the
model space is truncated within φ(0,0,±k)Xτσ for particle states
and φ(0,0,±q)Xτσ for hole states. This is equivalent to a model
of 8 particles for 16 states, which is a kind of half-filled model.
For the residual interaction, we assume a contact interaction
and adopt HDW defined in Eq. (C7). Note that this model
is applicable also to the 3α oblate state by replacing q = 2
and k = 3 for the 7α state with q = 1 and k = 2. Then, the
Hamiltonian in the particle-hole representation can be written
as

H = H0 + H1 + HDW,

H0 = F〈0|H |0〉F,

H1 =
∑
χ

Ek,τ a
†
+k,χa+k,χ +

∑
χ

Ek,τ a
†
−k,χa−k,χ

−
∑

χ

Eq,τ b
†
+q,χb+q,χ −

∑
χ

Ek,τ b
†
−q,χb−q,χ ,

HDW = 2
∑
χ,χ ′

G
(ph)
χ,χ ′ [a

†
+k,χb

†
+q,−χb+q,−χ ′a+k,χ ′

+ a
†
−k,χb

†
−q,−χb−q,−χ ′a−k,χ ′ ]. (24)

Here χ = τσ and −χ = τ − σ .
We use an ansatz for the new vacuum of the edge DWs with

axial-symmetry breaking as

|�〉 =
∏
χ

(vτ + uτa
†
+k,χb

†
+q,−χ )

×
∏
χ

(v∗
τ − u∗

τ a
†
−k,χb

†
−q,−χ )|0〉F, (25)

with

|vτ |2 + |uτ |2 = 1, (26)

where vτ and uτ are variational parameters determined by
the energy variation, and time reversal invariance is taken
into account. Our ansatz, Eq. (25), has the same form as that
obtained in the approximation that the quantum fluctuation of
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the particle-hole operators such as a
†
±k,χb

†
±q,−χ are omitted,

as shown in Appendix D. It is clear that � is equivalent to
�BB

7α (ν, d) with uτ = −d/
√

6 in the order d approximation
given by Eq. (11) [or �BB

3α (ν, d) with uτ = d/2]. In general,
the coefficients uτ and vτ are complex. The phase φ0 of
uτ/vτ corresponds to the constant shift of the rotation angle
φ → φ + φ0 in the density oscillation cos(5φ) in Eq. (9).
Since the phase φ0 for the lowest-energy solution is isospin
independent, hereafter, uτ and vτ are taken to be real quantities.
The expectation values for this vacuum |�〉 are

〈a†
±k,χa±k,χ 〉 = 〈b†±q,−χb±q,−χ 〉 = uτuτ ,

(27)
〈a†

±k,χb
†
±q,−χ 〉 = 〈b±q,−χa±k,χ 〉 = ±uτvτ .

The normal state |0〉F has vτ = 1 and uτ = 0, while the SSB
vacuum has a finite 〈a†

±k,χb
†
±q,−χ 〉, i.e., a finite value of uτvτ .

The values vτ and uτ are determined by minimizing the
expectation value 〈�|H |�〉,

E = 〈�|H |�〉 = H0 + 2Ecorr,
(28)

Ecorr =
∑
τσ

(Ek,τ − Eq,τ )u2
τ + 2

∑
χ,χ ′

G
(ph)
χ,χ ′uτvτuτ ′vτ ′ .

For Z = N systems, when isospin dependencies of single-
particle energies Ek,τ and Eq,τ are ignored, vτ and uτ do not
depend on the isospin τ , and the energy correction Ecorr from
the energy H0 is

Ecorr =
∑
τσ

(Ek,τ − Eq,τ )u2
τ + 2

∑
χ �=χ ′

g(ph)uτvτuτ ′vτ ′

= 4{(Ek − Eq)u2 + 6g(ph)u2v2}. (29)

The stationary condition with respect to variations of u and v

with the constraint uδu + vδv = 0 leads to the equation

(Ek − Eq)u − 6g(ph)u(u2 − v2) = 0. (30)

For a nonzero u, u and v are solved as follows:

u2 = 1

2

(
1 + Ek − Eq

6g(ph)

)
,

v2 = 1

2

(
1 − Ek − Eq

6g(ph)

)
, (31)

uv = 1

2

√
1 −

(
Ek − Eq

6g(ph)

)2

.

