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Scissors modes: The first overtone
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Scissors modes were predicted in the framework of the two-rotor model. This model has an intrinsic harmonic
spectrum, so that the level above the scissors mode, the first overtone, has excitation energy twice that of the
scissors mode. Because the latter is of the order of 3 MeV in the rare-earth region, the energy of the overtone is
below threshold for nucleon emission, and its width should remain small enough for the overtone to be observable.
We find that B(E2) ↑overtone= 1

64 θ2
0
B(E2) ↑scissors, where θ0 is the zero-point oscillation amplitude, which in the

rare-earth region is of order 10−1.
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The scissors mode has an excitation energy of the or-
der of 3 MeV in the rare-earth region [1,2]. The model
that led to its prediction, the two-rotor model [3], has
the spectrum of a planar harmonic oscillator, with some
constraints on the states to be discussed below. The first
overtone should then have an energy of the order of 6 MeV,
below threshold for nucleon emission. As a consequence, its
width should remain of purely electromagnetic nature and be
small enough for this mode to be observable, even though
scissors modes have a modest collectivity and are substantially
fragmented [1,2].

The possible occurrence of the first overtone has been
considered in Ref. [4], but to our knowledge has not been
thoroughly investigated so far. The main reason is perhaps
that its excitation amplitude is expected to be too small.
Indeed, excitation amplitudes in the two-rotor model are
proportional to powers of θ0, the amplitude of the zero point
oscillation, which in the rare-earth region is of order 10−1.
Now B(M1) ↑scissors ∼ 1/θ2

0 , but B(E2) ↑scissors ∼ θ2
0 , and the

first overtone needs to be excited by an E2 multipole. All
other methods used in the study of scissors modes—the
schematic random-phase approximation [5], the interacting
boson model [6], the sum rule method [7], and a geometrical
model [8]—give similar results.

The proportionality B(M1) ↑scissors∼ B(E2) ↑scissors has
been observed experimentally [9] [even though B(M1) ↑scissors

in reality scales as δ2 instead of δ
3
2 as predicted by the

two-rotor model if the dependence of the moment of inertia
on the deformation parameter of Ref. [10] is adopted]. This is
regarded as significant evidence of the scissors nature of the
low-lying magnetic transitions and their collectivity. We expect
that such a proportionality should hold for the E2 strength of
excitation of the first overtone as well. Even if this strength
were small, its study might contribute to a deeper assessment
of the nature and collectivity of the scissors modes. We then
decided to start an investigation of the overtone within the
two-rotor model, because this model allows a first insight into
the relevant dynamics in a simple framework. We thus came
to the surprising result that B(E2) ↑overtone is of zero order in

the expansion with respect to θ0, and, precisely,

B(E2) ↑overtone= 1

64 θ2
0

B(E2) ↑scissors . (1)

In view of the smallness of θ0, this amplitude is quite
substantial. The above result might be relevant to some of the
other electrically charged systems for which scissors modes
have been predicted: metal clusters [11], quantum dots [12],
and, in particular, crystals [13], for which an expansion in
powers of θ0 holds. In all these systems one of the blades of
the scissors must be identified with a moving cloud of particles
(electrons in metal clusters and quantum dots, an atom in a cell
in crystals) and the other one with a structure at rest, the lattice.

To make this Rapid Communication self-contained we
report the main features of the two-rotor model. Its classical
Hamiltonian is

H = 1

2 In

�I 2
n + 1

2 Ip

�I 2
p + V, (2)

where �In, �Ip, In, and Ip are the angular momenta and the
moments of inertia of the neutron and proton bodies assumed
to have ellipsoidal shape and V their interaction potential.
Introducing the total angular momentum �I and the vector �S,

�I = �In + �Ip , �S = �In − �Ip, (3)

the Hamiltonian (2) can be rewritten as the sum of the rotational
Hamiltonian of the nucleus as a whole plus the Hamiltonian
of the intrinsic motion

H =
�I 2

2I + Hintr, (4)

where

I = 4 IpIn

Ip + In

(5)

