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The 157Gd(n, γ ) reaction was measured with the DANCE γ calorimeter (consisting of 160 BaF2 scintillation
detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the γ decay were used
to determine the resonance spins up to En = 300 eV. The γ -ray energy spectra for different multiplicities were
measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the
use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the
ground-state transitions but also for transitions between excited states.
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I. INTRODUCTION

In medium- and heavy-mass nuclei detailed spectroscopic
information exists only for levels at low excitation energy
near the ground state or for resonances above the neutron
separation energy Bn. Due to the rapid increase of the level
density with excitation energy, it is extremely difficult to
resolve the populating or depopulating transitions to obtain
reliable spectroscopic information in this intermediate energy
region below Bn. The set of these levels is often called a level
quasicontinuum. It is believed that γ decay of the nucleus in the
quasicontinuum is described by the extreme statistical model in
terms of the nuclear level density and a set of photon strength
functions (PSFs) for different multipolarities. Probably the
most direct way to examine these quantities is via study of
the properties of γ -ray spectra originating from the radiative
neutron capture reaction at isolated resonances.

The combination of the pulsed neutron beam at LANSCE
(Los Alamos Neutron Science Center) and the highly seg-
mented, highly efficient γ calorimeter DANCE (Detector for
Advanced Neutron Capture Experiments) provides an ideal
opportunity to study the γ -ray cascades.

In the present paper we describe a measurement of the
157Gd(n, γ )158Gd reaction using the DANCE calorimeter. This
experiment is part of a series of experiments that measure
neutron capture in all of the stable gadolinium isotopes. A
major goal is to use γ -ray spectra for various multiplicities
to determine the appropriate photon strength functions with
special interest in the behavior of the scissors mode. In turn
this information should shed light on the relevant nuclear
structure. In addition we wished to use the high segmentation
of the DANCE array to determine the spins of the capturing
resonance states from the measured multiplicity distribution
of their γ decay.

In Sec. II the experimental technique to measure the γ

spectra is described. The modeling of the statistical γ cascades
is discussed in Sec. III. Determining the resonance spins is

considered in Sec. IV. Information about the photon strength
functions that can be obtained from the measured γ -ray spectra
is presented in Sec. V and briefly compared with other available
data in Sec. VI. A summary is given in Sec. VII.

II. EXPERIMENTAL SETUP AND MEASUREMENTS

A. Experimental setup

The experiment was performed at the neutron source
LANSCE [1]. The 800-MeV H− beam from the LANSCE
linac is injected into the proton storage ring where it is
immediately converted to H+ by stripping through a thin foil.
The proton bunches are stacked for the entire linac macropulse.
This pulsed beam is then extracted with a repetition rate of
20 Hz and strikes a tungsten spallation target. The resulting
fast neutrons are moderated and sent to flight path 14 at the
Manuel Lujan Jr. Neutron Scattering Center. The DANCE
detector array is installed at 20 m on this flight path.

The DANCE spectrometer [2,3] is designed for studying
neutron capture cross sections on small samples. DANCE
consists of 160 BaF2 scintillation crystals surrounding a
sample and subtending a solid angle of �4π . A 6LiH shell
about 6-cm thick is placed between the sample and the
BaF2 crystals to reduce the scattered neutron flux striking the
crystals. The remaining background due to scattered neutrons
that penetrate the 6LiH shell and interact with the BaF2 crystals
is subtracted in the offline analysis. Besides the BaF2 crystals,
the DANCE setup includes three additional detectors that
are used to monitor the neutron flux and one detector for
monitoring the external background.

The target was gadolinium deposited via electroplating
on a beryllium foil glued to an aluminum ring. The iso-
topic composition of the target is listed in Table I. The
average thickness of the gadolinium, as determined by the
α-backscattering technique, is approximately 0.8 mg/cm2, but
is highly nonuniform: the difference in thickness between the
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TABLE I. Isotopic composition of the Gd target used in the
measurements.

Target Isotope abundance (%)
152Gd 154Gd 155Gd 156Gd 157Gd 158Gd 160Gd

157Gd <0.01 <0.01 0.08 0.09 99.7 0.12 <0.01

edges and the center of the target varies by as much as a factor
of 4.

B. Data processing

1. Online data processing

The DANCE acquisition system [4] is based on wave-
form digitization of signals from all 160 detectors using
four-channel Acqiris DC265 digitizers with a sampling rate
of 500 MS/s (mega samples/second). The intensity of the
signal from a specific crystal is collected by using a digitizer
channel with suitably adjusted gains. The ratio of the fast
and slow components of the signal is used for discrimination
against the α background from natural radioactivity of Ra
in the BaF2 crystals [3]. The digitizers are arranged in 14
compact Peripheral Component Interconnect (PCI) crates with
six DC265 modules per crate. Thus one crate can handle
12 BaF2 detectors with two channels per detector. Each
crate contains an embedded computer running under the
Linux operating system and a front-end acquisition program
using the framework known as the Maximum Integrated Data
Acquisition System (MIDAS) [5].

2. Offline data processing

The energy calibration of the DANCE crystals was per-
formed with a combination of γ -ray sources, 662 keV from
137Cs, 898 keV from 98Y, and 1275 keV from 22Na, and
the intrinsic radioactivity of the detector material (226Ra).
The latter calibration was conducted on a run-by-run basis
to provide the energy alignment of all crystals in the ofline
analysis.