It turns out that, to obtain a nonzero uv with real u and v values
for the SSB vacuum, the following condition must be satisfied:

Ek − Eq < −6g(ph). (32)

This indicates that SSB occurs provided that the strength
−g(ph) of the attraction is large enough so as to satisfy the
above condition. In other words, the static edge DWs can exist
if the correlation energy −6g(ph) overcomes the energy cost
Ek − Eq of a 1p-1h excitation. For N = Z systems, one can
regard the correlation of 1p-1h as that of four particles, because
1h corresponds to the three-particle state in the particle picture.

Let us consider the role of proton-neutron coherence in
SSB. In the case that there is no proton-neutron interaction,
the coupling G

(ph)
χ,χ ′ is taken to be G

(ph)
χ,χ ′ = g(ph)δττ ′(1 − δσσ ′).

Protons and neutrons are decoupled in the Hamiltonian, and
the energy correction

Ecorr = 4{(Ek − Eq)u2 + 2g(ph)u2v2} (33)

leads to the condition for SSB,

Ek − Eq < −2g(ph). (34)

This condition is more difficult to satisfy than Eq. (32). This
is the reason why the proton and neutron coherent edge DWs
can be stable, while the incoherent neutron or proton edge DW
is unfavored in the oblate 7α and 3α states. The reason for
the smaller interaction term [i.e., a smaller correlation energy
in Eq. (33) than in Eq. (29)] is that, in the particle picture,
1h corresponds to a one-particle state with no proton-neutron
interaction, instead of the 1h state corresponding to a three-
particle state with proton-neutron interactions.

We also consider the further unfavored proton edge DW
in the neutron-rich system discussed in the previous section.
Protons are deeply bound in the neutron-rich system, and
therefore the energy cost Ek − Eq for the 1p-1h excitation
becomes large in general. As a result, the condition Ek −
Eq < −2g(ph) becomes severe, and the proton edge DW is
suppressed largely in neutron-rich nuclei.

VI. SUMMARY AND OUTLOOK

Pentagon and triangle shapes in 28Si and 12C were discussed
in relation with DWs at the edge of oblate states. In AMD
calculations, the Kπ = 5− band in 28Si and the Kπ = 3−
band in 12C are described by pentagon and triangle shapes,
respectively. These negative-parity bands can be interpreted
as the parity partners of the Kπ = 0+ ground bands and they
are constructed from the parity-asymmetric-intrinsic states.
The pentagon and triangle shapes originate in the 7α- and
3α-cluster structures.

We performed analysis of ideal cluster model wave func-
tions using BB α-cluster wave functions and also extended
BB wave functions, and we investigated the development
of the pentagon and triangle shapes. It was found that the
proton-neutron coherence is essential in the development of
the pentagon and triangle structures of the oblate states in
Z = N nuclei. Without the proton-neutron coherent density
oscillation, the pentagon and triangle shapes are suppressed.
Needless to say, this is consistent with the features of light
Z = N nuclei, in which cluster structures are favored because
of α-cluster formation. In the oblate state of neutron-rich C,
the triangle cluster structure is suppressed.

In the analysis of single-particle orbits of the AMD wave
functions and BB α cluster wave functions, the pentagon and
triangle shapes are regarded as static one-dimensional DWs at
the edge of the oblate states. The edge DWs can be described
by nonuniform orbits with parity mixing, which give density
oscillation with wave numbers of five and three at the surface
of the 0h̄ω oblate states.