Hintr = 1

2 I
�S2 + In − Ip

4 InIp

�I · �S + V. (6)
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We assume the potential to depend only on the angle 2θ

between the symmetry axes ζ̂n, ζ̂p of the rotors

cos(2θ ) = ζ̂n · ζ̂p. (7)

It is therefore convenient to introduce this variable together
with a set of other variables that identify the axes ζ̂n, ζ̂p. We
chose the Euler angles α, β, γ of the intrinsic frame defined
by

ξ̂ = ζ̂n × ζ̂p

sin(2θ )
, η̂ = ζ̂n − ζ̂p

2 sin θ
, ζ̂ = ζ̂n + ζ̂p

2 cos θ
. (8)

The correspondence (ζ̂n, ζ̂p) ↔ (α, β, γ, θ ) is one-to-one and
regular for 0 < θ < π/2. These variables are not sufficient
to describe all the configurations of the classical system, but
describe uniquely the quantum system owing to the constraint

�In · ζ̂n = �Ip · ζ̂p = 0, (9)

appropriate to quantum bodies with axial symmetry. These
constraints are automatically satisfied if the wave functions
depend on ζ̂n, ζ̂p only. Quantization can be obtained assuming
the standard representation for the total angular momentum �I ,
and for �S the realization

Sξ = i
∂

∂θ
, Sη = − cot θIζ , Sζ = − sin θIη, (10)

where Iξ , Iη, and Iζ are the components of the total angular
momentum on the intrinsic axes.

The two-rotor model was reformulated [14], adopting a
more appropriate quantization procedure and including the
realistic case in which the neutron rotor is bigger than that of
protons. The resulting intrinsic Hamiltonian is

Hintr

= 1

2I

[
− d2

dθ2
− 2 cot(2θ )

d

dθ
+ cot2 θ I 2

ζ + tan2 θI 2
η

]

+ In − Ip

4 IpIn

[
− tan θ Iζ Iη−cot θ IηIζ +iIξ

d

dθ

]
+V (θ ).

(11)

We separate the range of θ in two regions:

sI = s(θ )s

(
π

4
− θ

)
, sII = s

(
π

2
− θ

)
s

(
θ − π

4

)
, (12)

where s(x) is the step function: s(x) = 1, x > 0 and zero
otherwise. They are obtained from each other by the reflection
of θ with respect to π/4. It is convenient to introduce the
notation

Rθf (θ ) =
◦
f (θ ), (13)

where
◦
f (θ ) = f

(π

2
− θ

)
, (14)

so that
◦
sI= sII . We assume

◦
V = V , as appropriate to the

geometry of the system. Because we know that the angle
between the neutron-proton axes is very small we can assume

for the potential a quadratic approximation

V = 1

2
C θ2

0 x2sI + 1

2
C θ2

0 y2sII , (15)

where

θ0 = (IC)−
1
4 , x = θ

θ0
, y =

π
2 − θ

θ0
. (16)

The intrinsic Hamiltonian is then invariant with respect to the
transformation

R = Rξ

(
π

2

)
Rθ, (17)

where Rξ is the rotation operator around the ξ axis, so that we
can study the eigenvalue equation separately in the regions I

and II . The linear derivative in the first term of Hintr can be
eliminated by the transformation

(U�)(θ ) = 1√
2 sin(2θ )

�′(θ ). (18)

Neglecting terms of order θ0 we get

H ′
intr

= UHintrU
−1

= 1

2I

{
− d2

dθ2
− [2+cot2(2θ )]+cot2 θ I 2

ζ +tan2 θI 2
η

}
+V (θ ).

(19)

We then write accordingly

H ′
intr ≈ HIsI + HII sII , (20)

where, setting h̄ = 1,

HI = 1

2
ω

[
− d2

dx2
+ 1

x2

(
I 2
ζ − 1

4

)
+ x2

]
,

(21)

HII = 1

2
ω

[
− d2

dy2
+ 1

y2

(
I 2
η − 1

4

)
+ y2

]
,

with

ω =
√

C

I . (22)

The eigenfunctions and eigenvalues of HI are [14]

ϕKn(x) =
√

n!