Typical spectra of sums of deposited γ -ray energies in
crystals that fire are shown in Fig. 1. As only s-wave neutron
capture plays a role at low neutron energies in this mass region,
in this experiment we observe only resonances with Jπ = 1−
and 2−. Each spectrum consists of (i) the “total” peak at the
full energy available from the neutron capture reaction

Etotal = Bn + En, (1)

where Bn = 7.937 MeV and En is the energy of the incoming
neutron in the center of mass, and (ii) a low energy tail that
corresponds to cascades for which a part of the emitted energy
escaped the detector array. The shape of the spectrum at low
sum energies (below about 3 MeV) is strongly influenced by
the background from natural β activity in the BaF2 crystals,
especially for low multiplicities.

Often an emitted capture γ ray does not deposit its full
energy in one crystal. Thus the number of crystals that fire
is usually higher than the true multiplicity of a capture event.
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FIG. 1. (Color online) Examples of sum-energy spectra for
resonances at energies of 100.2 and 48.8 eV with J π assignments
1− and 2−, respectively. The cluster multiplicities of the γ cascades,
M , are indicated. The spectra are normalized to the intensity in the
Etotal peak for multiplicities M = 2–7.

Therefore all contiguous crystals that have fired during an
event are combined and considered as the response of the
detector array to one single γ ray. The number of clusters
observed in a capture event is called the “cluster” multiplicity.
This multiplicity is much closer to the true multiplicity of the
γ cascade than is the “crystal” multiplicity (the total number
of crystals that fire). The capture events in the offline analysis
were sorted using gates on neutron energy and on the cluster
multiplicity.

Only events within a certain range of detected sum energies
E� (around the Etotal peak) were taken into account. Namely,
for the spin assignments a sum-energy range of E� = 5.0 −
8.1 MeV, while for analysis related to the PSFs a narrower
interval of E� = 7.0–8.1 MeV was chosen for the construction
of multistep cascade spectra. In the latter case the use of a wider
interval improves statistics but leads to significant smearing of
the structures seen in the spectra. Additional narrowing of the
interval has no impact on the spectral shape.

There is a background contribution in the spectra that
mainly originates from γ rays following the capture of
scattered neutrons in the barium detectors. The size of the
background was estimated using the number of counts for
E� above the Etotal region in the sum-energy spectra. The
background contribution from other Gd isotopes is negligible
due to the purity of the target. For the strong resonances used
for determining the PSFs, the background contribution can be
neglected.

III. SIMULATIONS OF THE γ -DECAY OF 158Gd

A. Simulations of spectra

Under various assumptions about the level density and
photon strength functions the γ cascades following resonant
neutron capture were generated using the DICEBOX algorithm
[6]. The response of the DANCE detector to each generated
cascade was subsequently obtained from a simulation based
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on the use of a code based on the GEANT4 package. All
materials in the detector system were included in the GEANT4

simulations [7]. The resulting quantities can be compared
with their experimental counterparts. We used the simula-
tions primarily to obtain information on the PSFs, but they
were also used to test the possibility of resonance spin
determination.

The DICEBOX algorithm generates a complete decay scheme
of an artificial nucleus. Below some critical energy, Ecrit,
all of the characteristics of the decay scheme, i.e., energies,
spins, and parities of levels, as well as their decay properties,
are taken from existing experimental data. The choice of the
critical energy should be made with care to guarantee that all of
the information for energies below Ecrit is complete. We took
the required data from Ref. [8] and adopted Ecrit = 2.1 MeV.
Above Ecrit the level system of the nucleus and its complete
decay scheme are generated using an a priori chosen level
density function ρ(E, J, π ) and PSFs for multipolarities E1,
M1, and E2. All higher multipolarities are neglected. Partial
radiation widths �aγb for a transition between an initial level
a and a final level b are given by

�aγb =
∑
XL

ξ 2
XLf (XL)E2L+1

γ

ρ(Ea, Ja, πa)
, (2)

where f (XL) stands for photon strength function for transitions
of type X (electric or magnetic) and multipolarity L, and ξXL

is a random number generated from a normal distribution with
zero mean and unit variance. This random number ensures
that the individual widths �aγb fluctuate according to the
Porter-Thomas distribution [9]. The sum in Eq. (2) is over
all allowed types and multipolarities of transitions. Internal
electron conversion, which is important in transitions between
the lowest excited states in 158Gd, is correctly treated in the
DICEBOX code [6].

Hereafter the simulated system of all levels and their
decay scheme is called a nuclear realization. Due to the
Porter-Thomas fluctuations there is an infinite number of
nuclear realizations that differ from each other even for fixed
models of PSFs and level density.

Various models of PSFs and level density can be tested with
the DICEBOX code. The fluctuations involved in generating
the γ decay allow us to determine all of the uncertainties
that arise when simulations are performed with the same
models. Cascades starting from resonances with a given spin
and parity were simulated. Typically 20 nuclear realizations,
each with 100 000 cascades, were simulated for initial s-wave
resonances, i.e., those with spins Jπ = 1− and 2−.

Among the various kinds of information that can be ob-
tained from the combined DICEBOX + GEANT4 simulations, of
special interest are the average multiplicities, the multiplicity
distributions, and the so-called multistep cascade (MSC)
spectra (see Sec. V).

In our trial-and-error approach, by assuming various models
for the PSFs and the level density we can assess the degree of
agreement of the simulated observables with the experimental
data and draw conclusions about which of these models is most
likely to be valid.

B. Photon strength functions

1. Electric-dipole transitions

Decay of the neutron resonances is dominated by dipole
transitions. It is well known that for γ -ray energies above
neutron separation energies the electric-dipole (E1) transitions
play a major role. The PSF at these energies in axially
deformed nuclei seems to be consistent with the sum of two
Lorentzian terms

f
(E1)
SLO (Eγ ) = 1

3(πh̄c)2

2∑
i=1

σGi
Eγ �2

Gi(
E2

γ − E2
Gi

)2 + E2
γ �2

Gi

. (3)

Here EGi
, �Gi

, and σGi
are the parameters of the giant

electric dipole resonance (GEDR) which is split into two
components (i = 1 and 2) in well-deformed nuclei. The
parameters EG = 12.23 and 15.96 MeV, �G = 2.77 and
5.28 MeV, and σG = 215 and 233 mb were adopted—they
come from a fit of photonuclear data on the ground state of
the nearby nucleus 160Gd [10]. This PSF shape combined with
the Brink hypothesis [11]—which says that the PSF shapes are
independent of excitation energy—is known as the Brink-Axel
or Standard Lorentzian (SLO) model.

