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The restoration of particle number within energy density functional theory is analyzed. It is shown that
the standard method based on configuration mixing leads to a functional of both the projected and nonprojected
densities. As an alternative that might be advantageous for mass models, nuclear dynamics, and thermodynamics,
we propose to formulate the functional in terms directly of the one-body and two-body density matrices of the
state with good particle number. Our approach does not contain the pathologies recently observed when restoring
the particle number in an energy density functional framework based on transition density matrices and can
eventually be applied with functionals having arbitrary density dependencies.
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I. INTRODUCTION

Energy density functional (EDF) methods provide a univer-
sal framework to describe nuclear structure, nuclear dynamics,
or thermodynamics. Tremendous advances have been made
in the last few decades on the practical application of EDF
methods to nuclei [1]. Still, despite their long success, some
of the fundamental assumptions made to justify the usual
strategies of how the EDF techniques are constructed and used
for nuclear systems have not yet been satisfactorily clarified.
Most, if not all, EDF approaches break as many symmetries of
the nuclear Hamiltonian as possible: translational, rotational,
and U(1) symmetry in gauge space are among the most
important ones. In fact, the exploitation of symmetry breaking
in nuclei is strongly motivated by experimental observations.
For instance, the appearance of highly collective rotational
bands in spectroscopic data clearly points to the existence of
deformed intrinsic states in many nuclei [2]. Similarly, there is
evidence that pairing can be often treated by explicitly breaking
the U(1) gauge symmetry of eigenstates of the particle number
operator, as, for instance, in a Bardeen-Cooper-Schrieffer
(BCS) or Hartree-Fock-Bogoliubov (HFB) approach [2,3].
Nuclei are, however, finite systems and methods like BCS
or HFB do not properly treat quantum fluctuations of the order
parameter associated with the broken symmetry [3]. These
fluctuations can be incorporated either by a statistical treatment
of the order parameter or by the restoration of the relevant sym-
metry [3]. The concept of symmetry breaking and restoration
stands out as the tool of choice within the EDF framework.

It has, however, been recently shown that restoration of
symmetries has to be handled with great care in an EDF
framework [4–7]. In particular, the configuration mixing
within a multi-reference (MR) EDF approach might lead
to serious practical difficulties that can, however, eventually
be cured [6,8]. Besides compromising applications, these
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difficulties have clearly pointed out the necessity to clarify
the theoretical framework on which the theory can be build.

The discussion in the present paper is restricted to ground-
state properties and to particle number projection, for which
detailed analyses have been recently made. This case is the
simplest situation in which pathologies of the MR-EDF ap-
proach have been observed [4], analyzed, and regularized [6,8].
The first goal of the present work is to provide an alternative
analysis of the EDF theory using configuration mixing to
restore symmetries without and with the regularization. It will
be shown that neither the nonregularized nor the regularized
functionals can straightforwardly be interpreted in terms of
the densities of projected or nonprojected states. Starting from
this analysis, the second intent of this work is to propose
an alternative way to introduce a functional theory that is
U(1) symmetry conserving, and that without making use of
the multi-reference technique. Our approach remains close to
the Hohenberg-Kohn [9] and Kohn-Sham [10] framework and
uses a projected state as an intermediate trial state to construct
the components of the functional. This approach avoids the
difficulties recently encountered in MR-EDF approaches and
can be applied also with functionals that cannot be safely
employed within the standard MR-EDF approach, as for
example functionals with nonanalytical density dependences.

II. PARTICLE NUMBER RESTORATION
WITHIN EDF THEORY: STANDARD APPROACH

The strategy to obtain a functional for pairing including
particle number restoration has been extensively analyzed
recently [5,6,8,11], and we only give here the main steps
necessary for our discussion. Following these references, in
this section we will consider a specific class of functional
form that will be sufficient for the present discussion.1 At the

1Note that none of the currently used SR-EDF functionals belong
to this class, because they have nonanalytical density dependences.
The form (1) is the only one (restricting ourselves here to bilinear
functionals) for which the recently proposed regularization applies.
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so-called single-reference (SR) level, a quasi-particle (QP)
vacuum of Bogoliubov type |�0〉 is used to construct the
normal and anomalous density matrices, denoted by ρ and
κ , that serve to construct the functional. The energy is then
written as

ESR[�0] = ESR[ρ, κ, κ∗]

=
∑

i

tiiρii + 1

2

∑
i,j

v
ρρ

ijij ρiiρjj + 1

4

∑
i,j

vκκ
iı̄j j̄ κ

∗
iı̄κj j̄ ,

(1)

where vρρ and vκκ denote the effective vertices in the particle-
hole and particle-particle channels. Standard SR-EDF can be
schematically seen as the sequence

�0 =⇒ (ρ, κ, κ∗) =⇒ ESR. (2)

The price to be paid for incorporating pairing with a rather
simple functional is to use an intermediate state |�0〉 that is
not an eigenstate of particle number. In a second step, the
symmetry can be restored projecting out the component with
N particles

|�N 〉 = P N |�0〉, (3)

where P N denotes the particle number projection operator
defined through [2,3]

P N = 1

2π

∫ 2π

0
dϕ eiϕ(N̂−N). (4)

The expectation value of any operator O that conserves particle
number can then be expressed as