(n + K)! θ0
xK+ 1

2 LK
n (x2)e− 1

2 x2
, (23)

εnK = ω(2n + K + 1). (24)

LK
n are Laguerre polynomials and the wave functions ϕ are

normalized according to∫ ∞

0
dx [ϕKn(x)]2 = 1

2
. (25)

Even if the nucleus in its ground state has axial symmetry,
this symmetry is, in general, lost in excited states, so that the
component of angular momentum along any intrinsic axis is
not conserved, resulting in a superposition of intrinsic states
with different K-quantum number. The only states that have
been theoretically analyzed so far are not affected by K mixing.
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They are the ground state, I = K = n = 0; the scissors modes,
I = 1, 2, K = 1, n = 0, and the state I = K = 0, n = 1,
which cannot be excited by electromagnetic radiation.

The total wave functions must respect the r symmetry with
respect to both the neutron and the proton axes: Configurations
of the nucleus differing by independent rotations through π

around the ξ axis of the �ζn, �ζp vectors are indistinguishable.
Enforcing this symmetry, one finds two conditions [14]. The
first has been solved in general, and requires that the wave
functions have the form

�IMσ =
∑
K�0

F I
MK (α, β, γ )�IKσ (θ ), (26)

where

F I
MK =

√
2I + 1

16(1 + δK0)π2

[
DI

MK + (−1)IDJ
M−K

]
. (27)

I,M are the nucleus angular momentum and its component
on the z axis of the laboratory system, and σ labels the states.
We impose the normalization∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ

∫ π
2

0
dθ |�IMσ |2 = 1. (28)

Notice that the normalization of the � in Eq. (26) is different
from that in Ref. [14]. The second condition coming from
r invariance constrains the parity of the intrinsic functions
with respect to Rθ and must be worked out state by
state.

The ground state and the scissors mode are labeled by σ =
0, 1, respectively, and their intrinsic wave functions are

�000 = ϕ00 sI+
◦
ϕ00 sII , �111 = ϕ10 sI−

◦
ϕ10 sII . (29)

Let us now study the first overtone, labeled by σ = 2. The
Hamiltonian HII couples states with K = 0, 2. It is then easy
to see that the total eigenfunction must involve a superposition
of ϕ01 and ϕ20. These states are degenerate and decoupled in
region I . To find which superposition is an eigenfunction of
the total Hamiltonian we diagonalize I 2

η

I 2
η GM0 = 0, GM0 = 1

2

(
F2

M0 + √
3F2

M2

)
,

(30)
I 2
η GM2 = 4GM2, GM2 = 1

2

(√
3F2

M0 − F2
M2

)
.

The total eigenfunction must then be an appropriate superposi-

tion of GM0
◦
ϕ01,GM2

◦
ϕ20 in region II and of F2

M0ϕ01,F2
M2ϕ20

in region I . It is easy to verify that the intrinsic wave
functions that satisfy the constraints [14] of r invariance
are

�202 = 1√
2

[
ϕ01 sI − 1

2
(
√

3
◦
ϕ20 + ◦

ϕ01)sII

]
,

(31)

�222 = 1√
2

[
ϕ20 sI + 1

2
(

◦
ϕ20 −

√
3

◦
ϕ01)sII

]
.

The different normalization of the � should be kept in mind
in a comparison with Ref. [14].

The collective motion of the first overtone has a simple
geometrical description in the intrinsic frame: In region I it is

a superposition of the state ϕ01, which is a kind of breathing
mode, and of the state ϕ20, which is a relative rotation of
the neutron-proton axes as in the scissors mode but with
angular momentum K = 2. We already mentioned that the
spectrum of the two-rotor model is identical to that of the
planar harmonic oscillator. We remark, however, that the first
and second excited states of the planar harmonic oscillator have
degeneracy 2 and 3, respectively, while all the intrinsic states
of the two-rotor model discussed so far are nondegenerate
because of the r symmetry.