Since the shape of the E1 PSF below the neutron separation
energy is not well known, additional models are employed.
Usually one of two models is used. The first one was proposed
by Kadmenskij, Markushev, and Furman (KMF) [12] for
spherical or weakly deformed nuclei, but is often also used
for deformed nuclei

f
(E1)
KMF(Eγ , T ) = FK

3(πh̄c)2

2∑
i=1

σGi
EGi

�Gi
�(Eγ , T )(

E2
γ − E2

Gi

)2 , (4)

where the factor FK = 0.7 [12,13] and the γ -ray- and
temperature-dependent width �(Eγ , T ) is given by

�(Eγ , T ) = �Gi

E2
γ + 4π2T 2

E2
Gi

, (5)

where temperature T = T (E) ≡ √
(E − �)/a, E is the ex-

citation energy of a final level, � the pairing energy, and
a the shell-model level-density parameter. The values � =
1.77 MeV and a = 17.91 MeV−1 were adopted from Ref. [14].

A second model was proposed for spherical nuclei by
Chrien [15] to match the behavior of the SLO model at energies
near the GEDR maximum and the KMF model at very low
Eγ . This phenomenological model was later generalized for
deformed nuclei by Kopecky et al. [16] by introducing an
empirical enhancement factor k0. This model is known as the
EGLO (enhanced generalized Lorentzian) model. In this case
the expression for the PSF is

f
(E1)
EGLO(Eγ , T ) =

2∑
i=1

σGi
�Gi

3(πh̄c)2

[
4π2 FK �Gi

T 2

E5
Gi

+ Eγ �
(
Eγ , T )(

E2
γ − E2

Gi

)2 + E2
γ �(Eγ , T )2

]
. (6)
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FIG. 2. PSF models used in simulations. There are two curves
for the KMF, EGLO, and MLO2 models shown. They indicate how
these two models change as a function of temperature—the lower
curve corresponds to T = 0 while the upper one corresponds to T =√

(Bn − Ef )/a. Experimental data for fE1 are for 155,157,159Gd at
energies 5.9, 6.0, and 5.3 MeV, respectively [13].

Here the γ -ray- and temperature-dependent width is given by

�(Eγ , T ) =
[
k0 + Eγ − Eγ 0

EG − Eγ 0
(1 − k0)

]
�Gi

E2
γ + 4π2T 2

E2
Gi

.

(7)

The recommended value of Eγ 0 is 4.5 MeV [13,16]; in
Ref. [13] the systematics of the parameter k0 was adjusted
to reproduce the total radiation width of neutron resonances.
As the total radiation width depends on the number of levels
below neutron separation energy the suggested systematics
of k0 depends on the proposed level density model. We left
the parameter k0 free to vary in our simulations. The energy
dependence of the EGLO model is very similar to that of the
KMF model for k0 ≈ 1.5.

Many other models of E1 PSF can be found in the literature.
The RIPL-3 database [17], probably the most widely used
database by experimentalists, suggests that the MLO family of
models be used. As the description of these models is rather
complicated, the reader is referred to their detailed description
in Ref. [17].

As seen from Eqs. (4) and (6) the shapes of both the
KMF and EGLO models depend on temperature (or excitation
energy) of the decaying nucleus and violate the strict form of
the Brink hypothesis. Similar temperature dependence of E1
PSF is also a feature of the MLO family of models. The energy
dependence of the PSFs predicted by these models is shown in
Fig. 2. To keep the figure reasonably clear we show only the
shape of one of the MLO models (MLO2) here.

2. Magnetic-dipole transitions

Magnetic dipole (M1) transitions also play an important
role in the decay of highly excited nuclear states. Usually,
two models are used for M1 transitions. In the spin-flip

(SF) resonance model f
(M1)
SF (Eγ ) is usually assumed to have

a Lorentzian shape with energy about 7 MeV and a width
of 4 MeV [13], while in the single-particle model f

(M1)
SP is

a constant independent of γ -ray energy. The M1 strength
corresponding to the spin-flip mode was measured for several
rare-earth nuclei (including 158Gd) from inelastic proton
scattering [18]. A double-humped structure was observed
between 5 and 10 MeV and we adopted this form of SF
resonance in our simulations.

Sometimes a sum of the strengths from the two models,
f

(M1)
SP and f

(M1)
SF , is used. In our simulations we usually

adjusted the absolute value of the PSFs to obtain the ratio
of f (E1)/f (M1) ≈ 7 at about 7 MeV. This value seems to be
reasonably well determined from average resonance capture
experiments [19].

3. Scissors mode

In 1976, Hilton [20] and later Lo Iudice and Palumbo [21],
using the geometrical two rigid rotors model, and Iachello [22],
using the proton-neutron interacting boson model, predicted
an isovector M1 collective vibrational mode in deformed
nuclei. This mode, known as the scissors mode (SM), was
experimentally observed for ground-state transitions by Bohle
et al. [23] from high-resolution electron inelastic scattering
at low momentum transfer. The parameters of the mode for
transitions to the ground state were intensively investigated
using the (γ ,γ ′) reaction in rare-earth nuclei; this revealed
substantial fragmentation of the mode. These experiments
concluded that the strength of the mode (or more precisely
the total M1 strength in the energy range Eγ ≈ 2.5–4.0 MeV)
for the ground-state transitions in even-even rare-earth nuclei
is proportional to the square of the deformation [24]; for
well-deformed nuclei this strength reaches B(M1) ≈ 3μ2

N .
The published experimental value for 158Gd is B(M1) =
3.71(59)μ2

N [25] or 3.39(17)μ2
N [26]. The centroid of the

SM strength is located near 3 MeV and is almost constant
in rare-earth nuclei; the experimental value for 158Gd is
ESM = 3.10 MeV [25,27]. In our simulations the SM was
represented by a single- or double-Lorentzian resonance term.

