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Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling:
From light to superheavy nuclei
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The impact of particle-vibration coupling and polarization effects due to deformation and time-odd mean fields
on single-particle spectra is studied systematically in doubly magic nuclei from low-mass 56Ni up to superheavy
ones. Particle-vibration coupling is treated fully self-consistently within the framework of the relativistic particle-
vibration coupling model. Polarization effects due to deformation and time-odd mean field induced by odd particle
are computed within covariant density functional theory. It has been found that among these contributions the
coupling to vibrations makes a major impact on the single-particle structure. The impact of particle-vibration
coupling and polarization effects on calculated single-particle spectra, the size of the shell gaps, the spin-orbit
splittings and the energy splittings in pseudospin doublets is discussed in detail; these physical observables are
compared with experiment. Particle-vibration coupling has to be taken into account when model calculations are
compared with experiment since this coupling is responsible for observed fragmentation of experimental levels;
experimental spectroscopic factors are reasonably well described in model calculations.
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I. INTRODUCTION

The covariant density functional theory (CDFT) [1–3]
is one of standard tools of nuclear theory which offers
considerable potential for further development. Built on
Lorentz covariance and the Dirac equation, it provides a
natural incorporation of spin degrees of freedom [1,2] and
an accurate description of spin-orbit splittings [2] (see also
Fig. 2 in Ref. [4]), which has an essential influence on the
underlying shell structure. Note that the spin-orbit interaction
is a relativistic effect, which arises naturally in the CDFT
theory. Lorentz covariance of the CDFT equations leads to the
fact that time-odd mean fields of this theory are determined as
spatial components of Lorentz vectors and therefore coupled
with the same constants as time-like components [5] which are
fitted to ground-state properties of finite nuclei. In addition,
pseudo-spin symmetry finds a natural explanation in the
relativistic framework [6]. CDFT in its different incarnations
both on the mean-field and beyond mean-field levels provides
successful description of many properties of ground-state and
excited configurations in nuclei [3].

However, the majority of applications of CDFT have
been focused on collective properties of nuclei. There are
only few features on nuclear systems, strongly dependent on
single-particle degrees of freedom, which have been addressed
in the CDFT studies on the mean-field level and compared
with experiment. These are the single-particle properties in
spherical and deformed nuclei, spin-orbit splittings in spherical
nuclei, magnetic moments in the A ± 1 neighbours of the
16O nucleus (A = 16) [7], and alignment properties of single-
particle orbitals in rotating nuclei [8].1

1Effective alignments of compared rotational bands, which depend
sensitively on both the alignment properties of single-particle orbital

The calculated single-particle spectra of spherical nuclei
are frequently compared with experiment (see, for example,
Refs. [1,2]). However, only in Refs. [4,13] are deformation
polarization effects and time-odd mean fields included in
the calculations, which makes them more realistic. The
spin-orbit splittings, as extracted from the single-particle
energies obtained in spherical CDFT calculations, reproduce
the experimental spin-orbit splittings fairly well, although
there are deviations up to 20% of absolute value of the splitting
(see Figs. 11, 12 and Table IV in Ref. [13] and Fig. 2 and Sect.
IV B in Ref. [4]) which only weakly depend on the relativistic
mean-field (RMF) parametrization. Note that the comparison
of Ref. [4] includes the uncertainty of the spin-orbit splittings
due to deformation polarization effects and time-odd mean
fields as they are found in Ref. [13]. Ref. [4] clearly shows
that spin-orbit splittings are better described in CDFT as
compared with Skyrme energy density functional theory
(SEDFT) despite the fact that no single-particle information
(contrary to SEDFT) has been used in the fit of the RMF
Lagrangian.

These comparisons, however, do not reveal the accuracy of
the description of the single-particle states because the particle-
vibration coupling (PVC), which can affect considerably the
energies of single-particle states in odd-mass nuclei [14–18],

by which two bands differ and polarization effects induced by the
particle in this orbital, are in average better reproduced in the CDFT
calculations than in the cranked Nilsson-Strutinsky calculations based
on phenomenological Nilsson potential, see comparisons presented
in Refs. [9–11]. This is despite the fact that no single-particle
information has been used in the fit of the CDFT parameters, while
the parameters of the Nilsson potential are fitted to experimental
single-particle energies (see Ref. [12]).

014305-10556-2813/2011/84(1)/014305(19) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.014305


E. V. LITVINOVA AND A. V. AFANASJEV PHYSICAL REVIEW C 84, 014305 (2011)

has been neglected. The modification of the quasiparticle states
by particle-vibration coupling is weaker in deformed nuclei
[19,20] since the surface vibrations are more fragmented (less
collective) than in spherical nuclei [19,21]. As a consequence,
the corrections to the energies of quasiparticle states in
odd nuclei due to particle-vibration coupling are expected
to be less state-dependent in deformed nuclei. Hence the
comparison between experimental and calculated energies
of single-particle states is expected to be less ambiguous in
deformed nuclei as compared with spherical ones [16,21], at
least at low excitation energies, where vibrational admixtures
in the wave functions are small. The analysis of the energies
of one-quasiparticle deformed states in the actinide region,
performed within the relativistic Hartree-Bogoliubov (RHB)
approach in Refs. [22,23], reveals that while the majority of
the states are described with an accuracy better than 0.5 MeV,
there are a number of states which deviate from experiment by
as much as 1 MeV.

The question arises of which features of the DFT are most
decisive for the single-particle structure. The most crucial
ingredients in this respect are:

(i) the effective nucleon mass and its radial dependence,
which determines the level density near the Fermi
surface. It is well known that the one-(quasi-)particle
spectra calculated on the mean-field level are less
dense than in experiment both at spherical [14–17] and
deformed [22,23] shapes. The average level density
of the single-particle states on the mean-field level
is related to the effective mass (Lorentz mass in the
notation of Ref. [24] for the case of CDFT theory) of the
nucleons at the Fermi surface: m∗

L(kF )/m. The CDFT
is characterized by a low effective mass m∗

L(kF )/m ≈
0.66 [4]. As a consequence, this low effective mass
of CDFT has a bigger impact on the single-particle
spectra than the effective masses of nonrelativistic DFT
which are typically larger. Note that at spherical shape
the inclusion of particle-vibrational coupling brings the
calculated level density closer to the experimental one
characterized by an effective mass m∗(kF )/m ≈ 1.0
[17].

(ii) the spin-orbit potential, which determines the energetic
distance of the spin-orbit partners. It is well known
that CDFT describes rather well spin-orbit splittings
[4]. However, these results have been obtained on the
mean-field level, and it is necessary to test how they
will be affected by the inclusion of particle-vibrational
coupling. In CDFT theory the Dirac effective mass
m∗

D(kF )/m is closely related to the effective spin-
orbit single-nucleon potential, and empirical energy
spacings between spin-orbit partner states in finite
nuclei determine a relatively narrow interval of allowed
values: 0.57 � m∗

D(kF )/m � 0.61 [25]. This require-
ment restricts considerably the possible parametriza-
tions of the RMF Lagrangian on the mean-field level,
and thus it would be interesting to see whether the
inclusion of PVC will loosen this requirement and
thus allow a wider range of effective masses in the
CDFT.

(iii) the density dependence of the effective potential and
effective mass, which has an influence on the relative
position of the states with different orbital angular
momentum l. The investigation of Ref. [13], covering
spherical odd nuclei bordering doubly magic nuclei
clearly showed that the relative placement of the states
with different orbital angular momenta l is not so
well reproduced on the mean-field level in CDFT.
The problems occur predominantly in connection with
the states of high l which hints that the surface profile
of the mean-field and kinetic terms are involved.
Microscopic consideration in many-body theory indi-
cates that the effective mass has a pronounced surface
profile which is insufficiently parametrized in the
present mean-field models [16]. Thus, it is important
to see whether the inclusion of PVC will improve the
description of the relative positions of the states with
different orbital angular momentum l.

In Ref. [17], a relativistic particle-vibration coupling model
has been developed and the calculations based on the NL3
[26] parametrization of the CDFT have been performed for
the doubly magic 208Pb nucleus. In this work we present
a more systematic investigation within this model including
the calculations covering the nuclei from light 56Ni and
medium-mass 100Sn and 132Sn to heavy 208Pb and superheavy
292120 doubly magic nuclei using improved (as compared
with NL3) NL3* [27] parametrization of the CDFT. This
investigation covers neutron-deficient near-proton-drip-line
nuclei (56Ni and 100Sn), the neutron-rich 132Sn nucleus,
and the 208Pb nucleus located at the beta-stability line. In
addition, the polarization effects in odd-mass nuclei due
to deformation and time-odd mean fields are treated by
means of cranked relativistic mean-field (CRMF) calcula-
tions.