〈�N | O |�N 〉
〈�N |�N 〉 =

∫ 2π

0
dϕ

〈�0|O|�ϕ〉
〈�0|�ϕ〉 NN (0, ϕ) , (5)

where the shorthand

NN (0, ϕ) ≡ e−iϕN

2π

〈�0|�ϕ〉
〈�N |�N 〉 (6)

has been introduced. Here ϕ denotes the gauge angle, whereas
|�ϕ〉 = eiϕN̂ |�0〉 refers to the state |�0〉 rotated in gauge
space. The kernel entering in the integral of Eq. (5) corresponds
to the transition matrix element of an operator between two
quasi-particle vacua. One can then take advantage of the
generalized Wick’s theorem (GWT) [2,12] to express the
kernel in terms of the transition density matrices

ρ
0ϕ

ij ≡ 〈�0|a†
j ai |�ϕ〉

〈�0|�ϕ〉 , (7)

κ
0ϕ

ij ≡ 〈�0|ajai |�ϕ〉
〈�0|�ϕ〉 , (8)

κ
ϕ0
ji

	 ≡ 〈�0|a†
i a

†
j |�ϕ〉

〈�0|�ϕ〉 . (9)

For instance, when O is a two-body Hamiltonian, the two-
body interaction v entering in Eq. (5) takes a form similar to
Eq. (1) with vρρ = vκκ = v and where the densities ρ and κ are
replaced by the corresponding transition densities, Eqs. (7)–
(9). Guided by the Hamiltonian case, the energy functional

associated with particle number restoration is usually defined
through

EN [�N ] ≡
∫ 2π

0
dϕ ESR[ρ0ϕ, κ0ϕ, κϕ0	

]NN (0, ϕ) . (10)

This energy functional is a special case of a so-called multi-
reference EDF (MR-EDF).

The present strategy to restore symmetries in an EDF
framework deserves some further remarks: First, expression
(10) is postulated having in mind the Hamiltonian case.
However, the MR-EDF theory should not be confounded with
the expectation value of a Hamilton operator. In particular, an
energy functional has much more flexibility regarding the func-
tional form of the energy kernels in Eq. (10), which can be used
for the efficient modeling of in-medium correlations. Second,
the construction of the MR-EDF, Eq. (10), from the SR-EDF by
simply replacing the normal and anomalous density matrices in
the SR-EDF by the corresponding transition density matrices
is postulated by analogy to the GWT. While it appears rather
natural, it was shown recently that this strategy to construct the
MR-EDF might lead to an ill-defined functional that exhibits
divergencies and jumps in practical applications [5,6,8]. While
a solution to this problem has been proposed and applied in
Refs. [6,8], a consistent framework for MR-EDF approaches
is still missing. A clear illustration of this is the ongoing debate
about which densities should enter in the functional [13], as
well as the recently recognized impossibility to use noninteger
powers of the transition density in MR energy functionals [11].

The very notion of symmetry restoration within an EDF
framework remains to be clarified. For instance, it has been
shown recently [7] that also regularized MR energy functionals
may in general not transform as an irreducible representation
of the restored symmetry, unless additional constraints are
introduced.

In the present section, we will further analyze the way the
MR-EDF is constructed and the possible sources of difficulties.
For simplicity, we restrict ourselves to a case where the
two-body effective interaction kernels entering Eq. (1) are
independent of the densities.

A peculiarity of particle number projection is that the
canonical bases of the original state |�0〉 and of the rotated
states |�ϕ〉 are the same when making a suitable choice of the
Bogoliubov transformation between quasi-particle operators
of these states. Accordingly, the canonical base of the projected
state |�N 〉 is also the same as the one of the original reference
state |�0〉. In the following, we will implicitly assume that
densities are written in this canonical basis in which we have

ρ
0ϕ

ij = δijn
0ϕ

i , κ
0ϕ

ij = δj ı̄κ
0ϕ

iı̄ , κ
ϕ0
ij

	 = δj ı̄κ
ϕ0
iı̄

	
, (11)

whereas the energy EN takes the form

EN [�N ] =
∑

i

tii

∫ 2π

0
dϕn

0ϕ

i NN (0, ϕ)

+ 1

2

∑
i,j

v
ρρ

ijij

∫ 2π

0
dϕn

0ϕ

i n
0ϕ

j NN (0, ϕ)

+ 1

4

∑
i,j

vκκ
iı̄j j̄

∫ 2π

0
dϕκ

ϕ0
iı̄

	
κ

0ϕ

j j̄ NN (0, ϕ) . (12)
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After a lengthy but straightforward calculation, the energy
functional can be expressed as

EN [�N ] =
∑

i

tiin
N
i + 1

2

∑
i,j,j �=ı̄

v
ρρ

ij ijR
N
ijij + 1

4

∑
i �=j,i �=j̄

vκκ
iı̄j j̄R

N
jj̄ iı̄

+ 1

2

∑
i

v
ρρ

iı̄iı̄

∫ 2π

0
dϕn

0ϕ

i n
0ϕ

i NN (0, ϕ)

+ 1

2

∑
i

vκκ
iı̄iı̄

∫ 2π

0
dϕκ

ϕ0
iı̄

	
κ

0ϕ

iı̄ NN (0, ϕ) , (13)

where nN
i are the occupation numbers

nN
i ≡ 〈�N |a†

i ai |�N 〉
〈�N |�N 〉 , (14)

and RN
ijkl corresponds to the two-body density matrix

RN
ijkl ≡ 〈�N |a†

ka
†
l aj ai |�N 〉

〈�N |�N 〉 (15)

of the projected state. They can be expressed in terms of the
gauge angle integrals as

nN
i =

∫ 2π

0
dϕ n

0ϕ

i NN (0, ϕ) , (16)

and

RN
ijkl = (δikδjl − δilδjk)

∫ 2π

0
dϕn

0ϕ

i n
0ϕ

j NN (0, ϕ)