The analysis of data on two-step γ cascades (TSC) [28,29]
revealed that the SM is not only built on the ground state,
but also plays a role in transitions between excited states. In
other words, the SM follows, at least approximately, the Brink
hypothesis. This finding has been later supported by data from
3He-induced γ emission [30].

Data on the photon strength function inferred from the
(3He,αγ ) reaction for neighboring even-even nuclei 160Dy and
162Dy [30] are shown in Fig. 3. They seem to be in very
good agreement and one can also expect similar results for
158Gd. The position of the resonance structure at low excitation
energies (which is likely the SM) is clearly shifted down to
energies lower than 3 MeV in this case.

4. Electric-quadrupole transitions

In addition to dipole transitions, electric quadrupole (E2)
transitions might also play a role in the decay of neutron
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FIG. 3. (Color online) Experimental data on the PSF determined
from 3He-induced reactions [30]. The curve shows a model of the
PSFs which reproduces these experimental data reasonably well and
which was tested in our simulations (see Sec. V).

resonances. We found that E2 transitions are not important
in the interpretation of our data; we simply assumed the
validity of the single-particle model (f (E2) = const.) in our
simulations. The strength of f (E2) = const. was taken to
reproduce the ratio with respect to dipole strengths at about 7
MeV from average resonance capture data [19].

C. Nuclear level density

We mainly used the back-shifted Fermi Gas (BSFG) model
[14]

ρ(E, J, π ) = f (J ) f (π )
e2

√
a(E−E1)

12 · 21/2 σc a1/4(E − E1)5/4
, (8)

where a and E1 are adjustable parameters, while

f (J ) = exp

(−J 2

2σ 2
c

)
− exp

(−(J + 1)2

2σ 2
c

)
(9)

is the spin probability distribution function. We adopted
two different expressions for the spin cutoff parameter σc

together with the adjustable parameters a and E1 from the
latest works of von Egidy and Bucurescu [14,31]. Both of
these parametrizations led to virtually the same results in our
analysis. No parity dependence was assumed in the BSFG
model.

In addition to the closed-form BSFG model, we tested the
level density calculated within the Hartree-Fock-Bogoljubov
(HFB) approach. Here, the level density is available in
tabulated form as a function of energy for levels with
each spin and parity [17,32]. The calculated level densities
usually suffer from difficulties in reproducing the average
neutron resonance spacing. To bring the calculations into
agreement with experimental data, the HFB level density was
renormalized to reproduce the resonance spacing at the neutron
separation energy. After such a renormalization there is very
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FIG. 4. (Color online) Level density models used in simulations.
The different absolute values predicted by the various level density
models originate from the different spin distributions for the different
models. The resonance spacing of s-wave resonances is the same in
all cases. Models of level density are compared with experimental
data for even-even Dy isotopes [33].

good agreement between the HFB level density and the BSFG
model at energies above about 2.5 MeV (see Fig. 4).

All known levels below Ecrit = 2.1 MeV are taken into
account in the simulations. The level density formula is thus
applied only above this energy. It is interesting to note that the
adopted level density models are in excellent agreement with
level densities obtained from 3He-induced measurements in
neighboring even-even Dy isotopes [33] (see Fig. 4).

IV. RESONANCE SPINS

As the resonance spin is expected to have an impact on the
γ -ray multiplicity distribution, the γ -ray multiplicity of the
cascade decay of neutron resonances has been used in a variety
of ways to determine the resonance spin. If the distributions
from different resonance spins are very different, then the
average multiplicity—the simplest quantity characterizing the
multiplicity distribution—is sufficient to determine the spin.
This was, for instance, true for the s-wave resonances on 95Mo
measured with DANCE [34]. On the other hand, for some nu-
clei the distributions from different spins are indistinguishable.
In DANCE measurements this was the case for 151,153Eu [35].
The main quantity that influences the difference among the
multiplicity distributions from resonances of different spins is
the spin difference between the resonance and the ground state
of the nucleus—the higher the difference the larger the effect.
In practice the Porter-Thomas fluctuations of the primary
transitions from different resonances affect the multiplicity
distribution from individual resonances and thus also affect
the spin determination.

The average multiplicity 〈M〉 was calculated as

〈M〉 =
∑7

M=3 MCM∑7
M=3 CM

, (10)

where CM is the number of counts corresponding to multiplic-
ity M after subtracting the background contribution.
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FIG. 5. Average multiplicities of resonances.

The background contribution for M � 3, originating from
γ rays following the capture of scattered neutrons in Ba nuclei,
is small. For the M = 1 and 2 spectra the background is much
more important for weak resonances, where the background
subtraction leads to large uncertainties. We thus decided
to omit these multiplicities when determining the average
multiplicity. Since the counting rate for M > 7 was very low,
the highest multiplicity considered in any analysis was M = 7.
Although data were processed up to En = 700 eV, detailed
analysis could only be performed to 300 eV.

The spin and parity of the ground state of 157Gd is 3/2−,
and the s-wave resonances have Jπ = 1− or 2−.