The static edge DWs of the oblate Z = N nuclei are under-
stood by the spontaneous symmetric breaking of rotational
invariance around the symmetric axis of the oblate states.
In other words, the development of the 7α- and 3α-cluster
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structures is interpreted as the instability of axial symmetry
with respect to the pentagon and the triangle shapes. We
introduced a simplified model and discussed SSB for the edge
DWs. The development and the suppression of the pentagon
and triangle structures are described by SSB inducing static
edge DWs.

In the simplified model, the 0h̄ω oblate states are assumed to
be the Hartree-Fock vacuua |0〉F. The model space for particle
and hole states are truncated so that only φ(0,0,±3)Xτσ and
φ(0,0,±2)Xτσ are active. Assuming a contact interaction, we
adopted the DW term HDW as the residual interaction. For the
proton-neutron coherent edge DWs in Z = N systems, SSB
occurs when the condition Ek − Eq < −6g(ph) is satisfied.
If there is no coupling between protons and neutrons, the
condition for SSB is Ek − Eq < −2g(ph), which is a more
severe condition than the proton-neutron coherent case. This
means that the proton and neutron coherent edge DWs are
favored, while an incoherent neutron or proton edge DW is
unfavored.

Considering the condition Ek − Eq < −2g(ph) for an inco-
herent edge DW, we explained the reasons why the triangle
cluster structure is suppressed in the oblate state of neutron-
rich C. Since protons are deeply bound in neutron-rich nuclei,
the level spacing of proton orbits becomes large. This increases
the energy cost Ek − Eq for a 1p-1h excitation, and hence the
correlation energy −2g(ph) due to the triangle structure is not
able to overcome the cost Ek − Eq .

The scenario for the suppression of the proton DW in
neutron-rich systems could be extended also to infinite matter
problems. Consider instability with respect to proton density
oscillations in neutron-rich matter, symmetric nuclear matter,
and pure proton matter with the same Fermi momentum
of protons and ignoring the Coulomb force. Proton density
waves should be most unfavored in neutron-rich matter
among these three cases and might be favored with coherent
neutron DWs in symmetric nuclear matter. It turns out that
the possibility of α-cluster crystallization in neutron-rich
matter may be suspicious. Alternatively, we can say that the
α-cluster crystallization may be suppressed in neutron-rich
matter because of the quenched effective mass of protons.

In the present simplified model, in which active orbits
are limited to be a small number, DWs may be superior to
BCS-type pairing in Z = N systems. We adopted the ansatz
of the residual interaction H2 = HDW and discuss the edge
DWs in relation to SSB. This ansatz may be applicable only to
the case when the level density is low enough, active orbits are
restricted to almost one dimension, and the spin-orbit force can
be ignored. Oblate 12C may satisfy this condition and oblate
28Si would probably do so. However, we should comment that,
in normal nuclei, static surface DWs may yield to BCS pairing.
The spin-orbit force may also weaken static DWs. Moreover,
when the number of active orbits is large enough, BCS pairing
overcomes DWs. Therefore, in heavy-mass nuclei, especially
in spherical nuclei, BCS pairing can be predominant, as is
well known. In fact, various phenomena resulting from BCS
pairing have been observed in heavy-mass nuclei and are
successfully described by BCS theory in the j -j coupling
scheme.
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APPENDIX A: H.O. SINGLE-PARTICLE STATES

To see the relation between BB cluster wave functions and
shell-model wave functions, it is convenient to expand a BB
wave function with LS-coupling shell-model wave functions
which are described in terms of single-particle orbits in the
spherical H.O. potential. For instance, an α cluster located
at the origin is expressed by four nucleons, p ↑, p ↓, n ↑,
and n ↓, occupying the 0s orbit in the H.O. potential with
frequencies ωx = ωy = ωz = ω ≡ h̄/mb2. Here the parameter
b is related to ν of the cluster wave functions as ν = 1/2b2. For
oblate systems, it is convenient to use the expression of single-
particle orbits with cylinder coordinates, ρ =

√
x2 + y2, z, φ,

where z is the symmetry axis. Then, H.O. single-particle orbits
are characterized by quantum numbers nz, nρ , and ml . Here
nz and nρ are the node numbers with respect to z and ρ

coordinates and ml is the eigenvalue for the z component of the
orbital angular momentum. The total quantum number is
N = nz + 2nρ + |ml|.