The article is organized as follows: The method of
comparison of experimental and theoretical single-particle
levels is discussed in Sec. II. Section III presents relativistic
particle-vibration model and cranked relativistic mean-field
theory and their details related to the study of single-particle
states. The comparison of model calculations with experiment
is presented in Sec. IV. The accuracy of the description of
single-particle spectra and spectroscopic factors, the impact of
particle-vibration coupling on shell gaps, spin-orbit splittings,
and pseudospin doublets as well as the role of polarization
effects in odd-mass nuclei due to deformation and time-odd
mean fields are discussed in detail. Finally, Sec. V reports the
main conclusions of our work.

II. EXPERIMENTAL VERSUS THEORETICAL
SINGLE-PARTICLE ENERGIES

The experimental information about single-particle level
structure of even-even doubly magic nucleus with the pro-
ton number Z0 and neutron number N0 originates from
the odd-mass (Z0 ± 1) and (N0 ± 1) nuclear neighbors. In
odd-mass nuclei, the polarization effects due to deformation
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and time-odd (TO) mean fields2 induced by odd particles play
an important role (see Sec. IV B). In addition, the particle-
vibration coupling modifies the energies and the structure of
the levels (Secs. IV C and IV E); neither of them remains
purely single-particle in nature. In order to describe all these
effects we use a hybrid model (labelled as “hybrid” below), in
which the polarization effects due to deformation and TO mean
fields are treated on the mean-field level within the cranked
relativistic mean-field (CRMF) approach (see Sec. III A),
while the corrections due to the PVC are treated within the
relativistic particle-vibration coupling model (see Sec. III B).
The need for such a hybrid model is dictated by the fact
that the PVC model is not variational in nature and thus it
does not allow the calculation of polarization effects due to
odd particle. Since the polarization effects and the corrections
due to the PVC have a different origin, they are treated as
additive quantities in the hybrid model which is a reasonable
approximation. The details of the hybrid model are discussed
in Sec. III.

The experimental and calculated energies of the particle
[ε(particle)] and hole [ε(hole)] states closest to the Fermi level
are determined from the difference of the binding energies of
the core [B(core)] and the corresponding adjacent odd nuclei
[B(core + nucleon) and B(core − nucleon)] as [13,29]

ε(particle) = B(core) − B(core + nucleon) (1)

and

ε(hole) = B(core − nucleon) − B(core). (2)

These quantities correspond to one-particle removal energies.
We will refer to them as single-particle energies to simplify
the discussion. Doubly magic spherical nuclei 56Ni, 100,132Sn,
and 208Pb are used as the cores in our analysis. Their ground
states are not affected by PVC. The experimental energies of
particle and hole defined according to these equations include
the polarization effects due to deformation and TO mean
fields induced by odd particle or hole as well as the energy
corrections due to particle-vibration coupling in odd-mass
nuclei. Thus, their comparison with the results of “hybrid”
calculations is straightforward.

On the other hand, there are some unresolved questions
when these energies are compared with pure mean-field
calculations as it is done frequently in the literature. The
problem is related to the fact that experimental single-particle
levels and their energies and structure are affected by the
particle-vibration coupling which is neglected on the mean-
field level. Each mean-field state k with energy εk is split
into many levels due to particle-vibration coupling, so the
single-particle strength is fragmented over many levels. In
the diagonal approximation for the nucleonic self-energy,
these levels have the same quantum numbers as the original
mean-field state k, but different energies εν

k and spectroscopic
factors Sν

k . Unlike the Hartree or Hartree-Fock approximations

2The name “nuclear magnetism” is frequently used in the CDFT to
describe the effect of time-odd mean fields induced by the magnetic
potential of the Dirac equation since this potential has the structure
of a magnetic field [5,28].

without pairing where the single-particle states are either
fully occupied or empty, in the PVC model their occupation
probabilities are the real numbers between zero and one, so
that the sum rule ∑

ν

Sν
k = 1 (3)

is satisfied. For the states in the vicinity of the Fermi surface
one usually obtains one dominant level with 0.5 � Sν

k � 1.0
and many other levels with small Sν

k . For the states far from
the Fermi surface one observes very strong splitting over
many levels with much smaller and comparable spectroscopic
factors; see the detailed analysis in Ref. [17] for 208Pb.

This discussion clearly indicates that some procedure has
to be employed in order to extract pure (or “bare”) single-
particle energies from experimental data which have to be
compared with mean-field single-particle energies εk . Two
such procedures have been discussed in the literature.

In the first procedure, the energy of the dominant fragment is
corrected by the energy shift due to particle-vibration coupling
leading to a “bare” single-particle energy. Such energies of
the doubly magic nuclei are extracted in some publications;
see, for example, Ref. [30]. However, this procedure relies
on the choice of particle-vibration coupling model. However,
different PVC models lead to different energy shifts (see
Table I in Ref. [31]). In addition, such a procedure frequently
neglects polarization effects due to deformation and TO mean
fields which are again model dependent. For example, there
is no time-odd mean fields in the phenomenological models
based on the Nilsson or Woods-Saxon potentials.

In the second procedure, the center of gravity of the
fragmented levels with a given quantum number jπ (j is the
total angular momentum and π is a parity) and energies εν

k is
obtained via the weighted-average [32,33] procedure

ε
grav
k =

[ ∑
ν

Sν
k εν

k

]/[ ∑
ν

Sν
k

]
. (4)

This energy is then associated with a “bare” single-particle
energy. This expression is fulfilled exactly in the PVC model
discussed in Sec. III B and it is satisfied with high accuracy
in this model numerical implementation. The normalization in
this procedure (which is omitted in some publications) is used
to minimize the uncertainties due to large experimental errors
in spectroscopic factors, since these errors lead to the fact that
the sum rule

∑
ν Sν

k = 1 is poorly fulfilled in the majority of
experiments. The application of this procedure requires that
all ν levels to which the single-particle state k is fragmented
are identified in the experiment and that spectroscopic factors
are measured accurately. These conditions are definitely not
satisfied in the 56Ni and 100,132Sn nuclei.

The situation is somewhat better in 208Pb, for which the
ε

grav
k values have been extracted in Ref. [33] for a number of

levels. However, even in this case the accuracy of the definition
of ε

grav
k is not known because of the number of reasons

listed below. The absolute values of spectroscopic factors are
characterized by large ambiguities and depend strongly on
the reaction employed in experiment and the reaction model
used in the analysis [33,34]. The spectroscopic factors in
odd-mass nuclei have been obtained in different reactions;
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TABLE I. Average deviations per state �ε between calculated
and experimental energies of the single-particle states for a proton
(neutron) subsystem of a given nucleus. The results obtained in the
“def + TO” and “hybrid” calculational schemes are shown.

Nucleus/Subsystem �εdef+TO [MeV] �εhybrid [MeV]

56Ni/proton 0.76 0.77
56Ni/neutron 0.89 0.71
132Sn/proton 1.02 0.68
132Sn/neutron 0.89 0.39
208Pb/proton 1.53 0.84
208Pb/neutron 1.00 0.47

for example, in the (d,3He) reaction for 207Tl [35], (α, t) for
209Bi [36], (3He,α) [37] and (d,t) [38] for 207Pb. Even in the
same nucleus different reactions give different spectroscopic
factors (see, for example, Table I in Ref. [38] and Table III
in the current manuscript). In addition, the spins and parities
of many high-lying fragments are uncertain (see, for example,
Table I in Ref. [35]) and/or only the part of the sum rule strength
has been observed in experiment (see, for example, Ref. [36]).
As a consequence, it is not clear whether the complete set
of the ν levels to which the single-particle state k is frag-
mented and their spectroscopic factors have been identified in
experiment.

In the light of this discussion it is clear that “bare” single-
particle energies cannot be defined with controllable precision
in the nuclei under study. As a result, we compare observed
experimental levels directly with mean-field calculations.
Such an approach is frequently used in the literature (see,
for example, Refs. [2,13,29]). It has clear limitations, but
at least it allows us to see (i) whether the inclusion of
particle-vibration coupling improves the description of specific
physical observables and (ii) whether or not the conclusions
reached earlier on the mean-field level are valid.

III. THEORETICAL FRAMEWORK

A. Mean-field level: Polarization effects

Mean-field results related to polarization effects due to
deformation and TO mean fields in odd-mass nuclei have
been obtained using cranked relativistic mean-field (CRMF)
theory [28,39,40]. Although this theory was initially developed
for the description of rotating nuclei, it is also able to describe
the nuclear systems with broken time-reversal symmetry in an
intrinsic frame at no rotation in which TO mean fields play an
important role (see Ref. [5]).