Simulations with realistic models of the PSFs and the level
density (see discussion below) indicate that the difference in
the average multiplicity for resonances with the same spin due
to Porter-Thomas fluctuations is very small (rms less than 0.01)
compared to the expected difference between the two possible
spins of about 0.07. This is in agreement with the experimental
data. As Fig. 5 illustrates, the average multiplicities tend to
separate into two groups, but the uncertainties in the average
multiplicities are significant and become more important with
increasing neutron energy, especially for weaker resonances.
The summation over the whole resonance region also makes
it difficult to say anything about resonance doublets. There-
fore we apply analysis methods that rely on more detailed
properties of the multiplicity distributions.

A method that takes into account the distribution and not
just the average multiplicity was developed by Koehler et al.
[36]. They combined several multiplicity yields and generated
the functions Z(J ),

Z(1) =
b∑

M=a

Y 1
M (E) − N1

d∑
M=c

Y 1
M (E) = 0, (11)

Z(2) =
b∑

M=a

Y 2
M (E) − N2

d∑
M=c

Y 2
M (E) = 0, (12)

where the multiplicities a, b, c, and d follow the conditions
a � b < c � d, Ni is a normalization constant, and Y J

M (E)
is the yield for a resonance with spin J and multiplicity M .

0

5000

Y
ie

ld
(c

ou
nt

s)

Experimental Yield
158Gd

0

5000
J=1

80 85 90 95 100 105 110 115

0

5000

Neutron Energy (eV)

J=2

FIG. 6. (Color online) Spin decomposition of the yield for a
typical energy region.

Using isolated resonances for which the spin J is known, the
constants Ni are determined such that the residual yield Z(J )

of the resonances with spin J is zero.
Assuming that the multiplicity distribution is the same

for resonances with the same spin (approximately true),
then applying these equations to an arbitrary neutron energy
will give zero or nonzero residuals, depending on the spin
composition for the given neutron energy.

Koehler et al. took a = 2, b = 4, c = 5, and d = 7 in
147Sm, but we found that this method also works in 157Gd
for a = b and c = d, i.e., if only the ratio of two multiplicities
is checked. This method would work perfectly if there were no
Porter-Thomas fluctuations and experimental errors. DICEBOX

simulations with realistic models of the PSFs and the level
density show that the Porter-Thomas fluctuations lead to small
differences in predicted ratios, which are not large enough
to make the method unusable. In practice this approach
works well. There are a number of possible combinations of
multiplicities, and the results are consistent for the different
combinations.

A more formal method was developed by Bečvář et al. [37].
In this approach one adopts multiplicity distribution from two
resonances of known spin as prototypes and decomposes the
actual yield into separate yields for the two spins using the
multiplicity distribution as a whole. The results obtained with
this method are illustrated in Fig. 6.

The results of applying all the above-described methods
were very consistent in the region below En = 300 eV
where detailed analysis could be performed. These results
were also consistent (with a few exceptions noted below) with
the spin values quoted by Mughabghab [38]. There are only
three disagreements where we have a definite assignment—
resonances at 96.59, 281.02, and 293.70 eV. In each case we
assigned J = 2 instead of the value of J = 1 in Mughabghab
[38]. It is interesting that for these three resonances we agree
with the assignments of Belyaev et al. [39]. Above about
300 eV the combination of poor statistics and worsening
energy resolution make reliable spin assignments impossible.

For 157Gd determining the resonance spins has pro-
vided relatively little new information. However, the internal
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agreement between the various approaches described above, as
well as the agreement with the values quoted by Mughabghab
[38] and/or Belyaev et al. [39], does establish that the DANCE
multiplicity distributions provide a useful tool to determine
resonance spins.

V. PROPERTIES OF γ DECAY

A. MSC spectra

To obtain information on the properties of the γ decay of
158Gd we compared experimental multistep cascade spectra
with predictions based on model simulations described in
Sec. III. The MSC spectra were constructed from capture
on well-resolved strong resonances. Only γ cascades that
deposit virtually all of their energy in the DANCE detector,
specifically 7.0–8.1 MeV, were taken into account and sorted
according to detected cluster multiplicity. Multiplicities M =
2–7 were used in the following analysis. To minimize statistical
uncertainties as well as uncertainties from simulations, the
spectra were binned into coarse bins with a width of 150 keV.
As already noted, the background contribution to the MSC
spectra is very small for strong resonances.

A large number (several hundreds) of model combinations
of PSFs and level densities were tested in simulations and
compared with the experimental MSC spectra. It is very
difficult to quantify the agreement between simulations and
experimental spectra as individual bins in the MSC spectra are
mutually correlated in a complicated way, especially due to
the decay scheme. As a consequence, the degree of agreement
was only checked visually.

For all multiplicities, only one normalization parameter is
needed for comparison of experimental and simulated MSC
spectra. We normalized spectra to the same number of counts
in the Etotal peak, which includes almost all multiplicities. As
already noted, in practice we consider multiplicities M = 2–
7. The experimental MSC spectra from resonances with the
same spin are similar but not identical, due to Porter-Thomas
fluctuations of the primary transitions. This is illustrated in
Fig. 7.

For the same reason the simulated MSC spectra for different
nuclear realizations obtained with the same model of PSFs and
level density are not identical. To characterize uncertainties
due to Porter-Thomas fluctuations the predicted MSC spectra
are plotted as a gray band. Each such band has a width of
2 σ (the average ± 1 σ ) and was obtained from analysis of
20 independent nuclear realizations. The size of fluctuations
among the MSC spectra for different resonances seems to
be well reproduced by the simulations. The spectra from
different nuclear realizations are almost identical for higher
multiplicities (M � 4), while some differences are predicted
for lower multiplicities, especially for M = 2.