The explicit forms of the H.O. single-particle or-
bits φ(nz,nρ ,ml ) for (nz, nρ,ml) = (0, 0,±1), (0, 0,±2), and
(0, 0,±3) are

φ(0,0,±1)(r) = ∓1

(πb2)3/4

ρ

b
e±iφe−r2/2b2

,

φ(0,0,±2)(r) = 1√
2(πb2)3/4

(ρ

b

)2
e±2iφe−r2/2b2

, (A1)

φ(0,0,±3)(r) = ∓1√
6(πb2)3/4

(ρ

b

)3
e±3iφe−r2/2b2

.

APPENDIX B: PARTICLE AND HOLE REPRESENTATION

In this appendix, we summarize the notations of the
particle and hole representation. The creation and annihilation
operators, c†α and cα , for a state |α〉 are defined as

c†α|−〉 = |α〉,
cα|α〉 = |−〉,

(B1)
c†α|α〉 = 0,

cα|−〉 = 0,
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where |−〉 is the no-particle state, and α denotes the index
of all degrees of freedom of the single-particle state such as
momentum, spin, and isospin. cα and c

†
β satisfy {cα, c

†
β} =

δα,β , and other anticommutation relations are zero. To describe
particle-hole excitations on the HF vacuum, we define the HF
vacuum state as

|0〉F ≡
∏
α<F

c†α|−〉 (B2)

and the particle and hole operators as

a†
α = c†α for α > F,

b†α = S−αc−α for α < F,
(B3)

aα = cα for α > F,

bα = S−αc
†
−α for α < F.

Here α < F and α > F mean the states below and above the
Fermi surface, respectively. The time reversal state of |α〉 is
defined as S−α| − α〉.

For an infinite matter of spin-1/2 fermions, single-particle
states can be characterized by momentum k and spin sz = σ .
In a usual convention, | − α〉 = | − k,−σ 〉 for |α〉 = |k, σ 〉
and

Sα ≡ (−1)
1
2 −σα . (B4)

For a spherically symmetric system, single-particle states can
be characterized by the quantum numbers |α〉 ≡ |nlsjmj 〉 in
the j -j coupling picture, and the corresponding | − α〉 and the
phase convention are

|−α〉 = |nlsj − mj 〉,
(B5)

Sα ≡ (−1)j−mj .

In an axial symmetric system in the l-s coupling scheme
such as the present 7α and 3α models for 28Si and 12C, we
use the notation |α〉 = |nznρmlσ 〉 specified by the quantum
numbers in cylinder coordinates and adopt the following
conventions:

|−α〉 = |nznρ − ml − σ 〉,
(B6)

Sα ≡ (−1)
1
2 −σ−ml .

The operator b†α creates a hole carrying the z component of
angular momentum ml and the spin sz = σ .

We consider the Hamiltonian including the two-body
interaction,

H =
∑
αβ

〈α|T |β〉c†αcβ + 1

2

∑
αβγ δ

Vα,β,γ,δc
†
αc

†
βcγ cδ,

Vα,β,γ,δ ≡ 1

2
{〈αβ|v|γ δ〉 − 〈αβ|v|δγ 〉}. (B7)

We rewrite the Hamiltonian in normal-ordered form with
respect to new particle and hole operators assuming that
the single-particle states, α, are solutions of Hartree-Fock
single-particle equations, which diagonalize the Hamiltonian
matrix

〈β|T |δ〉 +
∑
α<F

[〈αβ|v|αδ〉 − 〈αβ|v|δα〉] = Eβδβδ. (B8)