The application of the CRMF theory has the following
advantages. First, the CRMF computer code is formulated
in the signature basis. As a result, the breaking of Kramer’s
degeneracy of the single-particle states in odd-mass nuclei
is taken into account in a fully self-consistent way. This
is important for an accurate description of TO mean fields
(Ref. [5]). These fields have considerable impact on the
moments of inertia in rotating nuclei [41] and the fact that the
properties of such nuclei are well described in the CRMF code
(see Refs. [3,41]) adds confidence to proper description of TO

mean fields in nonrotating systems [5]. Second, the CRMF
computer code is formulated in three-dimensional cartesian
coordinates which allows us to describe not only axially
deformed but also triaxial nuclear shapes. This is important for
a proper description of polarization effects due to deformation.

It is a well-known fact that the description of pairing
correlations in doubly magic nuclei and their close neighbor-
hood is notoriously difficult and model-dependent (Ref. [42]).
The presence of large shell gaps leads to a pairing collapse
in the models with the treatment of pairing on the BCS
or Hartree-Fock-Bogoliubov (HFB) levels. This is seen, for
example, in nonrelativistic HFB calculations with the Gogny
D1S force of 100,132Sn in Ref. [42]. The calculations within the
relativistic Hartree-Bogoliubov (RHB) framework of Ref. [43]
with the same force for pairing also show pairing collapse in
the ground states of 56Ni, 100,132Sn, and 208Pb. The pairing
correlations are restored when the particle-number projection
is implemented. However, there is a substantial difference
between different approaches [such as the Lipkin-Nogami
(LN) method of approximate particle-number projection or
projection after variation (PAV) approach] and the variation
after projection (VAP) approach; the latter represents the
best approach for the treatment of pairing correlations [15].
The RHB + LN calculations with the Gogny D1S force for
pairing show very weak pairing in the nuclei of interest. The
additional binding due to pairing (relatively to the results
with no pairing) is only 0.333 MeV, 0.284 MeV, 0.493 MeV,
and 0.557 MeV in 56Ni, 100,132Sn, and 208Pb, respectively.
The blocking of a single-particle orbital in an odd-mass
nucleus leads to the weakening of pairing correlations and to
frequent unphysical pairing collapse even in the RHB + LN
calculations. The physical quantities, such as given by Eqs. (1)
and (2), are relative in nature. Thus, we believe that in the case
of weak pairing they are sufficiently well described in unpaired
calculations. As a consequence, we neglect pairing correlations
in the CRMF calculations. Note that they are also neglected in
the PVC calculations.

Similar to Ref. [13], binding energies of odd-A nuclei were
calculated by blocking the (nr + 1, jπ , j ) state [amongst the
(nr + 1, jπ ,m) states] with the largest projection m = j onto
the symmetry axis. Here, the nr and j are the single-nucleon
radial and total angular momentum quantum numbers. The
spherical subshell label of this state is used to label the
configuration of the odd-mass nucleus since the deformations
(induced by the odd particle or hole) of immediate odd-A
neighbors of doubly magic nuclei are rather small.

B. Beyond covariant density functional theory: Single-particle
spectra of nuclei

1. Particle-vibration coupling model of time dependence
of nucleonic self-energy

The mean-field approach, being a very useful and conve-
nient theoretical tool to describe finite nuclei, is, however, only
a static and local approximation to the many-body problem.
The nonlocality (or, equivalently, momentum dependence) is
implicitly taken into account by an effective mass which is
considerably smaller than the bare nucleon mass. This enables
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one to reproduce reasonably well the general properties
of the single-particle motion in the nuclear potential well.
However, the mean-field approximations based on the widely
used Skyrme, Gogny, as well as covariant density functionals
generate excessively stretched single-particle spectra around
the Fermi surface and often fail to describe the sequence of the
single-particle levels. Proper inclusion of the time dependence
in the nucleonic potential requires going beyond the mean-field
description, which is static by construction.

The underlying physics responsible for the time dependence
is related to many-body correlations; that is, to the part of
the Hamiltonian which cannot be expressed in terms of the
one-body density. In the medium-mass and heavy nuclei, the
leading-order contribution of such correlations to the nucleonic
self-energy comes from coupling of the nucleonic motion to
the surface and volume vibrational modes (phonons). The most
important collective vibrational modes are generated by the
nuclear oscillations of coherent nature. Taking into account
the coupling of these modes to the single-particle motion,
the shell model acquires a dynamic content. These surface
and volume oscillations, especially their low-lying modes,
modify considerably the picture of the single-particle motion
in nuclei. The main assumption of the quasiparticle-phonon
coupling model is that two types of elementary degrees of
freedom—one-quasiparticle (1-qp) and collective ones—are
coupled in such a way that configurations of 1-qp⊗phonon
type with low-lying phonons strongly compete with simple
1-qp configurations located close in energy or, in other words,
that quasiparticles can emit and absorb phonons with rather
high probabilities [44,45].

Taking the quasiparticle-phonon coupling into account as
an additional time-dependent part of the nucleonic self-energy
leads to the splitting of each mean-field single-particle state
into many energy levels. The dominant levels (i.e., the levels
with the largest spectroscopic factors) shift, as a rule, toward
the Fermi level, improving considerably the agreement with
data (see the review of various applications in Ref. [16] and
references therein). This result is obtained, however, only for
states within about 10 MeV of the Fermi energy. For the
states lying far from the Fermi surface one observes a very
strong fragmentation, making extraction of the dominant levels
impossible.

A similar general picture has been obtained within the
particle-vibration coupling extension of the covariant density
functional theory [17]. Unlike the nonrelativistic versions of
the model, in the extended CDFT the particle-phonon coupling
self-energy allows intermediate nucleonic propagation through
the Dirac sea states with negative energies, in addition to the
particle and hole states in the Fermi sea. The contribution of
the Dirac-sea terms to the self-energy at the Fermi level are,
however, found to be negligibly small due to their large energy
denominators.

2. Approximations

In the present investigation we retain basically the cal-
culational scheme of Ref. [17]. This approach implies a
linearized version of the particle-vibration coupling model:
the Dyson equation for single-particle Green function contains

the phonon-coupling self-energy with mean-field intermediate
nucleonic propagators and phonon energies and vertices
computed within the relativistic random phase approxima-
tion (RRPA) [46]. For medium-mass and heavy nuclei the
RRPA gives a very reasonable description of the phonon
spectra. Although a more precise description of the phonons
can be achieved within an approach like the relativistic
time-blocking approximation (RTBA) [47], particle-vibration
coupling model of Ref. [17] by using the RRPA phonons takes
into account the major contribution of the vibrational motion
to the single-particle spectra.

The application of the model to the lightest doubly magic
nuclei 16O, 40Ca, and 48Ca requires, however, a special
consideration because their mean-field single-particle level
densities are too small to provide sizable configuration mixing
around the Fermi surface. For 16O and 40Ca, it is not possible,
in principle, to reproduce within the RRPA the low-lying
phonons with positive parity (first positive parity particle-hole
excitations are at excessively high energies). In such cases
the phonon spectra for the nucleonic self-energy should
be calculated, allowing an extension for coupling to more
complex configurations; this implies a generalized particle-
vibration coupling model and will be done in a separate work.
In 48Ca we have obtained a rather reasonable phonon spectrum,
but the strong fragmentation of the hole states does not allow
extraction of the dominant single-particle levels.

The phonons of unnatural parities are known to play only
a marginal role in the nucleonic self-energy, so they are
not included into the phonon space. Moreover, the inclusion
of pairing vibrations into the phonon space has not yet
been studied within the relativistic framework. In principle,
they may bring some additional corrections to the results,
although our approximation is justified by the results of
Refs. [47,48], where the fragmentation of the collective modes
has been reproduced very well without inclusion of the pairing
vibrations.

C. Numerical details of calculations

The CRMF equations are solved in the basis of an
anisotropic three-dimensional harmonic oscillator in Cartesian
coordinates characterized by the deformation parameters β0 =
0.0 and γ = 0◦ as well as the oscillator frequency h̄ω0 =
41A−1/3 MeV. The truncation of the basis is performed in such
a way that all states belonging to the shells up to fermionic
NF = 20 and bosonic NB = 20 are taken into account in the
calculations. Numerical analysis indicates that this truncation
scheme provides sufficient numerical accuracy for the physical
quantities of interest. Note that the same truncation of basis
is used in the RRPA and PVC calculations, but they are
performed at spherical shape.

The NL3* [27] parametrization of the RMF Lagrangian is
used in the CRMF, RRPA, and PVC calculations. This recently
fitted parametrization has been successfully applied to the
description of binding energies [27], ground-state properties of
deformed nuclei [49], fission barriers [50], rotating nuclei [27],
giant resonances [27], and breathing mode [51].
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FIG. 1. (Color online) Single-particle strength distributions of the neutron 1g9/2 state in 132Sn calculated within the PVC model with
different numbers of the phonon modes. Red bars show the initial mean-field 1g9/2 neutron state.