B. Comparison with experiment

Models that do not include a resonance structure near
3 MeV in a PSF are unable to reproduce the humps at this
energy observed in the M = 2–4 MSC spectra. A typical
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FIG. 7. (Color online) Experimental MSC spectra.

example of simulated MSC spectra with no such resonance
structure is shown in Fig. 8. This finding is independent of the
model adopted for the “nonresonant” part of the PSF.

Simulations also showed that the resonance structure cannot
be of E1 character. This is because the M = 2 spectrum
consists mainly of events where neutron resonances with
negative parity decay via two γ rays to the ground state which

0

200

M = 2

In
te

ns
ity

(a
rb

.u
ni

ts
)

0

1000

M = 4

158Gd

0 2 4 6
0

1000 M = 3

E
γ
(MeV)

0 2 4 6
0

1000
20.6 eV
58.4 eV

Jπ = 2-

M > 4

E
γ
(MeV)

FIG. 8. (Color online) Comparison of experimental MSC spectra
with simulations (gray band) in which the SM was completely absent.
The combination of f

(E1)
KMF, f

(M1)
SF + f

(M1)
SP is used.
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has positive parity. If E1 strength dominated the PSF near
3 MeV (which would be the case if the resonancelike structure
were in the E1 PSF) such decays would not be possible. On
the other hand, a resonance structure near 3 MeV in the M1
or E2 PSF is able to describe the M = 2 spectra. We assume
in the following that such a resonance structure is in the M1
PSF; i.e., it is the SM.

Assuming that the SM consists of a single-Lorentzian term,
we found that the MSC spectra are rather sensitive to the energy
of the SM, ESM. The dependence of the MSC spectra on the
resonance damping width, �SM, and on the total strength of
the SM—which is given by the product σSM�SM—is much
weaker.

The position of the mode must be very close to 3 MeV—we
estimate that it cannot be lower than about 2.8 MeV or higher
than about 3.1 MeV. If the resonance energy is outside this
range the shapes of the bumps in the MSC spectra for M = 2–4
are not reproduced.

This restriction on the ESM leads, for example, to a
disagreement between the present experimental data and
simulations with the PSF deduced from (3He,α) in neighboring
Dy nuclei (see Fig. 9). The PSF used in these simulations has
a resonance structure at about 2.7 MeV (see Fig. 3).

Rather surprisingly, predictions based on very different
damping widths yielded similar results. The spectra allow any
value between �SM = 0.6 and 1.6 MeV.

We were unable to reach a reasonable agreement between
the simulated and experimental spectra for any model com-
bination incorporating the SLO or MLO models for the E1
PSF. On the other hand, a reasonably good agreement is
achieved with the KMF model, as well as with the EGLO
model (with the dimensionless constant k0 adjusted at values
of 1.5–3.5), in combination with a “composite” model of
the M1 PSF: f (M1) = f

(M1)
SM + f

(M1)
SF + f

(M1)
SP . The simulated

MSC spectra are virtually insensitive to σSM within the range
of 0.07–0.25 mb and to f

(M1)
SP within the range (1–2.5) × 10−9

MeV−3. The most pronounced sensitivity to σSM is observed
in the M = 3 spectrum—the larger σSM the more pronounced
the bump near 3 MeV.

0

200

M = 2

In
te

ns
ity

(a
rb

.u
ni

ts
)

0

1000

M = 4

158Gd

0 2 4 6
0

1000 M = 3

E
γ
(MeV)

0 2 4 6
0

1000
20.6 eV
58.4 eV

Jπ = 2-

M > 4

E
γ
(MeV)

FIG. 9. (Color online) Comparison of experimental MSC spectra
with simulations (gray band) for the model determined from 3He-
induced reactions. The PSF used is shown in Fig. 3.

Examples of predicted MSC spectra for two of these model
combinations, one incorporating the KMF model and the other
the EGLO model for the E1 PSF, are shown in Fig. 10, with
the set of parameters for the f (M1) PSF specified in the figure
caption. The PSFs used in these simulations are shown in
Fig. 2. Omitting the f

(M1)
SP part of the M1 PSF worsens the

agreement in all tested cases. There is only a very slight
sensitivity of the shapes of simulated spectra to the parameters
of f

(M1)
SF and to the E2 strength. Also, there is virtually no

difference among predictions made with BSFG models of level
density and the level density based on HFB calculations. The
agreement between simulations and experiment is also worse
if the SM is not postulated at all levels, i.e., if it violates the
Brink hypothesis.

The values inferred for the energy of the SM, ESM, and
its damping width, �SM, are independent of the absolute
size of the nonresonant part of PSF strength underlying the
SM. On the other hand, the resonance cross section, σSM,
is expected to depend on the strength of this nonresonant
part of the PSF, since the γ decay is governed only by the
ratios of PSFs for different multipolarities and their energy
dependence. However, we found that very similar values of
σSM are consistent with both the KMF and EGLO models of
the E1 PSF.

Based on a large number of simulations with different
assumptions about the shape and structure of the resonance
near 3 MeV, we believe that the description of the SM with a
single-resonance term is not unique. Similar agreement to that
in Fig. 10 can be obtained with “more complex” models of
the resonance, if the total width and strength of the resonance
structure are similar to those of the single-Lorentzian term.
Specifically, very good agreement was reached for a double-
Lorentzian structure of the resonance term with energies at
about 2.5 and 3.1 MeV (see Fig. 11). The strict validity of the
Brink hypothesis for the M1 SM was assumed in all of these
cases.

We should stress that within an enormous functional
space the trial-and-error method adopted in our analysis does
not guarantee that we find the models (or combinations of
parameters) that lead to the best possible agreement between
simulated and experimental MSC spectra.