+ δj ı̄δlk̄

∫ 2π

0
dϕκ

ϕ0
iı̄

	
κ

0ϕ

kk̄
NN (0, ϕ) . (17)

Equation (13) is rather enlightening with respect to the
physical content of present MR-EDF calculations. Indeed, if
one neglects the last two terms in Eq. (13), one sees that the
functional associated with the projected state can be regarded
as a functional of the one- and two-body components of this
very state. Similarly, if one uses the same effective interaction
vρρ = vκκ , then the last two terms of Eq. (13) recombine, and
the two-body component RN

iı̄iı̄ can be recognized, thanks to the
relation

RN
iı̄iı̄ = nN

i

=
∫ 2π

0
dϕ

(
n

0ϕ

i n
0ϕ

i + κ
ϕ0
iı̄

	
κ

0ϕ

iı̄

)
NN (0, ϕ) . (18)

However, when using different effective vertices vρρ �= vκκ in
the particle-hole and particle-particle channels, or when using
vertices vρρ or vκκ that cannot be written as an antisymmetrized
matrix elements of the two-body force, then the identification
of the energy as a functional of one- and two-body density
matrices of the projected state cannot be made anymore.
Instead, it can only be written as a functional of the transition
density matrices.2 This subtlety is intimately connected to the

2We recall that the expectation value of the two-body operator in a
projected state can be written as a functional of the two-body density
of this state or, fully equivalently, as a functional of the one-body
density matrices. This property does not hold for general functionals
that are constructed without reference to an underlying Hamiltonian.

presence of pathologies encountered in MR-EDF calculations.
Indeed, the last two terms in Eq. (13) are nothing but the ones at
the heart of the difficulties to construct a well-defined MR-EDF
theory. As discussed in Refs. [5,8], for near-orthogonal states
〈�0|�ϕ〉 � 0, there is at least one n

0ϕ

i and the corresponding

κ
ϕ0
iı̄

	
and κ

0ϕ

iı̄ that all go to infinity. As a consequence, the two
terms can separately become larger than any physical scale in
the nucleus. They do, however, recombine to a well-behaved
expression when a Hamiltonian is used, i.e., when vρρ = vκκ .
Without taking specific care of these terms in the restoration of
symmetry within the functional framework, there is a spurious
contribution that leads to discontinuities and divergences when
plotting the particle number projected energy as a function of
a collective coordinate.

A. MR-EDF theory with regularization

A strategy to construct a well-behaved MR-EDF theory
proposed in Refs. [6,8] is to remove terms that might not
properly recombine in the MR-EDF approach in such a
way that the spurious contamination is removed without
touching the physical content of the functional. The resulting
functional then takes the form (technical details are given in
Appendix A)

EN [�N ] =
∑

i

tiin
N
i + 1

2

∑
i,j,j �=ı̄

v
ρρ

ij ijR
N
ijij + 1

4

∑
i �=j,j �=ı̄

vκκ
iı̄j j̄R

N
jj̄ iı̄

+ 1

2

∑
i

v
ρρ

iı̄iı̄

(
nN

i nN
i − δniδni

)

+ 1

2

∑
i

vκκ
iı̄iı̄

[
nN

i

(
1 − nN

i

) + δniδni

]
, (19)

where δni = nN
i − n0

i is the difference between the occupation
number of the level i in the projected and the nonprojected
state.

Expression (19) is of particular interest for the following
discussion regarding the construction of energy functional
theory. First, let us remark that compared to the previous
form (13), the gauge-space integrals are now hidden in the
components of the one- and two-body density matrices of
the projected state. In addition, the last two lines of Eq. (19)
are also functionals of the occupation numbers n0

i in the
original nonprojected state. The analysis of the regularization
procedure to remove spurious contributions to the MR-EDF
method [6,8,11] suggests that these terms will always be well
behaved.

An example of a deformation energy curve obtained
from a particle number projected MR-EDF calculation with
the Skyrme interaction SIII and a pairing functional of
volume type is shown in Fig. 1 (dashed line). The MR-
EDF is numerically calculated using expression (10) and
the Fomenko discretization procedure of the gauge-space
integrals described, for instance, in Ref. [8]. Here, 199
discretization points have been used. This large number is
necessary to resolve the discontinuities that stem from the
spurious contribution to the nonregularized MR-EDF [8].
As in Ref. [8], the Lipkin-Nogami procedure is used in the
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FIG. 1. (Color online) Particle number restored deformation
energy curve of 18O as a function of quadrupole deformation β2

and calculated within standard MR-EDF technique using projection
after variation (PAV) with SIII and a delta pairing interaction before
(blue dashed curve) and after (black solid curve) regularization. The
red filled circles correspond to the results obtained using directly
Eq. (19) (see text). To compare with previous work [8], the Coulomb
exchange contribution has been subtracted from the energy.

minimization of the energy of the state |�0〉. The solid line
corresponds to the MR-EDF method with the regularization
proposed in Ref. [6]. In this figure, we also show the results
(filled circles) obtained using directly the expression (19)
that has been proven above to be analytically equivalent to
the regularized MR-EDF functional. Note that, in the latter
case, we have used a method called hereafter the “recurrence
method” to compute the projected occupation numbers and
components of the projected two-body densities. This method
is described in detail in Appendix B. Although the use of
gauge angle integration would have given exactly the same
results, this method has the advantage of being very simple
and numerically efficient and of not making use of transition
density matrices. As expected, the energy obtained with
expression (19) exactly matches the one obtained using the
regularized MR-EDF functional. This formulation provides a
new and alternative insight into the content of particle number
restored energy functionals.