D. Cutoff problem of phonon basis

Phonons of the multipolarities 2+, 3−, 4+, 5−, 6+ with
energies below 15 MeV are included in the model space of
the PVC calculations. We have neglected only phonon modes
with very small transition probabilities; less than 5% of the
maximal ones for each Jπ . The phonon energies and their cou-
pling vertices have been computed within the self-consistent
RRPA.

A rather good convergence of the phonon coupling self-
energy with extension of the phonon space has been obtained
numerically: with very few exceptions, the addition of phonon
modes with energies above 15 MeV does not affect the results.
Partial contributions from phonons with low angular momenta
and low energies have been also investigated. An example of
such a study is shown in Fig. 1 for the neutron 1g9/2 state in
132Sn. This typical deeply bound hole state is strongly frag-
mented when the PVC is taken into account; see the panel (d)
with the results obtained with the full phonon set below
15 MeV.

Panels (a) and (b) show the results obtained when only the
phonons below 5 and 10 MeV, respectively, are taken into
account. One can see that, in the former case, the picture is
very different from that displayed in panel (d). In the latter case
the results are already close to saturation, but there are still two
states between −20 and −18 MeV with spectroscopic factors
larger than 0.1. Panel (c) shows how the angular momentum
cutoff weakens the fragmentation effect. A similar conclusion
can be drawn for other states either far from or around the
Fermi surface: cutoff of the angular momenta and of the
phonon energies has to be made with care.

IV. RESULTS AND DISCUSSION

A. Theoretical and experimental spectra

An example of the comparison of the results of calculations
and experiment is shown in Fig. 2. Column “sph” shows
single-particle spectra obtained in spherical RMF calculations
of even-even 56Ni nucleus. Column “def” displays one-
nucleon separation energies [defined according to Eqs. (1)
and (2)] obtained in triaxial CRMF calculations in which only
deformation polarization effects are taken into account. It is
seen that these energies are close to the single-particle energies
obtained in spherical calculations. This shows that deformation
polarization effects induced by extra particle or hole are
rather modest. In general, they lead to a slight compression
of the calculated spectra as compared to those obtained in
spherical calculations. Note that the magnitude and impact of
deformation polarization effects are similar in our calculations
and in the calculations of Ref. [13].

The inclusion of time-odd mean fields induces additional
binding in odd-mass nuclei (see Ref. [5] for more detail),
which is rather modest being around 100–200 keV in the nuclei
around 56Ni. This again introduces a slight compression of the
calculated spectra (Fig. 2). One should note that additional
binding due to TO mean fields in odd-mass nuclei (and a
subsequent compression of the spectra) is substantially larger
in the calculations of Ref. [13]. For example, it is around
0.5 MeV in the nuclei around 208Pb and reaches 1–1.5 MeV
in 56Ni. Note that, for the latter nucleus, additional binding
due to TO mean fields is only 0.1–0.2 MeV in our CRMF
calculations (see Fig. 2). The reason for this difference is not
clear. However, additional bindings due to TO mean fields in
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FIG. 2. (Color online) Spectra of 56Ni and its neighboring odd nuclei. Column “sph” shows the single-particle spectra obtained in spherical
RMF calculations of 56Ni. Column “sph + PVC” shows the spectra obtained in spherical calculations within the PVC model. Columns “def,”
“def + TO,” “hybrid,” and “exp” show one-nucleon separation energies defined according to Eqs. (1) and (2). Column “def” is based on the
results of triaxial CRMF calculations with no TO mean fields. These fields are included in the calculations the results of which are shown in
column “def + TO”. The corrections due to PVC are added in column “hybrid.” The experimental single-particle energies are displayed in
column “exp;” they are based on the data of Refs. [77] (masses of ground states), [78] (55Ni), [69] (55Co), [30,70] (57Ni), and [30] (57Cu). In
order to distinguish overlapping levels, orange and then maroon colors are used for the levels in addition to their standard color used in a given
column. See text for more details.

the nuclei under study obtained in our CRMF calculations are
within the typical ranges obtained in the systematic study of the
impact of TO mean fields on the binding energies of odd mass
nuclei (Ref. [5]). In addition, the CRMF code employed here
has been extensively and successfully used in the description of
rotating systems in which TO fields have very large impact on
the moments of inertia (see Refs. [3,41] and references quoted
therein). These two facts strongly suggest that the impact of
TO mean fields is correctly described in the current work.

The dominant levels (i.e., the levels with the largest spec-
troscopic factors) as obtained in spherical PVC calculations
are shown in column ‘‘sph + PVC”. One can see two effects
of particle-vibration coupling: (i) the general compression of
the spectra leading to a better agreement with experiment and
(ii) in some cases the change of the level sequences. With few
exceptions, the spectroscopic factors of the dominant levels in
the vicinity of the Fermi level vary between 0.5 and 0.9 (see
Tables III and IV below), thus these states retain basically their
single-particle nature.

The impact of particle-vibration coupling on specific states
can be quantified by the energy difference between the energies
of this state in the columns “sph” and ‘‘sph + PVC” of
Fig. 5. These energy differences, treated as the corrections

due to PVC, are then added to one-neutron separation energies
obtained in triaxial CRMF calculations; this leads to column
“hybrid.” The results in this column are compared with
experimental data presented in column “exp.”

The single-particle spectra of doubly magic 100Sn, 132Sn,
and 208Pb nuclei, obtained in the same way as for Fig. 2, are
displayed in Figs. 3–5. They show similar effects due to PVC
and the polarizations induced by deformation and TO mean
fields as in the case of 56Ni. Their details will be discussed
below.

Let consider major conclusions emerging from these
calculations. They are related to the role of polarizations effects
due to deformation and TO mean fields and the impact of PVC
on the accuracy of the description of single-particle spectra,
shell gaps, pseudospin doublets, and spin-orbit splittings.

B. Polarization effects due to deformation and time-odd
mean fields

Combined polarization effects due to deformation and TO
mean fields are shown in Fig. 6. Two features are clearly seen.

First, combined polarization effects due to deformation
and time-odd mean fields decrease with an increase of mass
number. Indeed, with an increase of the size of nucleus the

014305-7



E. V. LITVINOVA AND A. V. AFANASJEV PHYSICAL REVIEW C 84, 014305 (2011)

-15

-10

-5

0

5
Si

ng
le

-p
ar

ti
cl

e 
en

er
gi

es
 [

M
eV

]

-30

-25

-20

-15

-10

-5

100
Sn

3s
1/2

2d
3/2

50

2d
5/2

2p
1/2

2p
3/2

1f
5/2

1g
9/2

1h
11/2

1h
11/2

2d
3/2

3s
1/2

2d
5/2

2p
3/2

1g
9/2

PROTONS NEUTRONS

1g
7/2

sphsph def hybrid hybriddef exp.exp.
+PVC +TO

sph
+PVC

sph def def
+TO

50

1f
7/2

1g
7/2

2d
5/2

2p
1/2

1f
5/2

1f
7/2

2d
5/2

FIG. 3. (Color online) The same as in Fig. 2 but for the spectra of 100Sn. Extrapolated “experimental” single-particle energies of proton and
neutron spherical subshells are taken from Ref. [55].

relative role of each single-particle orbital becomes smaller,
which leads to the fact that the calculated quadrupole defor-
mations of odd-mass nuclei decrease with an increase of mass.
For example, the average proton and neutron deformations of
calculated single-particle states in 57Cu and 57Ni are 0.045
and 0.060, respectively. On the contrary, these deformations
are significantly smaller in 209Bi and 209Sn; they are only
0.0055 and 0.006, respectively. Thus, odd nuclei neighboring
208Pb remain basically spherical. The decrease of calculated
deformations of odd-mass nuclei neighboring doubly magic
nuclei with increasing mass clearly indicates that deformation
polarization effects also decrease with mass number. In
addition, additional binding due to TO mean fields decreases
with mass (see Ref. [5] for details). The combination of these
two effects is responsible for the features seen in Fig. 6.

Figure 6 also reveals that combined polarization effects
due to deformation and TO mean fields are smaller for protons
than for neutrons by a factor of approximately two. This is
especially true for the N = Z 56Ni and 100Sn nuclei which have
the same proton and neutron single-particle states. The part of
this difference comes from the fact that additional binding due
to TO mean fields is smaller for odd-proton nuclei as compared
with odd-neutron nuclei (see Ref. [5]). The analysis of Ref. [5]
clearly indicates that the contributions of the Coulomb force to
the proton single-particle energies in the presence of TO mean
fields are responsible for this feature. Deformation polarization
effects show the same features; namely, they are smaller for
odd-proton nuclei as compared with odd-neutron nuclei. For
example, average deformation polarizations per single-particle

state are 0.157 MeV and 0.326 MeV for proton and neutron
single-particle states of 56Ni, respectively, and 0.060 MeV and
0.164 MeV for proton and neutron single-particle states of
100Sn, respectively. Similar to the case of polarizations due to
TO mean fields, the origin of this difference has to be traced
back to the Coulomb force since compared sets of proton and
neutron single-particle states are the same in a given N = Z

nucleus.
The majority of the comparisons of the energies of the

single-particle states obtained in different particle vibration
coupling models with experiment neglect deformation and TO
mean-field polarization effects induced by the odd particle
(see, for example, Refs. [16,17,52]). The current analysis
indicates that within the framework of CDFT this neglect is
more or less justified only for heavy nuclei, and it is more
justified for a proton subsystem than for a neutron subsystem.