Then the Hamiltonian takes the form

H = H0 + H1 + H2, (B9)

with

H0 =
∑
α<F

〈α|T |α〉 + 1

2

∑
α<F

∑
β<F

[〈αβ|v|αβ〉

−〈αβ|v|βα〉],
H1 =

∑
α>F

Eαa†
αaα −

∑
α<F

Eαb†αbα, (B10)

H2 = 1

2

∑
αβγ δ

Vα,β,γ,δN (c†αc
†
βcδcγ ),

where N ( ) is the normal-ordered product with respect to
the particle and hole operators defined before. The residual
interaction H2 contains the particle-particle, hole-hole, and
particle-hole scattering,

Hpp = 1

2

∑
α,β,γ,δ>F

Vα,β,γ,δa
†
αa

†
βaδaγ ,

Hhh = 1

2

∑
α,β,γ,δ<F

Vα,β,γ,δb
†
αb

†
βbδbγ , (B11)

Hph = 2
∑

α,γ>F

∑
β,δ<F

Vα,−δ,−β,γ S−βS−δa
†
αb

†
βbδaγ .

APPENDIX C: HAMILTONIAN OF THE SIMPLIFIED
MODEL

We introduce a simplified model for the oblate state �
(0h̄ω)
7α .

In this model, �(0h̄ω)
7α is assumed to be the HF vacuum |0〉F, and

possible particle-hole excitations are restricted within the HF
single-particle states of |φ(0,0,±k)Xτσ 〉 and |φ(0,0,±q)Xτσ 〉. This
means that the model space is truncated so that active orbits
are only |φ(0,0,±k)Xτσ 〉 for particle states and |φ(0,0,±q)Xτσ 〉 for
hole states with k = 3 and q = 2 (or k = 2 and q = 1 for the
�

(0h̄ω)
3α ). We use the labels α = ±k, τσ and α = ±q, τσ for

these active single-particle states and also adopt the notation
χ ≡ τσ and −χ ≡ τ − σ . In this paper, we define the particle
and hole operators as

a
†
±k,χ = c

†
±k,χ ,

(C1)
b
†
±q,χ = c∓q,−χ .

Here, for convenience, we adopt the definition of the hole
operators without the phase convention instead of Eq. (B3).

In this model, we assume a contact two-body attraction
v(r) = gδ(r) with g < 0 for the residual interaction in the H2

term. The matrix element Vα,β,γ,δ is not zero only when kα +
kβ = kγ + kδ and χα = χγ �= χβ = χδ (or χα = χδ �= χβ =
χγ ) are satisfied and calculated to be

G
(pp)
χχ ′ ≡ Vkχ,−kχ ′,kχ,−kχ ′ = g(pp)(1 − δχχ ′),

g(pp) ≡ g

2
〈k,−k|δ(r)|k,−k〉,

G
(hh)
χχ ′ ≡ Vqχ,−qχ ′,qχ,−qχ ′ = g(hh)(1 − δχχ ′),
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g(hh) ≡ g

2
〈q,−q|δ(r)|q,−q〉,

G
(ph)
χχ ′ ≡ Vkχ,−qχ ′,kχ,−qχ ′ = g(ph)(1 − δχχ ′ ),

g(ph) ≡ g

2
〈k,−q|δ(r)|k,−q〉. (C2)

For the case of k = 3 and q = 2, one can get g(pp) = g(ph) =
5g(hh)/6 = 5g/(π3/2b326

√
2). Thus, g(pp), g(ph), and g(hh)

are almost equal to each other. Using the symmetry (or
antisymmetry) of the matrix elements Vα,β,γ,δ with respect to
indexes, the Hamiltonian equation (B10) in the particle-hole
representation can be rewritten in the explicit form