The surprising feature of our result is that the E2 excitation
amplitude of the first overtone gets a nonvanishing contribution
to zero order in the expansion with respect to θ0. Indeed, the
quadrupole operator to this approximation is [14]

M(E2, μ)

= e Q20

[
D2

μ0

(
sI − 1

2
sII

)
+ 1

2

√
3

2

(
D2

μ2+D2
μ−2

)
sII

]
,

(32)

where e Q20 is quadrupole moment in the intrinsic frame. We
immediately see that to zero order in θ0 we cannot excite the
scissors modes from the ground state, but we can excite the
first overtone, with the amplitude

〈�2M2|M(E2, μ)|�000〉
= 1

4
√

2
e Q20〈ϕ20|ϕ00〉

〈 − √
3F2

M20 + F2
M22

∣∣
×

√
3

2

(
D2

μ2 + D2
μ−2

) − D2
μ0

∣∣F0
00

〉
.

Notice that this amplitude is entirely attributable to the K =
2 component of the wave function, because 〈ϕ01|ϕ00〉 = 0.
Finally,

〈�2M2|M(E2, μ)|�000〉 = 1

8

√
3

5
e Q20 C2M

002μ, (33)

where C2M
002μ is a Clebsch-Gordan coefficient. We thus get

Eq. (1).
While the first overtone cannot be excited by a M1

transition, it can decay to the scissors mode through such a
transition to order θ−2

0 . The E2 decay to the scissors mode
can instead only occur to order θ2

0 and will be neglected. After
the excitation of the first overtone one should then observe
photons of energy 2ω and ω as well. Let us then evaluate the
M(M1) transition amplitude. The magnetic dipole moment in
the intrinsic frame is

M(M1, ν) = e

2m

√
3

4π
Sν. (34)

Then in the laboratory frame we have

M(M1, ν) = − 1√
2

(
D1

ν1 − D1
ν−1

)
M(sI − sII )

d

dθ
, (35)

where

M = i

√
3

16π
(gp − gn)

e

2mp

, (36)
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gn and gp being the orbital gyromagnetic factors of neutrons
and protons, respectively, and mp is the proton mass. We need
an approximate expression of the derivative operator in regions
I and II :

θ0 U
d

dθ
U−1 ≈ d

dx
− 1

2x
, in region I,

(37)

θ0 U
d

dθ
U−1 ≈ − d

dy
+ 1

2y
, in region II.

Setting

∇θ = d

dθ
− 1

2θ
(38)

by a straightforward calculation we get

〈�IM22|M(M1, ν)|�1M11〉 = − π√
3
MT , (39)

where

T = 〈
F2

M20

∣∣F1
ν1

∣∣F1
M11

〉〈ϕ01 −
√

3 ϕ20|∇θ |ϕ01〉
+ 〈

F2
M22

∣∣F1
ν1

∣∣F1
M11

〉√
3 〈ϕ20 − ϕ01|∇θ |ϕ01〉 . (40)

At variance with the E2 excitation of the first overtone
both intrinsic components K = 0, n = 1 and K = 2, n = 0

contribute to this decay amplitude. We thus find

〈�IM22|M(M1, ν)|�1M11〉 =
√

2 + √
3

2
√

10 θ0

C
2M2
1M11ν M, (41)

and we can finally relate the M1 decay strength of the overtone
to the scissors mode with the M1 strength of the scissors mode
excitation:

B(M1; overtone → scissors) ≈ 1
4B(M1) ↑scissors . (42)

A distinctive feature of the overtone in the two-rotor model
is the mixing of intrinsic states with different K-quantum
number, which is necessary to respect the r symmetry. This
mixing is determined by the different form that the intrinsic
hamiltonian takes in regions I and II . It would be very
interesting to investigate if the approches in Refs. [5–8] will
confirm the structure of the overtone we found in the two-
rotor model. Indeed, so far microscopic calculations, while
reproducing some experimental features as fragmentation,
which are outside the possibility of a semiclassical model,
agree with the two-rotor model about the nature of the scissors
modes. In particular, the interacting boson model, in the
semiclassical approximation obtained using coherent states,
exactly reproduces [15] the Hamiltonian of the two-rotor
model in region I . We would be very surprised if the agreement
would not extend to region II , and we think it would be very
interesting to know the exact results for the overtone in the
interacting boson model.
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