C. Accuracy of description of single-particle spectra

The analysis of Figs. 2, 4, and 5 reveals that the inclusion of
particle vibration coupling substantially improves the accuracy
of the description of single-particle spectra. This statement is
quantified in Fig. 7 and Table I.

Figure 7 displays the distribution of the deviations between
calculated and experimental energies of the single-particle
states in proton and neutron subsystems of 56Ni, 132Sn, and
209Pb. It clearly shows that, on average, the inclusion of
particle-vibration coupling substantially improves the descrip-
tion of single-particle spectra, and that neutron single-particle
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FIG. 4. (Color online) The same as in Fig. 2 but for the spectra of 132Sn. The experimental single-particle energies are based on the data of
Refs. [77] (masses of ground states), [71] (131Sn), [72] (131In), [73,74] (133Sb), and [63] (133Sn).

states are better described than their proton counterparts. How-
ever, even in the “hybrid” calculations there are few (mostly
proton) states which deviate from experiment by more than
1 MeV. Note that the inclusion of particle-vibration coupling
can make the agreement between theory and experiment worse
for some states. This is seen, for example, in the case of proton
3s1/2 and 1h9/2 subshells in 208Pb (Fig. 5).

Average deviations per state, �ε, between calculated and
experimental energies of the single-particle states are shown
in Table I. They are defined as

�ε =
∑N

i=1

∣∣εtheor
i − ε

expt
i

∣∣
N

, (5)

where N is the number of the states with known experimental
single-particle energies, and εtheor

i (εexpt
i ) are calculated (exper-

imental) energies of the single-particle states. One can see that
the inclusion of PVC substantially improves the description of
the single-particle states in 132Sn and 208Pb. On the contrary,
PVC introduces no (small) improvement in the description
of the proton (neutron) single-particle states of 56Ni. It is
interesting to mention that the best agreement with experiment
is obtained in the “hybrid” calculations of neutron-rich 132Sn.

While the accuracy of the description of proton and neutron
states is comparable in 56Ni, neutron states are appreciable
better described than proton ones in the “hybrid” calculations
of 132Sn and 208Pb. The analysis of Figs. 4 and 5 strongly
suggests that the increases of the depth of proton potential in
these two nuclei by few hundreds keV (and as a result the
lowering of the energies of proton single-particle states by

similar energy) will improve the agreement with experiment.
This clearly indicates that the inclusion of the single-particle
energies into the fit of the CDFT parametrizations can provide
extra information on the depth of the proton and neutron
potentials and their evolution with particle numbers.

The detailed comparison between theory and experiment
has not been performed for 100Sn since very little experimental
information is available on neighbouring to 100Sn nuclei with
one nucleon less (more) (see, for example, Refs. [53,54]).
Unfortunately, the extrapolations of the single-particle ener-
gies from other odd nuclei toward 100Sn do not give unique
values. This is illustrated in Table II where the results of the
extrapolations of Refs. [55,56] are shown. Note that the esti-
mates of the energies of the single-particle states of Ref. [56]
coincide within the estimation errors (given in Table II in
parentheses) with the values reported in Ref. [55], except for
the energy of the 1g7/2 proton state. However, estimation errors
are significant, which makes detailed comparison between
theory and experiment meaningless. On the other hand, one
can clearly see in Fig. 3 that PVC improves the agreement with
experimental estimates.

D. Impact of particle-vibration coupling on shell gaps

The size of the shell gap (between the last occupied and
first unoccupied states in even-even doubly magic nuclei) is
defined as

δ(Z,N) = min{(εi)
above} − max{(εi)

below}, (6)
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FIG. 5. (Color online) The same as in Fig. 2 but for the spectra of 208Pb. The experimental single-particle levels are based on the data of
Refs. [75–77].

where (εi)above and (εi)below stand for the energies of the
single-particle states above and below the shell gap. This
definition of the shell gap incorporates the information from
three different nuclei because the single-particle energies are
defined according to Eqs. (1) and (2). The advantage of this
definition is that it allows to incorporate the polarization (due
to deformation and TO mean fields) and PVC effects on the
size of the shell gap.

Figure 8 compares experimental shell gaps with the shell
gaps obtained in the ‘‘def + TO” and “hybrid” calculations.
The extrapolations of Refs. [55,56] for the single-particle
energies in 100Sn lead to quite different values of the proton
Z = 50 shell gap. It is reasonable to expect the same situation
for the neutron N = 50 shell gap, the size of which, however,
cannot be determined in the extrapolations of Ref. [56] since
no estimates for the single-particle states below it are provided
(see Table II).

The shell gaps are largest in the spherical mean-field
calculations. The gaps become smaller with the inclusion
of each additional type of correlations. The inclusion of
polarization effects due to deformation and TO mean fields
decreases slightly their sizes (see Figs. 2–5). Thus, we compare
with experiment in Fig. 8 only the PVC (“hybrid”) and best
mean-field (“def + TO”) calculations. This figure shows that
particle-vibration coupling decreases substantially the size
of the shell gaps. The effect is most pronounced in 56Ni
where PVC decreases the proton Z = 28 and neutron N = 28
shell gaps by almost 2 MeV. On the contrary, the effect of
particle-vibration coupling is least pronounced in 208Pb in

which it decreases the size of the neutron N = 126 gap by
only few hundred keV and has almost no impact on the proton
Z = 82 shell gap.

Comparing experimental and calculated shell gaps in 56Ni,
132Sn, and 208Pb, one can conclude that both calculational
schemes provide similar accuracy of the description of exper-
imental data. However, experimental shell gaps are typically
overestimated in the “def + TO” calculations. The exceptions
are the Z = 50 gap in 132Sn and the Z = 82 gap in 208Pb.
On the contrary, with the exception of the N = 126 gap in
208Pb, the size of the experimental gaps is underestimated in
the calculations with particle-vibration coupling.

E. Spectroscopic factors

The calculated spectroscopic factors for odd nuclei
with doubly-magic cores are compared with experiment in
Tables III and IV. In odd nuclei neighboring 208Pb, the
experimental spectroscopic factors are reasonably well repro-
duced in the PVC calculations. Both in experiment and in
calculations the proton states are found to be somewhat more
fragmented than the neutron states. When comparing theory
with experiment one should keep in mind that the experimental
spectroscopic factors depend considerably on the parameters
used in the model analysis and on the reaction employed,
which is clearly seen in the staggering of experimental values.
Note that the results obtained for 208Pb with the NL3*
parametrization are very close to those obtained previously
in Ref. [17] with the NL3 force.

014305-10



DYNAMICS OF NUCLEAR SINGLE-PARTICLE STRUCTURE . . . PHYSICAL REVIEW C 84, 014305 (2011)

0

0.2

0.4

0.6

0.8

1

1.2

|ε sp
h -

 ε
de

f+
T

O
|  

[M
eV

]

Δε
ν =

 0
.4

5 
M

eV

Δε
π =

 0
.2

1 
M

eV

Δε
π =

 0
.0

9 
M

eV
Δε

ν =
 0

.3
0 

M
eV

Δε
π =

 0
.0

7 
M

eV

Δε
ν =

 0
.1

8 
M

eV

56
Ni

132
Sn

208
Pb100

Sn

Δε
π =

 0
.0

5 
M

eV
Δε

ν =
 0

.1
6 

M
eV

protons - solid blue circles
neutrons - open red circles

FIG. 6. (Color online) Combined polarization effects due to
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For other nuclei, the experimental data are available only for
133Sn (Table III) and 57Ni (Table IV). The level of agreement
between theory and experiment in 133Sn is comparable with
that seen in odd nuclei neighboring 208Pb. The situation in 57Ni
is more controversial. For example, the sum rule (3) is strongly
violated in the case of the 1f5/2 state in the experimental data
of Ref. [64]. In addition, experimental spectroscopic factors
for the 2p3/2 state in 57Ni extracted by means of the (d,p)
transfer [34] and one-neutron knockout [64] reactions differ
by a factor of almost two. Currently, there is no satisfactory
explanation for this difference (Ref. [34]). The results of
the PVC calculations are lower than the experimental values
obtained in the (d, p) transfer reaction but higher than the
ones obtained in the one-neutron knockout reaction. On the
other hand, the spectroscopic factors obtained in the PVC
calculations are very close to the ones obtained in the spherical
shell model calculations in full fp model space which employ
the GXPF1A interaction (see Table II in Ref. [34]). Note
that the latter calculations provide the best agreement with
the data for Ni isotopes [34]. One should also mention that
nonrelativistic particle-vibration calculations of Ref. [65] give
the spectroscopic factors for the 2p3/2, 1f5/2, and 2p1/2 states
which are very close to 0.6.