B. Critical analyses of standard method

As discussed above, specific regularizations in MR-EDF
functionals are needed to avoid discontinuities such as the
jumps appearing in Fig. 1. At this point, even with the
regularization, two important problems remain:

(i) Terms that have a nonanalytical density dependence,
for example, a noninteger power such as often used in
parametrizations of the Skyrme and Gogny interactions,
cannot be regularized with the procedure proposed in
Ref. [6]. Indeed, the functional itself becomes in that
case multivalued in the complex plane and cannot be
properly defined [5,11].

(ii) A second issue illustrated in Eq. (19) is that the last
two terms are not only a functional of the occupa-
tion numbers of the projected state, but also of the

occupation probabilities of the original reference state
|�0〉. Accordingly, the energy remains a functional
of the density of the quasi-particle vacuum that is
not an eigenstate of particle number. This raises the
question of which density, i.e., projected, transition, or
nonprojected, can be used to construct a functional for
MR calculations.

In the following, we show that both (i) and (ii) can
eventually be avoided by changing the strategy to construct
the functional for pairing that accounts for particle number
restoration.

III. EDF THEORY FOR PAIRING WITH PARTICLE
NUMBER RESTORATION

Let us now discuss the critique (ii) made above concerning
the components of the projected energy functional. In most
functional approaches, an intermediate state is introduced to
construct densities that are used to minimize the energy. This
is the case in the usual DFT or at the SR-EDF level where the
trial state is a Slater determinant or a quasi-particle vacuum.
When restoring the symmetry in a MR-EDF framework, then,
according to Eq. (19), the projected state can be almost
regarded as an intermediate many-body state from which
the one- and two-body density matrices used to define the
functional are obtained.

However, due to the presence of n0
i in the energy, this

functional happens to depend on components not only of
the projected state, but also of the original reference state.
A slight modification, however, can easily restore the unique
dependence of the functional on the projected state. If, for
instance, the following replacements(

nN
i nN

i − δniδni

) =⇒ nN
i nN

i ,
(20)[

nN
i

(
1 − nN

i

) + δniδni

] =⇒ nN
i

(
1 − nN

i

)
,

are made in Eq. (19), then the strategy of standard DFT to
construct the EDF as a functional of the density of an auxiliary
state, the projected state here, is recovered.3

The use of a projected product state as an auxiliary state
has the advantage that it allows us to treat pairing in a particle
number conserving framework. An illustration of a result
obtained taking into account this modification in Eq. (19) is
shown in Fig. 2 and compared to the original curve. This
figure illustrates that the small change in the functional does
not significantly modify the energy landscape. This is indeed
not unexpected, since the difference δni (respectively δniδni)
is likely to be much smaller than nN

i (respectively nN
i nN

i ).
By making the simple modification (20), the EDF frame-

work can now be interpreted as a functional of the projected-
state densities. Indeed, the state with good particle number can

3This does not mean, however, that we recover a theory that is
equivalent to DFT. Indeed, at this stage, the functional (19) is still
a functional of the two-body density matrix. However, as will be
discussed below, for the specific case of particle number projection,
the two-body density matrix is itself a functional of the one-body
density matrix.
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FIG. 2. (Color online) Particle number restored deformation
energy surface of 18O calculated using Eq. (19). The dotted curve
is obtained by making the replacement (20) in Eq. (19).

now be regarded as the auxiliary many-body state that provides
the quantities used to construct the EDF. Similar to Eq. (2),
the corresponding theory can be regarded as a new sequence

�N =⇒ (ρN,RN ) =⇒ EN . (21)

We note in passing that the slight modification (20) does not
break the shift invariance of the energy functional discussed in
Refs. [5,8]. At this point, let us make a few further important
remarks:

(i) The functional form (19) is not completely surprising.
Indeed, our starting point, Eq. (1), is very close to a
form one would have obtained by taking the expectation
value of a two-body Hamiltonian. In the case of an
energy functional calculated as the expectation value
of a genuine Hamiltonian operator, the energy can be
written not only as a functional of one-body transition
densities, but also as a functional of projected one-
and two-body (and eventually higher-order) densities.
This freedom is lost in the functional framework, where
a choice has to be made for either one or the other.
MR-EDF follows the former strategy, whereas the latter
has not been explored yet. For a regularized bilinear
functional, the differences between both formulations
remain very small, see Fig. 2.

(ii) Expression (19) contains not only one-body but also
two-body matrix elements and might appear out of
the scope of a density functional approach aiming
at replacing the original N -body problem by a func-
tional of the one-body density matrix only. Indeed,
in the Hamiltonian case, the expectation value of any
two-body Hamiltonian for any state can directly be
regarded as a functional of the one- and two-body
densities of this state. Density functional theories are
introduced to avoid the explicit use of two-body and
higher density matrices. Therefore, by itself, the use
of a functional of the two-body density might appear
useless. The important simplification here stems from
the fact that these densities are constructed from a
very specific class of states, namely, projected product
states. For instance, we have shown recently that the

two-body density matrix elements can eventually be
written as an explicit functional of the one-body density
under some approximation [14]. Accordingly, while
two-body density matrix elements are used to get a
compact expression in Eq. (19), this functional can
truly be considered as a functional of the projected
state one-body density consistently with density matrix
functional theory, such that the sequence becomes

�N =⇒ ρN =⇒ EN . (22)

(iii) When making the replacement (20) in Eq. (19), then
the functional directly incorporates symmetry breaking
and its restoration in a single step, contrary to standard
approaches in EDF theory. From that point of view,
it could be seen as a “symmetry-conserving” EDF
theory.4