H = H0 + H1 + H2,

H0 = F〈0|H |0〉F,

H1 =
∑
χ

Ek,χa
†
+k,χa+k,χ +

∑
χ

Ek,χa
†
−k,χa−k,χ

−
∑

χ

Eq,χb
†
+q,χb+q,χ −

∑
χ

Ek,χb
†
−q,χb−q,χ ,

H2 = Hph + Hpp + Hhh, (C3)

with

Hph = 2
∑
χ,χ ′

G
(ph)
χ,χ ′ [a

†
+k,χb

†
+q,−χb+q,−χ ′a+k,χ ′

+ a
†
−k,χb

†
−q,−χb−q,−χ ′a−k,χ ′

+ a
†
+k,χb

†
−q,−χb−q,−χ ′a+k,χ ′

+ a
†
−k,χb

†
+q,−χb+q,−χ ′a−k,χ ′ ]

− 2
∑
χ,χ ′

G
(ph)
χ,χ ′ [a

†
+k,χb

†
+q,−χ ′b+q,−χ ′a+k,χ

+ a
†
−k,χb

†
−q,−χ ′b−q,−χ ′a−k,χ

+ a
†
+k,χb

†
−q,−χ ′b−q,−χ ′a+k,χ

+ a
†
−k,χb

†
+q,−χ ′b+q,−χ ′a−k,χ ], (C4)

Hpp =
∑
χ,χ ′

G
(pp)
χ,χ ′ [a

†
+k,χa

†
+k,χ ′a+k,χ ′a+k,χ

+ a
†
−k,χa

†
−k,χ ′a−k,χ ′a−k,χ ]

+ 2
∑
χ,χ ′

G
(pp)
χ,χ ′ [a

†
+k,χa

†
−k,χ ′a−k,χ ′a+k,χ

+ a
†
+k,χa

†
−k,χ ′a+k,χ ′a−k,χ ], (C5)

Hhh =
∑
χ,χ ′

G
(hh)
χ,χ ′ [b

†
+q,χb

†
+q,χ ′b+q,χ ′b+q,χ

+ b
†
−q,χb

†
−q,χ ′b−q,χ ′b−q,χ ]

+ 2
∑
χ,χ ′

G
(hh)
χ,χ ′ [b

†
+q,χb

†
−q,χ ′b−q,χ ′b+q,χ

+ b
†
+q,χb

†
−q,χ ′b+q,χ ′b−q,χ ], (C6)

where we omit 0 → 4 and 1 → 3 and their inverse processes.
In the particle-hole interaction term Hph, the DW term

HDW ≡ 2
∑
χ,χ ′

G
(ph)
χ,χ ′ [a

†
+k,χb

†
+q,−χb+q,−χ ′a+k,χ ′

+ a
†
−k,χb

†
−q,−χb−q,−χ ′a−k,χ ′ ] (C7)

may induce the edge DWs having the wave number ±(k +
q), which gives the nonzero expectation value 〈a†

±k,χb
†
±q,−χ 〉.

The terms of a
†
±k,χb

†
∓q,−χb∓q,−χ ′a±k,χ ′ in Hph may induce the

exciton mode having the wave number ±1. They contain the
spurious mode of translational motion and are of no interest in
finite systems. Other terms in Hph have the opposite sign and
they do not give coherent effects to the correlation energy.

In Hpp and Hhh, the interactions which may induce the
BCS pairing are the following terms:

H
pp

BCS = 2
∑
χ,χ ′

G
(pp)
χ,χ ′ [a

†
+k,χa

†
−k,χ ′a−k,χ ′a+k,χ

+ a
†
+k,χa

†
−k,χ ′a+k,χ ′a−k,χ ], (C8)

Hhh
BCS = 2

∑
χ,χ ′

G
(hh)
χ,χ ′ [b

†
+q,χb

†
−q,χ ′b−q,χ ′b+q,χ

+ b
†
+q,χb

†
−q,χ ′b+q,χ ′b−q,χ ]. (C9)

In the case of Z = N nuclei, only two types of BCS pairing,
for instance, a

†
+k,p↑a

†
−k,p↓ and a

†
+k,n↑a

†
−k,n↓, are usually

considered among four species of nucleons, χ = p ↑, p ↓,

n ↑, n ↓. This is different from the DWs induced by HDW

where four types of particle-hope combination, 〈a†
±k,χb

†
±q,−χ 〉,

can be nonzero simultaneously and they can give coherent
effects to the correlation energy. Since the coupling constants
G(ph), G(pp), and G(hh) are of the same order, the DW may
be superior to the BCS-type pairing in Z = N systems in
the present simplified model with a limited number of active
orbits. We consider HDW to be the dominant term, and we
adopt the ansatz of H2 = HDW and discuss the edge DWs in
the Hamiltonian H = H0 + H1 + HDW in relation to the SSB.