F. Impact of particle-vibrational coupling
on spin-orbit splittings

Covariant density functional theory naturally describes the
spin-orbit interaction in nuclei [1,2], which is a relativistic ef-
fect that has to be added phenomenologically in nonrelativistic
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FIG. 7. (Color online) The deviations of calculated energies of
the single-particle states from experimental states obtained in the
“def + TO” and “hybrid” calculational schemes for indicated nuclei.
The results for proton and neutron states are given by solid and open
circles.

models. The comparison of experimental spin-orbit splittings
with calculations has been performed only at the mean-field
level so far (see, for example, Refs. [4,13]). However, the
current work clearly indicates that particle-vibration coupling
has an impact on the energies of the single-particle states.
Thus, it is reasonable to expect that it will also modify the
spin-orbit splittings.

TABLE II. Extrapolated “experimental” single-particle energies
of spherical proton and neutron subshells in 100Sn. The results of the
extrapolations of Refs. [55,56] are shown.

Subshell εi [MeV] [55] εi [MeV] [56]

Neutrons

1h11/2 −8.6(5) −7.8(8)
2d3/2 −9.2(5) −8.8(8)
3s1/2 −9.3(5) −9.3(9)
2g7/2 −10.93(20) −10.4(10)
2d5/2 −11.13(20) −11.1(10)
1g9/2 −17.93(30)
2p1/2 −18.38(20)

Protons
1g7/2 +3.90(15) 2.6(3)
2d5/2 +3.00(80) 2.8(3)
1g9/2 −2.92(20) −2.9(3)
2p1/2 −3.53(20) −3.5(3)
2p3/2 −6.38
1f5/2 −8.71
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In order to understand the impact of polarization effects
(due to deformation and TO mean fields) and particle-vibration
coupling on spin-orbit splittings, the results of the “sph,”
“sph + PVC,” “def,” “def + TO,” and “hybrid” calculations
are compared with available experimental data on the spin-
orbit doublets in Figs. 9–11.

The impact of deformation and TO mean-field polarization
effects on spin-orbit splittings is rather modest in 208Pb
(Fig. 9) since these effects are smallest in heavy systems (see
Sec. IV B). In addition, both of them lead to a compression
of the single-particle spectra. As a consequence, they act in
the same direction for the members of the spin-orbit doublet,
which is built either from hole (below the shell gap) or particle
(above the shell gap) states. Moreover, these polarization
effects are more or less similar in magnitude for the members
of such spin-orbit doublets. As a consequence, they cancel to
a large extent when spin-orbit splitting is calculated as the
difference of the energies of the members of the spin-orbit
doublet. Such behavior is typical for the spin-orbit doublets
based on the orbitals with low orbital angular momentum l,
both members of which are located either below or above the
shell gap. For this type of the spin-orbit doublets, the impact
of polarization effects on spin-orbit splittings is also small
in 132Sn (Fig. 10). However, it becomes more pronounced
(especially in the neutron subsystem) in 56Ni (Fig. 11).

The situation is different for the spin-orbit doublets built
on the orbitals with high orbital angular momentum l. For
such doublets, one member is located above the shell gap,
while another below the shell gap. The compression of the
single-particle spectra due to deformation and TO mean-field
polarization effects leads to the decrease of spin-orbit splitting.
This decrease is especially pronounced for light nuclei and for
the neutron subsystem in a given nucleus (compare Figs. 11,
10, and 9) because of particle number and subsystem (proton
or neutron) dependencies of the polarization effects discussed
in Sec. IV B.

The impact of particle-vibration coupling on spin-orbit
splittings is state-dependent. It is small or modest in the
proton l = 3(2f7/2–2f5/2) and neutron l = 1 (3p3/2–3p1/2),
l = 2 (2d5/2–2d3/2) and l = 4 (2g9/2–2g7/2) doublets of 208Pb
(Fig. 9), proton l = 2 (2d5/2–2d3/2) and neutron l = 1 (3p3/2–
3p1/2) and l = 3 (2f7/2–2f5/2) doublets of 132Sn (Fig. 10),
and neutron and proton l = 1(2p3/2–2p1/2) doublets in 56Ni
(Fig. 11). In these doublets, the corrections to the energies of
the members of the spin-orbit doublet due to PVC are more or
less the same.

However, this is not always the case for the doublets based
on the orbitals with low orbital angular momentum l. For
example, the corrections due to PVC differ significantly for
the proton 3d3/2 and 3d5/2 states of 208Pb (Fig. 5). As a
consequence, particle-vibration coupling significantly affects
the spin-orbit splitting of the proton l = 2 (3d5/2–3d3/2)
doublet. In addition, spin-orbit splittings of the proton l = 1
(3p3/2–3p1/2) and neutron l = 3 (2f7/2–2f5/2) doublets in
208Pb (Fig. 9) as well as of the neutron l = 2 (2d5/2–2d3/2)
doublet in 132Sn (Fig. 10) are strongly affected by particle-
vibration coupling.

The effect of particle-vibration coupling is especially pro-
nounced for the spin-orbit doublets with high orbital angular
momentum l, the one member of which is located below the
shell gap and another above the shell gap. These are the proton
l = 5 (1h11/2–1h9/2) and neutron l = 6 (1i13/2–1i11/2) doublets
in 208Pb (Fig. 9), the proton l = 4 (1g9/2–1g7/2) and neutron
l = 5 (1h11/2–1h9/2) doublets in 132Sn (Fig. 10), and the proton
and neutron l = 3 (1f7/2–1f5/2) doublets in 56Ni (Fig. 11). For
these doublets, the spin-orbit splittings are largest in spherical
calculations. The inclusion of polarization effects due to
deformation and TO mean fields decreases these splittings.
The PVC coupling further reduces the energy splittings by ap-
proximately 1 MeV in medium- and heavy-mass nuclei (Figs.
9 and 10) and by approximately 1.5 MeV in 56Ni (Fig. 11).

It is interesting to compare these results with those obtained
in the nonrelativistic PVC model of Ref. [52] based on the
Skyrme energy density functional. Such a comparison is
possible only for neutron spin-orbit doublets of 208Pb. The
impact of PVC on spin-orbit splittings in the nonrelativistic
model can be extracted by comparing the columns “tensor
included” and “PVC included” of Fig. 6 in Ref. [52] and
compare with our results shown in the right panel of Fig. 9
(or the right panel of Fig. 5). It turns out that relativistic and
nonrelativistic models show similar changes (both direction
[increase or decrease] and magnitude) in spin-orbit splittings
induced by PVC in the majority of the cases. In both models,
PVC leads to small increase [decrease] by approximately
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TABLE III. Spectroscopic factors S of the dominant single-particle levels in odd nuclei surrounding 208Pb and 132Sn calculated within the
relativistic particle-vibration coupling model compared to experimental data. The experimental data are taken from Refs. [57] [209Bi, (3He,d)
reaction], [36] [209Bi, the (α,t) reaction], [35] [207Tl, the (d ,3He) reaction], [58] [207Tl, the (t, α) reaction], [59] [207Pb, the (d,t) reaction], [60]
[207Pb, the (3He,α) reaction], [61] [209Pb, the (d,p) reaction], [62] [209Pb, the (α, 3He) reaction], and [63] [133Sn, the (d,p) reaction]. For
comparison the experimental data from two different reactions are presented for odd-mass nuclei neighboring 208Pb.