None of the tested models was able to correctly describe
the strength of the peak at Eγ ∼ 1 MeV in the MSC spectra for
M � 3, while the position and the width were well reproduced
in all cases. The peak is a consequence of transitions
connecting the lowest negative-parity states, occurring at
excitation energies ∼1–1.3 MeV, with the ground-state band
levels. Reasonable reproduction of the strength (or height)
of the peak in the M = 2 spectrum indicates that the direct
feeding of negative-parity levels near 1 MeV from resonances
is simulated correctly.

The underestimation of the predicted strength of the peak
in the spectra for higher multiplicities indicates that the
population of these lowest negative-parity levels is too low in
our simulations. The most likely explanation is that the decay
of some of the levels above Ecrit is not completely controlled by
statistical considerations. This is probably not that surprising
for levels just above 2 MeV. However, the overall agreement
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FIG. 10. (Color online) Comparison of experimental MSC spectra with simulations (gray band) made with the model combination of
f

(E1)
KMF, f

(M1)
SM + f

(M1)
SP + f

(M1)
SF (left) and the combination f

(E1)
EGLO(k0 = 3.0), f

(M1)
SM + f

(M1)
SP + f

(M1)
SF (right). Parameters of the scissors mode were

ESM = 3.0 MeV, �SM = 1.0 MeV, and σSM = 0.2 mb, and f
(M1)

SP = 1 × 10−9 MeV−3.

between the simulated and experimental spectra indicates that
this possible “nonstatistical” contribution influences only a
small part of the decays and does not change our conclusions
about the SM.

With the exception of the SLO model and the model based
on data from 3He-induced reactions, we did not test models
where the E1 PSF does not depend on temperature (or, in
other words, models that fully obey the Brink hypothesis).
As a consequence, we are unable to decide whether we need a
temperature-dependent E1 PSF to reproduce the MSC spectra.
We can only conclude that the MSC spectra are consistent
with predictions of “temperature-dependent” KMF or EGLO
models.

VI. COMPARISON WITH OTHER DATA

There are several other relevant measurements that provide
information on the PSFs below the neutron separation energy
both for this nuclide and for other nuclei in the A ∼ 160 mass
region.

Data on ground-state transitions from (γ ,γ ′) measurements
[25,26], which are available for many even-even nuclei,
and data from 3He-induced reactions [30] were mentioned
previously.

In addition, there also exist data from the (n, γ ) reaction.
Specifically, (i) values of the PSFs were obtained from the

intensities of primary transitions from resonance neutron
capture in neighboring odd nuclei [13], (ii) two-step γ cascades
following thermal neutron capture in 162Dy were measured
[29], and (iii) information on the total radiation widths of
neutron resonances is available for all stable isotopes [38].

Simulations with a PSF model that described well data
from the (3He,α) reaction on neighboring even-even nuclei
were compared with our experimental data in Fig. 9 . From the
comparison it is evident that the position of the resonancelike
structure observed in this reaction at about 2.7 MeV is too
low to agree with our MSC spectra. The difference between
the PSFs deduced from (n, γ ) and (3He,α) reactions remains
unexplained.

As already mentioned in Sec III B 3., the data from (γ ,γ ′)
yield the total reduced M1 strength for transitions to the
ground state of B(M1) ≈ 3.5μ2

N for Eγ between 2.7 and
3.7 MeV in 158Gd. As it is evident from Table II, where the
strength of the mode used in our simulations is listed, our
data require significantly smaller B(M1). In fact, we should
not compare only the strength of the SM, but rather the sum
of all M1 contributions, f (M1) = f

(M1)
SM + f

(M1)
SP + f

(M1)
SF , with

experimental data. The f
(M1)
SF contribution to the given energy

interval is very weak, about 0.15μ2
N . The contribution of f

(M1)
SP

is slightly higher—the f
(M1)
SP = 1 × 10−9 MeV corresponds

to B(M1) = 0.26μ2
N —and B(M1) scales linearly with the
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FIG. 11. (Color online) Comparison of experimental MSC spec-
tra with simulations (gray band) for a model f

(E1)
KMF, f

(M1)
SM + f

(M1)
SP +

f
(M1)

SF . The “double-humped” SM was used. The parameters of the
SM were ESM = 2.5 and 3.1 MeV, �SM = 0.5 and 0.8 MeV, and
σSM = 0.1 and 0.2 mb, respectively.

value of f
(M1)
SP . In any case, the B(M1) needed for the

reproduction of our data is at most about 2μ2
N . The observed

difference in the strengths suggests that the parameters of the
SM for ground-state transitions differ from the corresponding
parameters for excited levels. Such a situation would not
be at variance with our data as simulations with the SM
that gives B(M1) ∼ 3μ2

N for the ground state transitions but
B(M1) ∼ 1.1μ2

N for transitions between all excited states
showed negligible difference with respect to simulations with
the SM giving B(M1) ∼ 1.1μ2

N independently of the final
level. In this connection it is interesting to note that the strength
determined for the SM resonance in 158Gd is significantly
smaller than the strength obtained from the (n, γ ) reaction in
163Dy [28,29]. This implies that the strength of the mode may
also significantly differ in odd and even nuclei.

Intensities of primary transitions from (n, γ ) reactions on
neighbor odd nuclei (see Fig. 2) indicate that an acceptable de-
scription of fE1 at Eγ ≈ 6 MeV is given by the EGLO model.
The KMF model significantly underpredicts the experimental
data (while the SLO model overpredicts them). Unfortunately,
there are no available data on even-even nuclei. Since there is
no odd-even A effect observed in the fE1 PSF above neutron
separation energy, it seems to be reasonable to expect similar
values in odd and even-even nuclei at about 6 MeV.