(iv) It is quite interesting to note that the MR-EDF can
already almost be regarded as a functional of the
components of the projected state. While this was
hidden in formula (10), it becomes evident in Eq. (19).
In particular, as noted in Refs. [6,8,11], there exists
some flexibility in the regularization of the pathologies
of the MR-EDF. It is possible to slightly modify the
original prescription Eqs. (A4) and (A5), such that
the regularization automatically leads to Eq. (20). In
that case, the methods based on the use of MR-EDF
and symmetry-conserved EDF framework are strictly
equivalent. As an important consequence, while the
use of techniques inspired from configuration mixing
was unclear within a functional framework, we give
here evidence that it can be formulated consistently
in a functional framework. It is worth mentioning,
however, that while this connection can be made only
in the simple functional form given in Eq. (1), most
functionals currently used do not allow their controlled
usage in a MR-EDF framework.

(v) Finally, it is important to mention that this equivalence
holds true only for the schematic bilinear functional
given by Eq. (1) with two-body vertices independent
of the density. If density-dependent terms are present
in the functional, as in all currently used parametriza-
tions of the EDF, such an equivalence does not exist
anymore. Note, however, that in this case, a safely
usable MR-EDF cannot be constructed anymore due
to the absence of a regularization scheme. In Eq. (19),
one then obtains a functional that remains closer to
the spirit of DFT based on the Hohenberg-Kohn theo-
rem than the usual MR-EDF approach. Indeed, in the
HK-theorem-based DFT, the functional is constructed
from the density matrices of the correlated (i.e., in
our case projected) state. As we will illustrate below,
on the contrary, the alternative formulation proposed
here that simultaneously treats both symmetry breaking

4It should bekept in mind, however, that the present functional only
takes care of the restoration of U(1) gauge symmetry while others
still remain broken.

014309-5



GUILLAUME HUPIN, DENIS LACROIX, AND MICHAEL BENDER PHYSICAL REVIEW C 84, 014309 (2011)

and restoration can still be applied for functionals that
cannot be regularized in a MR-EDF framework.

A. Constraints on the symmetry-conserving functional

If the standard projection method is used as guidance to
constructing the functional, then the form of the functional is
almost entirely constrained. Indeed, this corresponds to using
Eq. (13) or eventually Eq. (19) as a starting point. Equation (20)
corresponds to a specific choice. Here, we discuss whether
alternative choices can be made for the last two lines of
Eq. (19). At present, it is not clear if, within the functional
framework, a unique prescription of the functional form exists.
Nevertheless, one can propose a few rules to better constrain its
form. Let us assume a more general prescription than Eq. (20).
i.e., (

nN
i nN

i − δniδni

) =⇒ FN
iı̄ ,

(23)(
nN

i

(
1 − nN

i

) + δniδni

) =⇒ GN
iı̄ ,

where FN and GN are the unknown quantities. Let us specify
some rules to constrain them:

Sum-rule. When vρρ = vκκ , then the last two terms in
Eq. (13) should recombine to give RN

iı̄iı̄ = nN
i . Accordingly,

it seems reasonable to impose

FN
iı̄ + GN

iı̄ = nN
i . (24)

No-pairing limit. Slater determinants belong to the Hilbert
space spanned by projected states. Consequently, one can
interpret the functional for particle number projected wave
functions as a generalization of the SR-EDF theory expressed
for Slater determinant, i.e.,

EN [�N ] =⇒ ESR[�SD] , (25)

as �N −→ �SD. �SD denotes any Slater determinant. As a
consequence, in this limit, we should have

FN
iı̄ =⇒ n0

i n
0
i , GN

iı̄ =⇒ 0. (26)

Large N limit. In the limit of infinite particle number, the
projected state and the reference state should become identical
(for instance, δn0

i =⇒ 0). Accordingly, we do expect

lim
N→+∞

FN
iı̄ = nN

i nN
i ,

(27)
lim

N→+∞
GN

iı̄ = nN
i

(
1 − nN

i

)
.

These three constraints significantly reduce the freedom
of choosing the form of the functional that can be used. The
prescription (20) naturally fulfills all of them.

B. Can we use terms with noninteger power of the density?

When the effective two-body vertex depends explicitly on
the density, then the energy cannot be directly mapped on
Eq. (13). If the density dependence is in integer powers of the
density, then one could eventually generalize the derivation
of Eq. (13) to three-body or even higher-order effective
interactions. For all other forms of the density dependence,
such as the widely used noninteger powers of the density,
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-132
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)
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18O

Sly4

FIG. 3. (Color online) Same as Fig. 1, but when the SLy4 effective
interaction is used in the particle-hole channel. The dashed line
corresponds to the nonregularized MR-EDF result directly obtained
by gauge angle integration using 199 points in the discretization. The
filled circles correspond to the result obtained using the symmetry-
conserved EDF using Eq. (19) and the prescription (20).

there is no way to deduce an equivalent expression because the
integration over gauge angles cannot be uniquely defined from
a mathematical point of view [5,11]. It is worth mentioning
that the same difficulty appears when the Coulomb exchange
term is approximated using the Slater prescription. Above, we
have shown that with a slight change in the functional used in
the standard MR-EDF method, one obtains an EDF that can be
interpreted consistently within the usual functional approach
where the projected state becomes a trial wave function to
construct the ingredients of the functional.