Nucleus State Stheor Sexpt Sexpt Nucleus State Stheor Sexpt

209Pb 2g9/2 0.85 0.78 ± 0.1 [61] 0.94 [62] 133Sn 2f7/2 0.89 0.86 ± 0.16
1i11/2 0.89 0.96 ± 0.2 [61] 1.05 [62] 3p3/2 0.91 0.92 ± 0.18
1j15/2 0.66 0.53 ± 0.2 [61] 0.57 [62] 1h9/2 0.88
3d5/2 0.89 0.88 ± 0.1 [61] 3p1/2 0.91 1.1 ± 0.3
4s1/2 0.92 0.88 ± 0.1 [61] 2f5/2 0.89 1.1 ± 0.2
2g7/2 0.87 0.78 ± 0.1 [61]
3d3/2 0.89 0.88 ± 0.1 [61]

209Bi 1h9/2 0.88 1.17 [57] 0.80 [36] 133Sb 1g7/2 0.86
2f7/2 0.78 0.78 [57] 0.76 [36] 2d5/2 0.82
1i13/2 0.63 0.56 [57] 0.74 [36] 2d3/2 0.63
2f5/2 0.61 0.88 [57] 0.57 [36] 1h11/2 0.79
3p3/2 0.62 0.67 [57] 0.44 [36] 3s1/2 0.70
3p1/2 0.37 0.49 [57] 0.20 [36]

207Pb 3p1/2 0.90 1.08 [60] 131Sn 2d3/2 0.88
2f5/2 0.87 1.13 [59] 1.05 [60] 1h11/2 0.86
3p3/2 0.86 1.00 [59] 0.95 [60] 3s1/2 0.87
1i13/2 0.82 1.04 [59] 0.61 [60] 2d5/2 0.70
2f7/2 0.64 0.89 [59] 0.64 [60] 1g7/2 0.72
1h9/2 0.38

207Tl 3s1/2 0.84 0.95 [58] 0.85 [35] 131In 1g9/2 0.85
2d3/2 0.86 1.15 [58] 0.90 [35] 2p3/2 0.70
1h11/2 0.80 0.89 [58] 0.88 [35] 2p1/2 0.85
2d5/2 0.68 0.62 [58] 0.63 [35] 1f5/2 0.37
1g7/2 0.22 0.40 [58] 0.27 [35]

TABLE IV. Spectroscopic factors S of the dominant single-particle levels in odd nuclei surrounding 100Sn and 56Ni calculated within the
relativistic particle-vibration coupling model. They are compared to the experimental values extracted by means of the (d,p) transfer [34] and
one-neutron knockout [64] reactions in the case of 57Ni.

Nucleus State Stheor Nucleus State Stheor Sexpt [34] Sexpt [64]

101Sn 2d5/2 0.85 57Ni 2p3/2 0.83 0.95 ± 0.29 0.58 ± 0.11
1g7/2 0.85 1f5/2 0.79 1.40 ± 0.42
2d3/2 0.78 2p1/2 0.76 1.00 ± 0.30
3s1/2 0.81 1g9/2 0.79

1h11/2 0.80
101Sb 2d5/2 0.87 57Cu 2p3/2 0.85

1g7/2 0.86 1f5/2 0.80
2d3/2 0.83 2p1/2 0.80
3s1/2 0.87 1g9/2 0.80

1h11/2 0.81
99Sn 1g9/2 0.84 55Ni 1f7/2 0.78

2p1/2 0.85 2s1/2 0.71
2p3/2 0.71 1d3/2 0.62
1f5/2 0.62 1d5/2 0.20
1f7/2 0.11

99In 1g9/2 0.85 55Co 1f7/2 0.78
2p1/2 0.86 2s1/2 0.73
2p3/2 0.73 1d3/2 0.64
1f5/2 0.66 1d5/2 0.20
1f7/2 0.14
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FIG. 9. (Color online) Spin-orbit splitting energies �Els of the
spin-orbit doublets in 208Pb. Inset shows the colors used for different
values of orbital angular momentum l. Theoretical results are shown
by symbols, while the experimental values by solid lines. Solid (open)
symbols are used for spin-orbit doublets which are build from the
particle (hole) states with respect of the 208Pb core. The stars and
crosses are used for the spin-orbit doublets which involve both particle
and hole states.

0.15 MeV of the splitting of the l = 2 (3d5/2–3d3/2) [l = 1
(3p3/2–3p1/2)] spin-orbit doublet. The spin-orbit splittings of
the l = 3 (2f7/2–2f5/2) (located below the N = 126 shell
gap) and l = 6 (1i13/2–1i11/2) (the members of the doublet
located below and above the N = 126 shell gap) doublets are
decreased by approximately 0.5 MeV in the nonrelativistic
model and by approximately 0.9 MeV in the relativistic
model when PVC is taken into account. The difference
exists only in the case of the l = 4 (2g9/2–2g7/2) spin-orbit
doublet, the splitting of which is slightly decreased by PVC
in nonrelativistic calculations and increased by 0.3 MeV in
relativistic calculations.
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FIG. 10. (Color online) The same as in Fig. 9 but for the spin-orbit
doublets of 132Sn.
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FIG. 11. (Color online) The same as in Fig. 9 but for the spin-orbit
doublets of 56Ni.

Fig. 12 presents percent deviations δ(�Els) of the calcu-
lated spin-orbit splittings from experimental splittings defined
as

δ(�Els) = �Etheor
ls − �E

expt
ls

�E
expt
ls

× 100%, (7)

where �Els is the spin-orbit splitting energy. Negative (pos-
itive) values of δ(�Els) indicate that experimental spin-orbit
splitting is underestimated (overestimated) in the calculations.
One can see that, on average, the mean-field results are more
or less evenly scattered around zero percent deviation. On
the contrary, with few exceptions, particle-vibration coupling
calculations underestimate experimental spin-orbit splittings.
Spin-orbit doublets built on the orbitals with high orbital
momentum l, involving the members across the shell gap,
are rather well (within the 20% deviation) described in both
calculations. These doublets are characterized by large spin-
orbit splittings �Els in the range of 5–7 MeV, so the 20%
deviation means that the absolute deviation from experiment
is typically less than 1 MeV. The largest percent deviations
are observed for the spin-orbit doublets built on the orbitals
with low orbital angular momentum l. These doublets are
characterized by low spin-orbit splittings so relatively low
absolute deviations from experimental values of the order of a
few hundred keV result in appreciable percent deviations.

The analysis of the results of calculations allows us to
conclude that the inclusion of particle-vibration coupling
decreases the accuracy of the description of spin-orbit split-
tings. This is clearly visible when absolute and/or percent
deviations per doublet are compared in the mean-field and PVC
calculations. The absolute deviations per doublet are 0.34 MeV
(0.50 MeV), 0.23 MeV (0.56 MeV), and 0.26 MeV (0.45 MeV)
in the mean-field (“def + TO”) [particle-vibration coupling
(“hybrid”)] calculations in 56Ni, 132Sn, and 208Pb, respectively.
The percent deviations per doublet are 11.8 % (10.3%), 14%
(21.5%), and 19.3% (36.4%) in the mean field (“def + TO”)
[particle-vibration coupling (“hybrid”)] calculations in 56Ni,
132Sn, and 208Pb, respectively.
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These results are not surprising and should not be viewed
negatively. First of all, as discussed in Secs. II and IV E, the
experimental levels are not pure single-particle levels, and
as such they are closer in nature to the calculated levels of
the PVC model. Second, relativistic description [1] predicts a
definite connection between the Dirac effective mass m∗

D/m of
the nucleon in the kinetic energy and the strength of the spin-
orbit force because the same effective mass appears in both
terms. In addition, the spin-orbit term is sensitive to the spatial
variations of the effective mass. Particle-vibration coupling
affects the effective mass of the nucleon and as a result it has an
impact on calculated spin-orbit splittings. Third, these results
point to a new direction of improving the covariant energy
density functionals. This is because empirical energy spacings
between spin-orbit partner states in finite nuclei determine
a relatively narrow interval of allowed values for the Dirac
effective mass 0.57 � m∗

D/m � 0.61 on the mean-field level
[25]. The observed impact of particle-vibration coupling on
spin-orbit splittings suggests that this interval of the Dirac
effective mass m∗

D/m may in reality be broader.

G. Impact of particle-vibrational coupling
on pseudospin doublets

It was shown in Ref. [6] that quasidegenerate pseudospin
doublets in nuclei, discovered more than 40 years ago [66,67],

arise from the near equality in magnitude of attractive scalar
S and repulsive vector V relativistic mean fields in which
the nucleons move.3 Pseudospin doublets have nonrelativistic
quantum numbers (nr, l, j = l + 1/2) and (nr − 1, l + 2, j =
l + 1/2) where nr , l, and j are the single-nucleon radial,
orbital, and total angular momentum quantum numbers,
respectively.4

The pseudospin doublet can be characterized by pseudospin
doublet splitting energy which is defined as the difference of
the energies of pseudospin doublet members

�E = Enr,l,j=l+1/2 − E(nr−1),(l+2),j=l+3/2. (8)

With this definition of �E, the low-l (high-l) member of the
pseudospin doublet is higher in energy than its high-l (low-l)
counterpart if �E > 0 (�E < 0). Note that the calculations
fail to reproduce the relative order (in energy) of the members
of pseudospin doublet if the signs of �E are different in the
calculations and experiment.

