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Orbital electron capture of hydrogen- and helium-like ions
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Corrections to the ratio of electron capture (EC) rates in hydrogen- and helium-like ions are calculated. We
find that the most significant contribution is the electron screening effect. The correction has a simple form
(1 − 5/16Z)3(1 − δ3) which ranges from almost 50% in helium to 1% in heavier nuclei. We discuss also EC in
helium-like ions accompanied by an emission of the remaining electron into the continuum, a new decay channel,
for which we calculate the decay probability. It is a very exotic type of Auger electron emission.
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I. INTRODUCTION

Progress in experimental techniques based on projectile
fragmentation, in-flight separation, and heavy-ion storage
rings has enabled investigations of β decay of highly-charged
ions [1–6]. Presently only two facilities worldwide are capable
to produce isotopic beams of radioactive nuclides in high
atomic charge states and to store them for a given time in
the ultrahigh vacuum of a storage ring [7]. These facilities
are the FRS-ESR at GSI in Darmstadt and the HIRFL-CSR at
IMP in Lanzhou, where the corresponding in-flight fragment
separators FRS [8] and RIBLL2 [9] are coupled to the
cooler-storage rings ESR [10] and CSRe [11], respectively.
However, while the experimental program on β-decay studies
at GSI is running since about two decades, the experiments at
IMP are still in their planning phase.

Recently, first experiments on orbital electron capture
(EC) decay of few-electron ions have been performed at the
ESR employing the so-called time-resolved Schottky mass
spectrometry (SMS) [12–15]. Time-resolved SMS is sensitive
to single-stored ions [15]. This property has been employed
to measure individual EC decays of single H-like 140Pr and
142Pm ions stored in the ESR, yielding a still unexplained [16]
observation of a non-exponential decay behavior [17,18].

Continuum β+ decay and EC decay branches of bare,
hydrogen-like (H-like) and helium-like (He-like) 140Pr, 142Pm,
and 122I ions have been investigated [19–22]. A striking
result has been obtained, that in spite of the fact that the
number of bound electrons is reduced from two to one in
H-like ions compared to He-like ions, the EC-decay rate has
increased by about 50%. The H-like 140Pr and H-like 142Pm
ions decay by EC even faster than the corresponding neutral
atoms. First theoretical decay studies have shown that the
experimental results can be explained by taking into account
the conservation of the total angular momentum (and its
projection) of the nucleus plus leptons system [23,24].

In this work, we extend the former theoretical investigations
and discuss in detail the corrections connected to different
electron densities and energy transitions in H- and He-like ions.
In addition, we calculate the probability that the remaining
electron in the decay of a He-like ion is simultaneously
excited to the continuum. We note, that both experimental and

theoretical [25–27] studies of the EC process are important for
the understanding of stellar evolution [28–30]. It concerns, in
particular, highly ionized atoms which are abundant in stellar
plasmas [31].

In the EC decay, an orbital electron (e−) is captured by a
nucleus thereby transmuting one of its protons into a neutron
accompanied by an emission of an electron neutrino (νe)

(Z,N) + e− → (Z − 1, N + 1) + νe, (1)

where Z and N denote the number of protons and neutrons in
the parent nucleus, respectively. The EC-decay probability per
time unit P is given by Fermi’s golden rule [32]

P = 2π

h̄
|〈f |Ô|i〉|2ρf , (2)

where ρf is the density of the neutrino final states per energy
unit, which is proportional to the square of the decay energy
QEC , i and f represent the initial and final states, and Ô is the
weak interaction operator.

II. EC DECAY OF H-LIKE IONS

A H-like ion is the system consisting of an atomic nucleus
with spin I and a single bound electron with spin s = 1/2.
For a nucleus having a positive (negative) magnetic moment,
the ground state of the ion has the total spin Fi equal to Fi =
I − 1/2 (Fi = I + 1/2).

EC decay transforms a parent nucleus with spin I into
a daughter nucleus with spin I ± �I . We assume that the
neutrino is emitted with the most probable orbital angular
momentum �I − 1. The daughter nucleus with the spin
I ± �I and the neutrino with the orbital angular momentum
�I − 1 can couple to total spins ranging from I ± 1/2 to
|I ± 2�I ∓ 1| ± 1/2. However, only transitions Fi = I ±
1/2 → Ff = I ± 1/2 conserve the total angular momentum
and are, thus, allowed. It is easy to check that for the neutrino
angular momentum equals to �I − 2 there exist no final state
corresponding to the spin Fi .

There exist 2(I ± 1/2) + 1 initial states with differ-
ent angular momentum projections and equal occupation
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probabilities [34]

P ±
H = 2π�f

h̄[2(I ± 1/2) + 1]

×
∑
M

|Nν〈I ± 1/2,M|Ô|I ± 1/2,M〉H |2, (3)

where P ±
H is the EC probability of the H-like ion with spin

I ± 1/2, |I ± 1/2,M〉H and |I ± 1/2,M〉Nν denote the initial
and final states, respectively, and �f is the density of neutrino
final states.