Guided by the setup of functional (13), the most natural and
simple way to extend the SR-EDF functional using density-
dependent two-body effective vertices with noninteger powers
of the density is to directly replace the density entering in the
effective vertex by the density of the projected state, i.e.,

vρρ[ρ] =⇒ vρρ[ρN ] , vκκ [ρ] =⇒ vκκ [ρN ] . (28)

Again, by doing this, we ensure that the functional used for the
projected state is consistent with the one used in the no-pairing
case Eq. (25) and in the large-N limit.

In Fig. 3, the deformation energy curve obtained by using
Eq. (28) is compared to the result deduced from the standard
nonregularized MR-EDF procedure using Eq. (10). The SLy4
effective interaction used here contains density-dependent
terms with noninteger powers, i.e., ρ2+1/6. Note that in this
case, the MR-EDF cannot be regularized. The new alternative
method we propose here, however, does lead to a perfectly
well-behaved energy curve.

In our approach, the main difference between effective
interactions that depend on noninteger powers of the density
and those depending only on integer powers of the density is
that while in the latter case one might eventually recognize
terms coming from three-body or four-body forces and so on,
this is impossible in the former case. It should, however, be
kept in mind that the use of effective interactions should be
regarded more as a guidance for the setup of the actual form
of the functional and not as a prerequisite for the functional
approaches as such.
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The example of noninteger powers of the density shows
that functional theory including pairing and particle number
restoration and extending the usual SR-EDF approach, but
without using the MR-EDF framework, can eventually be
defined for a rather general class of functionals if the strategy
to construct the functional proposed here is followed.

It is important to realize that for particle number projection,
the present strategy becomes equivalent to the MR-EDF one
when the regularization is slightly modified compared to the
one originally proposed in Ref. [6], i.e., the present strategy
and the modified regularized MR-EDF calculation will give
the same energy for regularizable functionals. For those, it
should therefore be more regarded as an alternative way
of implementing the MR-EDF approach to particle number
projection than as a new framework.

With the present strategy, one will never have practical
difficulties in applying the method to rather general and
complex forms of functionals. However, some effort has been
made recently to outline the constraints that a functional
should fulfill to be truly regarded as a symmetry-conserving
functional [7]. While these constraints are even partially
unknown, one might anticipate that they will significantly
restrict the functional form that might be used. We are therefore
facing the following dilemma: from condensed matter physics,
we know that the powerfulness of DFT comes from the large
flexibility in choosing the functional form. Putting too many
formal constraints will make it increasingly difficult to model
the relevant physics with a tractable functional. In particular,
one can already see from Ref. [7] that a functional that fulfills
the constraints elaborated there will be very close to the energy
functional one obtains from an Hamiltonian.

It should also be mentioned that the use of the projected
density entering effective density-dependent vertices v̄[ρN ]
has already been proposed and used in Refs. [15–17]. However,
in those references, a hybrid approach is set up where transition
densities are used in other parts of the functional, and for
the restoration of spatial symmetries.5 It has been pointed
out in Ref. [13] that such a hybrid approach may lead to
unphysical results when set up for the restoration of spatial
symmetries. Here, the theory is completely formulated in terms
of the projected one- and two-body density matrices only. An
open question that has to be addressed in the future is if and
how the strategy to set up the functional we propose here
can be generalized to the restoration of spatial symmetries,
and perhaps even more general configuration mixing without
becoming numerically intractable.

IV. DISCUSSION AND CONCLUSION

In this work, projection made by MR-EDF techniques
including the recently proposed regularization [6,8,11] is
further analyzed for the case of particle number restoration
of quasi-particle vacua of Bogoliubov type. Starting from a

5For the special case of a pure particle number projected MR-EDF
calculation, the functional used in Refs. [17–19] could be mapped
on a functional of the one- and two-body density matrices of the
projected state.

simple toy functional where the two-body effective interac-
tion is not explicitly density dependent, we show that the
regularized energy can almost be regarded as a functional
of the one- and two-body densities of the projected state.
To follow the density functional methodology, we propose to
slightly modify the functional such that it becomes a function
of projected state densities only, and that the projected state
becomes the intermediate trial state from which the functional
and other observables are constructed. For particle number
projection, such a modification could, for instance, be achieved
within standard MR-EDF theory by slightly modifying the
regularization proposed in Ref. [6] while still removing the
pathologies. Such an alternative interpretation may eventually
serve as a justification of the MR-EDF framework within a
functional approach for particle number restoration when the
effective kernels are not density dependent.

As a matter of fact, most of the functional forms used
nowadays do not enter into the class of functionals which
can be safely used in MR-EDF. We show, however, that such a
functional can still be used in a symmetry restoring framework
that does not make use of the MR-EDF technique, but directly
formulates the theory in terms of the one- and two-body density
matrices of projected product states.

This theory can be seen as a direct extension of the SR-EDF
level that we proposed and is called here the symmetry-
conserving EDF approach. An illustration of the resulting
projected energy is given, showing that the method could be a
valuable tool for the description of the ground state of a system
with pairing including the restoration of particle number even
when density dependence with noninteger powers is used in
the functional.

The analysis of similarities and differences between the
MR-EDF theory and symmetry-conserving approaches was
greatly simplified here because the original quasi-particle state
and the projected state share the same canonical basis. For
instance, expression (19) only holds in the canonical basis. In
the present article, the applications are restricted to projection
after variation for which this equation is perfectly suited.
The next step will be the extension approach to perform
variation after projection (VAP). VAP is usually solved using
MR-EDF techniques by making variations with respect to
the components of the original quasi-particle vacuum and
not the projected state itself [20–23]. In the symmetry-
conserving approach, one could follow the same strategy as
in the standard MR-EDF approach, i.e., perform variations
of the reference state. Work in that direction is currently
underway.