APPENDIX D: ALTERNATIVE METHOD TO SOLVE
THE DW HAMILTONIAN

In this appendix, we solve Eq. (24) in the approximation,
omitting the quantum fluctuation of the product of the particle
and hole operators. This is a kind of mean-field approach in
field theory. We show that the same results as those in Sec. V
are obtained in this approximation.

Let us consider H = H0 + H1 + HDW in Eq. (24). By
decomposing HDW into mean fields and their fluctuations, we
can rewrite the second and third terms, H1 + HDW, as

H1 + HDW = Hmf + Hquasi + Hfluc,

Hmf ≡ −2
∑
χ,χ ′

G
(ph)
χ,χ ′ [〈a†

+k,χb
†
+q,−χ 〉〈b+q,−χ ′a+k,χ ′ 〉

+ 〈a†
−k,χb

†
−q,−χ 〉〈b−q,−χ ′a−k,χ ′ 〉],
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Hquasi ≡ H1 + 2
∑
χ,χ ′

G
(ph)
χ,χ ′ [a

†
+k,χb

†
+q,−χ 〈b+q,−χ ′a+k,χ ′ 〉

+ 〈a†
+k,χb

†
+q,−χ 〉b+q,−χ ′a+k,χ ′

+ a
†
−k,χb

†
−q,−χ 〈b−q,−χ ′a−k,χ ′ 〉

+ 〈a†
−k,χb

†
−q,−χ 〉b−q,−χ ′a−k,χ ′ ],

Hfluc ≡ 2
∑
χ,χ ′

G
(ph)
χ,χ ′ [(a

†
+k,χb

†
+q,−χ − 〈a†

+k,χb
†
+q,−χ 〉)

× (b+q,−χ ′a+k,χ ′ − 〈b+q,−χ ′a+k,χ ′ 〉)
+ (a†

−k,χb
†
−q,−χ − 〈a†

−k,χb
†
−q,−χ 〉)

× (b−q,−χ ′a−k,χ ′ − 〈b−q,−χ ′a−k,χ ′ 〉)], (D1)

where Hmf, Hquasi, and Hint are the mean-field energy term,
the sum of H1 and the interaction term between particles and
the mean field, and the fluctuation term of the mean field,
respectively. In the mean-field approximation, Hfluc is assumed
to be negligible, so we drop Hfluc. We also assume that the
ground state does not break time-reversal symmetry, so that
the mean fields satisfy

〈b+q,−χa+k,χ 〉 = −〈a†
−k,−χb

†
−q,χ 〉. (D2)

The Hamiltonian of the quasiparticle Hquasi can be written as

Hquasi =
∑
χ

(a†
+k,χ b+q,χ a

†
−k,χ b−q,χ )

×

⎛
⎜⎜⎜⎝

Ek,τ �χ 0 0

�∗
χ Eq,τ 0 0

0 0 Ek,τ −�∗
−χ

0 0 −�−χ Eq,τ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a+k,χ

b
†
+q,χ

a−k,χ

b
†
−q,χ

⎞
⎟⎟⎟⎠

− 2
∑

χ

Eq,τ , (D3)

where the last term in Eq. (D3) comes from the anticom-
mutation relation b

†
±q,χb±q,χ = −b±q,χb

†
±q,χ + 1. The gap is

defined by

�χ ≡ 2
∑
χ ′

Gχ,χ ′ 〈bq,−χ ′ak,χ ′ 〉. (D4)