III. EC DECAY OF HE-LIKE IONS

The initial state of He-like ion can be constructed as a
product of the nuclear part having the spin I (with its projection
M) and the singlet wave function of two electrons

|I,M〉He = |I,M〉N ⊗ |+〉e1 |−〉e2 − |−〉e1 |+〉e2√
2

, (4)

where |+〉 and |−〉 denote Dirac spinors for the 1s state
in a H-like ion [33] with spin projections +1/2 and −1/2,
respectively, and with the screened charge Z′ = Z − q, where
q denotes the screening correction. The energy E(Z,Z′) for
two self-interacting electrons in the potential of a point-like
nucleus with charge Z it can be written in electron-mass units
as [33]

E(Z,Z′) = 2
√

1 − α2Z′2 + 2α2Z′(Z′ − Z)√
1 − α2Z′2

+
α2Z′

(√
1 − α2Z′2 − 4−2

√
1−α2Z′2


(4
√

1−α2Z′2)

(2

√
1−α2Z′2)2

)

1 − α2Z′2 ,

(5)

where α is the fine-structure constant. The screened charge Z′
minimizes the expectation value E(Z,Z′) of the relativistic
Dirac Hamiltonian with the fixed nuclear charge Z. The
screening correction q as a function of the nuclear charge
Z has been calculated numerically and is plotted in Fig. 1.

In the final state f , the nuclear spin changes by �I units
If = I ± �I . The remaining electron is described by the
relativistic spinor with spin 1/2 [33]. In the most probable
case, the neutrino carries out the orbital angular momentum
�I − 1 and its total angular momentum equals to �I − 1/2
or �I − 3/2. However, only the neutrino with the total
angular momentum �I − 1/2, the remaining electron with
spin 1/2, and the nucleus with spin I ± �I can couple to
the angular momentum I . The basis of final states has the
form

|M ′, k, l〉N,ν,
ns
1e = |I ± �I,M ′〉N ⊗ |�I − 1/2, k〉ν

⊗|1/2, l〉ns
1e, (6)

where M ′, k, l denote the projection of the angular momen-
tum for the daughter nucleus, neutrino and the remaining
electron in the bound state ns, respectively. The EC prob-
ability for He-like ions, similar to the H-like case, can be

FIG. 1. The calculated relativistic screening correction q plotted
as a function of the nuclear charge Z. The nonrelativistic limit,
independent from Z, is equal to q = 5/16 [34].

expressed as

PHe = 2
2π�′

f

h̄(2I + 1)

∑
M,M ′,k,l,n

∣∣
N,ν,

ns
1e〈M ′, k, l|Ô|I,M〉He

∣∣2

= 2π�f

h̄(2I + 1)

(
1 − δ1 + δ2

QEC

) ×
∑

M,M ′,k,l

(7)

|N 〈I ± �I,M ′|ν〈�I − 1/2, k|Ô|I,M〉N |1/2, l〉2e|2,
where �′

f and �f are densities of the neutrino final states in
the He- and H-like cases, respectively. The factor 2 in Eq. (7)
accounts for two possibilities, namely, that the electron indexed
as 1e or as 2e can be captured by the nucleus.

The ratio of the two neutrino states densities equals
approximately to

�′
f /�f = (δQn + QEC)2

Q2
EC

≈ 1 + 2δQn/QEC,

where QEC is the mass difference between parent H-like ion
and bare daughter nucleus in the EC decay, and δQn is defined
by Eq. (11).

TABLE I. Calculated corrections δ1, δ2 (in keV) and δ3 listed for a
few selected nuclei. Z denotes the atomic number. q is the relativistic
screening correction.

Z q (1 − 5/16Z)3 log10(δ1) δ2 (keV) 102δ3

2 0.312 0.601 −0.88 0.0 −0.05
12 0.312 0.924 −2.87 −0.2 −0.25
22 0.309 0.958 −3.43 −0.4 −0.40
32 0.306 0.971 −3.74 −0.6 −0.53
42 0.301 0.978 −3.96 −0.8 −0.64
52 0.294 0.982 −4.11 −1.1 −0.75
62 0.286 0.985 −4.21 −1.3 −0.84
72 0.275 0.987 −4.28 −1.5 −0.92
82 0.263 0.989 −4.31 −1.8 −1.00
92 0.247 0.990 −4.31 −2.1 −1.06
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FIG. 2. The calculated probability δ1 (logarithmic scale) that the
He-like ion decays via EC to an atomic nucleus with the remaining
electron excited into the continuum. It is about 0.1 for light nuclei
and monotonically decreases down to 5.6 × 10−5 for Pb isotopes.