Last, we would like to mention that the present article
only discusses the case of particle number projection and the
possibility to determine the ground-state energy. The MR-EDF
technique is frequently used to restore other symmetries and to
calculate excited states in a generator-coordinate framework.
What these other configuration mixings have in common is
the fact that there does not exist a common canonical basis in
which the one-body density matrices of the original and of the
correlated states are simultaneously diagonal. An important
point to be clarified is if and how the formalism developed
here can be generalized to those more general configuration
mixings, and that without becoming numerically intractable.
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Finally, it has to be stressed that the method proposed and
explored here is not meant to replace the MR-EDF framework
for the description of excited states and transition moments in
complex nuclei. Instead, it might provide a numerically much
more efficient alternative to the MR-EDF scheme when one is
interested just in the ground state and its evolution, either in
dynamics or thermodynamics.
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APPENDIX A: PROOF OF Eq. (19)

To prove Eq. (19), we have to explicitly remove terms that
cause pathologies from the energy calculation as proposed in
Ref. [6]. Starting from Eq. (50) of Ref. [6], the transition matrix
elements can be expressed as

n
0ϕ

i ≡ n0
i + δni [ϕ] ,

κ
0ϕ

iı̄ ≡ κ0
iı̄ + δκiı̄ [ϕ] , (A1)

κ
ϕ0
iı̄

	 ≡ κ0∗
iı̄ + δκ	

iı̄ [ϕ] ,

where n0
i and κ0

iı̄ refer to the occupation probabilities and
anomalous densities of the state �0. Following Ref. [6], we
decompose the energy kernels entering into the integral of
Eq. (10) into three terms Eρ , Eρρ , and Eκκ corresponding to
the kinetic, mean-field, and pairing terms, respectively. Then,
Eρρ and Eκκ can be expressed as

Eρρ = 1

2

∑
ij

v̄
ρρ

ij ij n
0
i n

0
j + 1

2

∑
ij

v̄
ρρ

ij ij

(
n0

i δnj [ϕ] + n0
j δni [ϕ]

)

+ 1

2

∑
ij

v̄
ρρ

ij ij δni [ϕ] δnj [ϕ] , (A2)

whereas

Eκκ = 1

4

∑
ij

v̄κκ
iı̄j j̄ κ0∗

iı̄ κ0
j j̄

+ 1

4

∑
ij

v̄κκ
iı̄j j̄

(
κ0∗

iı̄ δκj j̄ [ϕ] + κ0
j j̄ δκ

	
iı̄ [ϕ]

)

+ 1

4

∑
ij

v̄κκ
iı̄j j̄ δκ	

iı̄ [ϕ] δκjj̄ [ϕ] . (A3)

These expressions are the strict equivalent of the ones given in
Eqs. (51)–(54) in Ref. [6]. For instance, regularizations have
been obtained by removing terms with j = ı̄ in the last line of
Eqs. (A2) and (A3). Accordingly, the spurious contribution to
be removed from the functional is

Eρρ

CG = 1

2

∑
i

v̄
ρρ

ij ij

∫
δni [ϕ] δni [ϕ]NN (0, ϕ)dϕ , (A4)

Eκκ
CG = 1

2

∑
i

v̄κκ
iı̄iı̄

∫
δκ	

iı̄ [ϕ] δκiı̄ [ϕ]NN (0, ϕ)dϕ . (A5)

Therefore, when the regularization is included, this is equiva-
lent to making the replacements∫ 2π

0
dϕn

0ϕ

i n
0ϕ

i NN (0, ϕ)

=⇒
∫ 2π

0
dϕ

(
n

0ϕ

i n
0ϕ

i − δni [ϕ] δni [ϕ]
)
NN (0, ϕ)

and ∫ 2π

0
dϕκ

ϕ0
iı̄

	
κ

0ϕ

iı̄ NN (0, ϕ)

=⇒
∫ 2π

0
dϕ

(
κ

ϕ0
iı̄

	
κ

0ϕ

iı̄ − δκ	
iı̄ [ϕ] δκiı̄ [ϕ]

)
NN (0, ϕ) ,

in the last two terms of Eq. (13).
From the equalities (A1), one can deduce new interesting

relationships between the projected observables. For instance,
performing the gauge integration of the first equation, we
obtain

nN
i =

∫ 2π

0
dϕn

0ϕ

i NN (0, ϕ) = n0
i + δni , (A6)

with

δni = nN
i − n0

i =
∫

dϕ δni [ϕ]NN (0, ϕ) . (A7)

From this, let us now re-express the different quantities
entering in Eq. (13)∫ 2π

0
dϕn

0ϕ

i n
0ϕ

j NN (0, ϕ)

= n0
i n

0
j + n0

i δnj + δnin
0
j +

∫ 2π

0
dϕδni [ϕ] δnj [ϕ]NN (0, ϕ) ,

where, in the specific case i = j , we recognize the term that
enters in the regularization to be the last one. Therefore, the
term entering into the regularization of Eρρ can be expressed
as ∫ 2π

0
dϕ

(
n

0ϕ

i n
0ϕ

i − δni [ϕ] δni [ϕ]
)
NN (0, ϕ)

= n0
i n

0
i + 2n0

i δni = nN
i nN

i − δniδni . (A8)

To derive an expression of the term entering in the
regularization of Eκκ , one can proceed in a similar way. We
first define δκ∗

iı̄ and δκiı̄ through∫ 2π

0
dϕκ

ϕ0
iı̄

	NN (0, ϕ) =
∫ 2π

0
dϕ

(
κ0∗

iı̄ + δκ	
iı̄ [ϕ]

)
NN (0, ϕ)

≡ κ0∗
iı̄ + δκ	

iı̄ ,∫ 2π

0
dϕκ

0ϕ

iı̄ NN (0, ϕ) =
∫ 2π

0
dϕ

(
κ0

iı̄ + δκiı̄ [ϕ]
)
NN (0, ϕ)

≡ κ0
iı̄ + δκiı̄ .