Since Hquasi depends on �χ , the right-hand side in Eq. (D4)
also depends on �χ through the expectation value; thus,
Eq. (D4) can be regarded as a self-consistency equation. The
Hamiltonian of the quasiparticle has a quadratic form, so it
can be diagonalized by the following unitary transformation
or Bogoliubov transformation:(

ã+k,χ

b̃
†
+q,χ

)
=

(
vχ −uχ

u∗
χ v∗

χ

)(
a+k,χ

b
†
+k,χ

)
,

(D5)(
ã−k,χ

b̃
†
−q,χ

)
=

(
v∗

χ u∗
χ

−uχ vχ

)(
a−k,χ

b
†
−k,χ

)
,

with

uχ

vχ

= −2�χ

Ek,τ − Eq,τ + √
(Ek,τ − Eq,τ )2 + 4|�χ |2 , (D6)

which satisfies |vχ |2 + |uχ |2 = 1. The eigenvalues of Hquasi

corresponding to the energies of the quasiparticles are

Ẽk,χ (�χ ) = 1

2

(
Ek,τ + Eq,τ +

√
(Ek,τ − Eq,τ )2 + 4|�χ |2),

Ẽq,χ (�χ ) = 1

2

(
Ek,τ + Eq,τ −

√
(Ek,τ − Eq,τ )2 + 4|�χ |2).

(D7)

The new vacuum is defined as the state vanished by the
annihilation operators ã±k,χ and b̃±q,χ :

ã±k,χ |�〉 = b̃±q,χ |�〉 = 0. (D8)

The solution of Eq. (D8) is given by

|�(�χ )〉 =
∏
χ

(vχ + uχa
†
+k,χb

†
+k,χ )

×
∏
χ

(v∗
χ − u∗

χa
†
−k,χb

†
−k,χ )|0〉F. (D9)

This has the same form as Eq. (25); however, they are different,
because the vacuum in Eq. (D9) is a function of �χ , while that
in Eq. (25) is a function of uτ (and vτ ), which is a variational
parameter. Their vacua coincide at the solutions of the self-
consistent equation and the variational equation.

The expectation value of Hquasi becomes

Equasi(�χ ) = 〈Hquasi〉 = 2
∑

χ

(Ẽq,χ (�χ ) − Eq,χ ), (D10)

where Equasi(�χ ) � 0 and the equality is only satisfied
when |�χ | = 0. The mean-field term can be rewritten
by �χ as

Hmf = −
∑
χ,χ ′

1 − 3δχ,χ ′

3g(ph)
�∗

χ�χ ′ , (D11)

where we used the explicit form of the interaction G
(ph)
χχ ′ =

g(ph)(1 − δχ,χ ′ ). Using Eqs. (D10) and (D11), we obtain the
correlation energy as

2Ecorr(�χ ) = Equasi + Hmf

= 2
∑

χ

(
Ẽq,χ (�χ ) − Eq,χ

−
∑
χ ′

1 − 3δχ,χ ′

6g(ph)
�∗

χ�χ ′

)
. (D12)

In the mean-field approximation, �χ is obtained by the
stationary condition

∂

∂�∗
χ

Ecorr(�χ ) = −�χ√
(Ek,τ − Eq,τ )2 + 4|�χ |2

+ �χ

2g(ph)
−

∑
χ ′ �χ ′

6g(ph)

= 0. (D13)

Notice that Eq. (D13) is the equivalent to the consistency
condition Eq. (D4), which can be checked by inserting
〈bq,−χak,χ 〉 = uχvχ .
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For Z = N systems, when Ek,τ and Eq,τ are independent
of the isospin, �χ is independent of χ . The solution is

�χ = 3g

√
1 − (Ek − Eq)2

(6g)2
. (D14)

Inserting Eq. (D14) into Eqs. (D6) and (D12), one finds that
vτ and uτ coincide with Eq. (31) and also that Ecorr coincides
with Eq. (29).
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