The quantity δ1 in Eq. (7) (see Fig. 2 and Table I) is

δ1 = 1 −
∑

n

|〈ns, Z − 1|1s, Z − q〉|2, (8)

and is the estimate of the probability that the remaining
electron is unbound. The matrix elements

〈ns, Z − 1|1s, Z − q〉 ≡
∫ ∞

0
[fns,Z−1(r)f1s,Z−q(r)

+ gns,Z−1(r)g1s,Z−q(r)]r2dr, (9)

are calculated for two spinors [33]. The correction term δ2 (see
Fig. 3) is introduced to account for the decays to the excited
states ns in the H-like ion

δ2 = 2
∑

n

|〈ns, Z − 1|1s, Z − q〉|2δQn, (10)

where we used

δQn = B1s
1 (Z) + Bns

1 (Z − 1) − B2(Z). (11)

Here, Bns
1 (Z) denotes the binding energy of an electron in the

bound state ns of the H-like ion with the nuclear charge Z. The
total ionization energy B2(Z) for the He-like ions was taken
from [35].

The quantity δQ1 increases as a function of Z. It is equal to
0.1 keV for Z = 10 and reaches 0.8 keV for Z = 73. The value
of δQ1 is typically smaller than the experimental uncertainties
of QEC .

In Eq. (7), nuclear states and captured electron states
form the basis |I,M〉N |1/2, l〉2e with 2(2I + 1) independent
vectors. The latter can be expanded into H-like ion states with
fixed angular momenta: |I + 1/2,m〉H and |I − 1/2,m〉H .
These two bases have together again 2(2I + 1) vectors. In a
similar way a basis of the final states |I ± �I,M〉N |�I −
1/2, k〉ν can be expanded into 2�I − 1 separate bases with
fixed angular momenta: |I ± 1/2,m〉Nν , |I ± 3/2,m〉Nν , . . .

The weak interaction operator Ô, responsible for the EC
decay [36,37] has nonzero matrix elements only between states

FIG. 3. The calculated correction term δ2 expressed in keV as a
function of the nuclear charge Z.

with identical total angular momentum and its projection.
Therefore, holds the following equality:

∑
M,M ′,k,l

|N 〈I ± �I,M ′|ν〈�I − 1/2, k|Ô|I,M〉N |1/2, l〉2e|2

=
∑
m

|Nν〈I ± 1/2,m|Ô|I ± 1/2,m〉H |2, (12)

where the electron spinors were taken with the effective
charge Z′.

By combining Eqs. (3), (7), and (12), and by expressing
the electron density at the nucleus in terms of the relativistic
spinors with charge Z [as in Eq. (3) for H-like ions] we
finally get

PHe = [2(I ± 1/2) + 1]

2I + 1
PH

(
1 − δ1 + δ2

QEC

)

×
(

1 − 5

16Z

)3

(1 + δ3), (13)

where (1 − 5
16Z

)3 is the ratio of nonrelativistic electron
densities in He-like and H-like ions [34]. The relativistic
correction δ3 can be expressed as [33,34]

δ3 = Z3ρ̃e(Z − q)

(Z − 5/16)3ρ̃e(Z)
− 1. (14)

The quantity ρ̃e(Z) describes the relativistic 1s electron density
f1s(r, Z)2 + g1s(r, Z)2 calculated for uniformly distributed
nuclear charge and it is averaged over the nuclear volume
with radius Ra = 1.24 A1/3 fm. It can be written as

ρ̃e(Z) ≡ 3

R3
a

∫ Ra

0
[f1s(r, Z)2 + g1s(r, Z)2]r2dr. (15)

The calculated absolute value of the relativistic correction δ3

is smaller than 0.012 and is presented in Fig. 4.
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FIG. 4. The relativistic correction δ3 calculated for uniformly
distributed charge as a function of the nuclear charge Z.

IV. ARBITRARY NEUTRINO ORBITAL MOMENTUM

In the preceding subsections we have analyzed the EC
processes assuming that the neutrino is emitted with an orbital
angular momentum �I − 1. Here we extend our discussion to
the case, that �I � 0 and that the neutrino takes the orbital
momentum � �I . Thus, both hyperfine states I ± 1/2 of
the H-like ion can decay with the probabilities denoted as
P ±

H , respectively. It can be demonstrated (in a similar way
as in the two previous sections), that the following relation
holds combining the EC probabilities for He-like and H-like

ions:

PHe = P −
H [2(I − 1/2) + 1] + P +

H [2(I + 1/2) + 1]

2I + 1

×
(

1 − δ1 + δ2

QEC

) (
1 − 5

16Z

)3

(1 + δ3). (16)

For the transition I → I − 1 both probabilities P ±
H satisfy the

following approximate relation:

P +
H

P −
H

≈ (kR)2, (17)

where k denotes the neutrino momentum (divided by h̄) and
R is the average nuclear radius. For the transition I → I + 1
Eq. (17) should be inverted. Assuming QEC = 5 MeV and
R = 5 fm, we get (kR)2 ≈ 0.016.

V. SUMMARY

Various corrections for the EC-decay rates in He-like ions
have been estimated, which include the effect of a new decay
channel, (δ1), the decays to the excited states ns, (δ2), as well
as relativistic and screening effects, [(1 − 5/16Z)3(1 + δ3)].
From all discussed corrections, the most significant one is the
screening term (1 − 5/16Z)3. It has a value of 0.91 for Ne ions.
However, for Fm ions it reaches nearly unity and equals to 0.99.
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