Figure 13 compares available experimental data on
pseudospin-doublet splitting energies in 56Ni, 132Sn, and
208Pb with PVC (“hybrid”) and best mean-field (“def + TO”)
calculations. Note that the �E values obtained in the “sph”
and “def” calculations deviate from the ones obtained in the
“def + TO” calculations by less than 200 keV (in the majority
of cases the difference is less than 100 keV). This is because
both members of the pseudospin doublet are located either
above or below the shell gaps. The polarization effects due
to deformation and TO mean fields act in the same direction
for these states. As a result, these effects cancel each other
to a large degree when the difference of the energies of the
members of pseudospin doublet is taken.

Figure 13 clearly shows that particle-vibration coupling
substantially improves the description of splitting energies in
pseudospin doublets; the average deviations from experiment
for �E are 0.93 MeV and 0.6 MeV in the mean-field and
PVC calculations, respectively. There are still some doublets
in which the energy splitting �E is poorly reproduced in model
calculations. These are the π2d5/21g7/2, and π2f7/21h9/2

doublets in 208Pb (see Figs. 5 and 13), the �E values of
which deviate from experiment by 2.18 MeV (1.66 MeV) and
2.16 MeV (1.2 MeV) in the mean-field (PVC) calculations,
respectively. We did not find clear explanation for such large
differences.

Proton and neutron pseudospin doublets with the same
single-particle structure have similar splitting energies in
experiment (see pseudospin doublets indicated by the brackets
with arrows in Fig. 13). This feature is rather well reproduced
both in the mean-field and PVC calculations for the proton
and neutron 2p3/21f5/2 pseudospin doublets of 56Ni. On the
contrary, the mean-field (“def + TO”) calculations completely
fail to reproduce this feature for the proton and neutron
2d5/21g7/2 pseudospin doublets in 132Sn and 2f7/21h9/2

3An extensive review of the manifestations of pseudospin symmetry
in different physical systems is presented in Ref. [68].

4Note that, in the current paper, the single-particle subshells are
labeled by the labels which use (nr + 1) in the first position of the
label.
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pseudospin doublets in 208Pb (Fig. 13); the calculated splitting
energies for neutron doublets are more than 1 MeV larger than
the ones for proton doublets. However, in the PVC calculations
the splitting energies for these pairs of proton and neutron
pseudospin doublets are similar in agreement with experiment.
This is a consequence of the fact that particle-vibration
coupling decreases (as compared with mean-field calculations)
the splitting energies in neutron pseudospin doublets by more
than 1 MeV leaving at the same time the splitting energies in
proton pseudospin doublets unchanged.

H. 292
172120 nucleus: Center of island of stability

for superheavy nuclei

The superheavy 292120 nucleus has been predicted to have
proton Z = 120 and neutron N = 172 spherical shell closures
within the RMF theory [4]. Thus, it represents the center of
the “island of stability” of shell-stabilized superheavy nuclei.
The analysis of the deformed one-quasiparticle states in the
A ∼ 250 mass regions in Ref. [22] supports the presence of
the Z = 120 shell gap in superheavy nuclei. In addition, it
indicates N = 172 as a likely candidate for magic neutron
number in superheavy nuclei.

This nucleus represents a challenge for future experimental
synthesis since it is located at the limits of accessibility by
available cold fusion reactions. Therefore, as accurate as
possible estimations of its characteristics are needed from

the theoretical side. First results for its single-particle spectra
obtained within the relativistic particle-vibration coupling
model are presented in Fig. 14. They are compared with
the results obtained on the mean-field level. Note that we
restrict ourselves in the case of the 292120 nucleus to spherical
calculations. This is because the polarization effects due to
deformation and TO mean fields decrease with mass (see
Sec. IV B), and thus their impact on the single-particle spectra
is expected to be rather small in the 292120 nucleus.

The density of the single-particle states is substantially
larger than in lighter nuclei at the mean-field level. As a
consequence, this nucleus exhibits a very rich spectrum of
low-lying collective phonons already within the RRPA. For
example, the lowest vibrational 2+

1 mode appears at 1.41 MeV
with B(E2)↑= 7.1 × 103e2 fm4, accompanied by several
rather collective modes at 3.18 MeV, 5.25 MeV, 6.74 MeV,
etc. A similar picture is obtained for other multipolarities.
Although contributions to the nucleonic self-energy from the
high-lying modes decrease quickly with energy, we have
included phonons with all Jπ values mentioned in Sec. III D
below 15 MeV (altogether about 100 phonons).

Figure 14 shows that the particle-vibration coupling gives
rise to the general compression of the spectra. As a conse-
quence, the size of the Z = 120 shell gap decreases from
3.35 MeV (in mean field calculations) down to 2.67 MeV (in
the PVC calculations), and the size of the neutron shell gap
at N = 172 from 2.42 MeV down to 1.83 MeV. Although
these gaps are smaller by 20%–25% than the ones obtained
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in the mean-field calculations, they are still significant. As
a result, the 292120 nucleus still remains a doubly magic
nucleus representing the center of the “island of stability”
of superheavy nuclei even when the correlations beyond mean
field are taken into account.

V. CONCLUSIONS

The relativistic particle-vibration model has been system-
atically applied in combination with the cranked relativistic
mean-field approach for the study of the impact of surface
vibrations on single-particle motion. The polarization effects
in odd-mass nuclei due to deformation and time-odd mean
fields have been treated in the CRMF framework. The main
results can be summarized as follows:

(i) Particle-vibration coupling has to be taken into account
when model calculations are compared with experi-
ment since this coupling is responsible for observed
fragmentation of experimental levels. The inclusion of
particle-vibration coupling substantially improves the
description of the energies of dominant single-particle
states in 132Sn and 208Pb. However, the accuracy of
the description of single-particle spectra in 56Ni is
similar in the mean-field and PVC calculations. Note
that dominant neutron single-particle states are, on
average, better described than proton states in the PVC
calculations.

(ii) The polarization effects in odd-mass nuclei due
to deformation and time-odd mean fields induced
by odd particles are important. They have to be
taken into account when experimental and calculated
single-particle energies are compared. However, they

are usually neglected when the results of particle-
vibration coupling model calculations are compared
with experiment. The current analysis indicates that,
within the framework of CDFT, this neglect is more
or less justified only for heavy nuclei, and it is
more justified for proton subsystems than for neutron
subsystems.

(iii) Particle-vibration coupling leads to a shrinkage of the
shell gaps. The size of the shell gaps is typically
underestimated in the PVC calculations as compared
with experiment and overestimated in the mean-field
calculations.

(iv) The inclusion of particle-vibration coupling decreases
the accuracy of the description of spin-orbit splittings.
The analysis suggests that the mean-field constraint
on the allowed range of the Dirac effective mass
0.57 � m∗

D/m � 0.61 is too restrictive and the range of
the m∗

D/m values can be broader in the models which
take into account the correlations beyond mean-field
correlations.

(v) Particle-vibration coupling substantially improves the
description of splitting energies in pseudospin doublets
as compared with mean-field calculations. Observed
similarity of the splitting energies of proton and neutron
pseudospin doublets with the same single-particle
structure in medium- and heavy-mass nuclei can only
be reproduced when the particle-vibration coupling is
taken into account.

(vi) The spherical shell closures in superheavy nuclei are
still found at proton Z = 120 and neutron N = 172
numbers even when particle-vibration coupling is taken
into account. However, the size of these gaps becomes
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smaller (as compared with mean field values) in the
presence of particle-vibration coupling due to general
compression of the spectra caused by the increase of
the effective mass of the nucleon at the Fermi level.

(vii) The NL3* parametrization employed in the current
work has been adjusted at the mean-field level. The
remaining discrepancies between the results of the par-
ticle vibration coupling model and experiment clearly
suggest that this parametrization is not completely
adequate for the description of the energies of the
single-particle states. We believe that this statement is
not limited to NL3* but is also valid for all existing

CDFT parametrizations which have been adjusted at
the mean-field level. This calls for the parametrizations
specifically tailored to describe single-particle degrees
of freedom in the models taking into account the
correlations beyond mean field correlations.
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and E. Vigezzi, Phys. Rev. C 74, 024305 (2006).
[19] V. G. Soloviev, Theory of Complex Nuclei (Pergamon, Oxford,

1976).
[20] V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and

Phonons (Institute of Physics Publishing, Bristol and Philadel-
phia, 1992).

[21] A. Bohr and B. R. Mottelson, Nuclear Structure (World
Scientific, 1998), Vol. II.

[22] A. V. Afanasjev, T. L. Khoo, S. Frauendorf, G. A. Lalazissis,
and I. Ahmad, Phys. Rev. C 67, 024309 (2003).

[23] S. Shawaqfeh and A. V. Afanasjev (to be submitted to Phys. Rev.
C).

[24] M. Jaminon and C. Mahaux, Phys. Rev. C 40, 354
(1989).
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