Therefore the term entering in the regularized functional is
given by ∫ 2π

0
dϕ

(
κ

ϕ0
iı̄

	
κ

0ϕ

iı̄ − δκ	
iı̄ [ϕ] δκiı̄ [ϕ]

)
NN (0, ϕ)

= κ0∗
iı̄ κ0

iı̄ + δκ	
iı̄κ

0
iı̄ + κ0∗

iı̄ δκiı̄ . (A9)
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One can then take advantage of the fact that

nN
i = n0

i n
0
i + 2n0

i δni

+
∫ 2π

0
dϕδni [ϕ] δnj [ϕ]NN (0, ϕ)

+ κ0∗
iı̄ κ0

iı̄ + δκ	
iı̄κ

0
iı̄ + κ0∗

iı̄ δκiı̄

+
∫ 2π

0
dϕδκ	

iı̄ [ϕ] δκiı̄ [ϕ]NN (0, ϕ),

and that

δni [ϕ] δni [ϕ] = −δκiı̄ [ϕ] δκ	
iı̄ [ϕ] . (A10)

The first equality is nothing but Eq. (18), whereas the second
equality can be proved by expressing δni [ϕ], δκiı̄ [ϕ] , and
δκ∗

iı̄ [ϕ] directly in terms of the ui and vi of the SR-EDF theory
and the gauge angle ϕ starting from Eqs. (72)–(74) of Ref. [6].
Altogether, we obtain∫ 2π

0
dϕ

(
κ

ϕ0
iı̄

	
κ

0ϕ

iı̄ − δκ	
iı̄ [ϕ] δκiı̄ [ϕ]

)
NN (0, ϕ)

= nN
i −

∫ 2π

0
dϕ

(
n

0ϕ

i n
0ϕ

i − δni [ϕ] δni [ϕ]
)
NN (0, ϕ)

= (
nN

i

(
1 − nN

i

) + δniδni

)
. (A11)

Combining this expression with Eq. (A8), we finally deduce
the expression (19) for the regularized functional.

APPENDIX B: PARTICLE NUMBER RESTORATION
WITH RECURRENCE RELATION

An alternative to the the gauge-integration method is
presented here to calculate the one- and two-body density
matrix components of a projected product state. This method
turns out to be very fast and efficient numerically.

Let us start from a quasi-particle state written in its
canonical basis as

|�0〉 =
∏
i>0

(1 + xia
†
i a

†
ı̄ )|0〉 , (B1)

where |xi |2 = n0
i /(1 − n0

i ). The associated projected state with
N particles can be expressed as

|�N 〉 ∝
(∑

i>0

xia
†
i a

†
ı̄

)N

|0〉 . (B2)

Starting from these expressions, it has recently been shown
[14] that the elements of the one- and two-body density matrix
are given by

nN
i = N |xi |2 IN−1(i)

IN

, (B3)

RN
iı̄j j̄ = Nx∗

i xj

IN−1(i, j )

IN

for (i �= j ) , (B4)

RN
ijij = N (N − 1)|xi |2|xj |2 IN−2(i, j )

IN

, (B5)

while as already mentioned, RN
iı̄iı̄ = nN

i . The different coeffi-
cients entering in nN and RN are given by

IK =
�=∑

(i1,...,iK )

∣∣xi1

∣∣2 · · · ∣∣xiK

∣∣2
,

IK (i) =
�=∑

(i1,...,iK )�=i

∣∣xi1

∣∣2 · · · ∣∣xiK

∣∣2
,

IK (i, j ) =
�=∑

(i1,...,iK )�=(i,j )

∣∣xi1

∣∣2 · · · ∣∣xiK

∣∣2
,

· · ·
Direct use of these expressions for K = N is rather diffi-
cult numerically. However, these coefficients verify simple
recurrence relations that are straightforward to implement on
a computer. These recurrence relations have been recently
used to solve numerically the VAP [24,25] and to set up
a new functional for pairing accounting for particle number
conservation [14].

In the present work, we use the recurrence method to per-
form PAV within the symmetry-conserving EDF framework.
In that case, a preliminary SR-EDF calculation is performed
leading to a quasi-particle state given by Eq. (B1) with a set
of {xi} values. Here, we have used the Ev8 code [26]. From
this set, the quantities IN−1(i) and IN are evaluated via the
recurrence relations

IK (i) = IK − (K − 1)|xi |2IK−1(i),
(B6)

IK =
∑

i

|xi |2IK−1 − (K − 2)
∑

i

|xi |4IK−2(i) ,

with the condition I0 = I0(i) = 1, I1 = ∑
k |xk|2, and I1(i) =

I1 − |xi |2. The occupation numbers of the projected state can
then be calculated as well as the correlation components using
the relation [14,27]

RN
iı̄j j̄ = x∗

i xj

nN
j − nN

i

|xj |2 − |xi |2 for (i �= j ), (B7)

RN
ijij = |xj |2nN

i − |xi |2nN
j

|xj |2 − |xi |2 , (B8)

where for i = j , we have RN
iı̄j j̄ = nN

i and RN
ijij = 0.

This method is referred to as the recurrence method in
the text.
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