TABLE II. Total reduced strength of the SM corresponding to
various parametrizations. The last two columns give the total strength
of the SM, Btot, and the strength within the range 2.7–3.7 MeV,
BNRF, which is reported in the nuclear resonance fluorescence
(γ ,γ ′) experiments. The strength scales linearly with σSM. Published
experimental values for 158Gd are B(M1) = 3.71(59)μ2

N [25] or
3.39(17)μ2

N [26].

ESM �SM σSM Btot(M1) BNRF(M1)
(MeV) (MeV) (mb) μ2

N μ2
N

3.0 0.6 0.2 1.33 0.88
3.0 1.0 0.2 2.13 1.11
3.0 1.6 0.2 3.23 1.26
2.5 0.4 0.1
3.1 0.8 0.2 2.23a 1.14a

aDouble-humped SM.

The average total radiation widths, �γ , predicted with the
KMF and EGLO (k0 = 3.0) models of the E1 PSF are about
70–80 and 95–105 meV (depending on the exact parameters
used for the M1 PSF), respectively. From simulations we
expect that fluctuation of �γ from different resonances is
small—at a maximum of about 5 meV (independent of the
models used).

Comparison with the experimental value, �
(exp)
γ =

97(22) meV, indicates that the PSF models reproducing the
MSC spectra give reasonable agreement with the experimental
�γ . It should be stressed that the total radiation width is
the only one of the simulated quantities that depends on the
absolute value of the PSFs. All other observables depend only
on the ratios of PSFs for different types of transitions and
their energy dependence, but not on the absolute values of the
PSFs. Unfortunately, �γ also depends strongly on the energy
and spin dependence of the level density which prevents the
use of the radiation width for absolute normalization of the
PSFs. Assuming that the level density used in the simulations
is correct, the KMF model for E1 will reproduce the total
radiation width if it is multiplied by a factor of about 1.2–1.3.
Under these assumptions the M1 strength should be multiplied
by the same factor.

VII. SUMMARY

Measurement of γ -ray spectra from resonances in the
157Gd(n, γ ) reaction was performed with an isotopically
enriched target at the DANCE detector array at LANSCE.
The total angular momentum of the s-wave resonances was
determined for neutron energies up to En = 300 eV with the
aid of the multiplicity distributions of the γ -ray decay from
the resonances. There was excellent overall agreement with
the previous spin assignments.

The MSC γ -ray spectra for different multiplicities from
resonances with different spins were used to test the validity
of various PSF models. For the E1 PSF we found that, at least at
low γ -ray energies, a reasonable description was obtained with
the model of Kadmenskij, Markushev, and Furman [12] or with
models that are derived from the KMF approach. On the other
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hand, data on the PSF obtained from intensities of primary
transitions from (n, γ ) reactions indicate that much higher
strength than that predicted by the KMF model is required
for energies only slightly below the neutron binding energy
[13,40,41]. This indicates that the EGLO model (or model
similar to it) appears to be a reasonable model for the E1 PSF
in deformed rare-earth nuclei.

Our analysis indicates that a resonancelike structure at
Eγ ≈ 3 MeV in 158Gd is required in a PSF. The structure is not
only a property of the ground-state transitions but must also be
present in the decay between excited levels. We identify this
structure with the SM as it cannot be in the E1 PSF. Our data
are unable to distinguish whether the structure consists of a
simple single-resonance term or if it is more complicated (two
resonances). However, we can conclude that it is relatively
wide—we estimate its width to be 0.6–1.6 MeV. In addition
to the SM additional “smooth” M1 strength is needed to
reproduce our data.

The strength of the mode from our data is significantly
smaller than that of the ground-state transitions from (γ, γ ′) in
even-even rare-earth nuclei, which suggest that the properties
of the mode might be different for the ground-state transitions
and for transitions between excited levels. However, one
cannot exclude a systematic decrease of the SM strength with
the excitation energy of the levels on which this mode is

based. The strength determined is also much smaller than that
observed in the (n, γ ) reaction in 163Dy [28,29]. This points out
that the strength of the SM may differ in odd and even nuclei.
It is also difficult to understand the difference between the
properties of the mode determined from the (3He,α) Oslo data
and from the (n, γ ) reaction. All of these problems indicate
that the properties of the SM and of the PSF at energies below
neutron separation energies in general are not fully understood.
Further study is needed.

ACKNOWLEDGMENTS

This work was supported in part by the US Depart-
ment of Energy Grants No. DE-FG52-09NA29460 and
No. DE-FG02-97-ER41042. This work benefited from the
use of the LANSCE accelerator and was performed under
the auspices of the US Department of Energy at Los Alamos
National Laboratory by the Los Alamos National Security,
LLC, under Contract No. DE-AC52-06NA25396, and at the
Lawrence Livermore National Laboratory by the Lawrence
Livermore National Security, LLC, under Contract No. DE-
AC52-07NA27344. It was also supported by Research Plans
MSM 0021620859 and INGO LA08015 of the Ministry of
Education of the Czech Republic and by Grant No. SVV-
2011-263309 of the Charles University in Prague.

[1] P. W. Lisowski et al., Nucl. Sci. Eng. 106, 208 (1990).
[2] M. Heil, R. Reifarth, M. M. Fowler, R. C. Haight, F. Käppeler,

R. S. Rundberg, E. H. Seabury, J. L. Ullmann, and K. Wisshak,
Nucl. Instrum. Methods Phys. Res., Sect. A 459, 229 (2001).

[3] R. Reifarth et al., Nucl. Instrum. Methods Phys. Res., Sect. A
531, 530 (2004).

[4] J. M. Wouters et al., IEEE Trans. Nucl. Sci. 53, 880 (2006).
[5] S. Ritt and P.-A. Amaudruz, MIDAS–Maximum Integrated Data

Acquisition System [http://midas.psi.ch.]
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