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Region of a hadron-quark mixed phase in hybrid stars
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Hadron-quark mixed phase is expected in a wide region of the inner structure of hybrid stars. However, we
show that the hadron-quark mixed phase should be restricted to a narrower region because of the charge screening
effect. The narrow region of the mixed phase seems to explain physical phenomena of neutron stars such as the
strong magnetic field and glitch phenomena, and it would give a new cooling curve for the neutron star.
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It is widely believed that there should be quark matter in the
inner core region of neutron stars because the central density
of neutron stars is sufficiently high for nucleons to dissolve
into more elementary particles, namely, quarks. Nowadays we
consider that compact stars consist of not only nuclear matter
but also other matter such as hyperons and quarks. We call
such stars hybrid stars.

Although deconfinement phase transition is still not clearly
understood, many authors have studied the transition through
modeling and first-principle calculations such as those of
lattice QCD. Properties of quark matter have been actively
studied theoretically in terms of quark-gluon plasma, color
superconductivity [1,2], and magnetism [3–5], and exper-
imentally in terms of relativistic heavy-ion collisions [6]
and early-universe and compact stars [7,8]. Such studies are
continuing to provide exciting results [9].

Because many theoretical calculations have suggested that
deconfinement transition is of first order at low temperature
and high density [10,11], we assume it to be a first-order
phase transition here. The Gibbs condition (GC) [12] then
gives rise to various structured mixed phases (SMPs). The
SMPs suggested by Heiselberg et al. [13] and Glenndening
and Pei [14] suggest a crystalline structure of the mixed phase
in the core region of hybrid stars. Such structures are called
“droplets,’ “rods,’ “slabs,” “tubes,” and “bubbles.” These SMPs
exist within a wide density range if we take a moderate value of
the surface tension. However, if the surface effect is strong, the
SMPs are limited to a narrow density region. On the other hand,
Voskresensky et al. [15] reported the charge screening effect
for several cases of droplets and slabs. They showed that even if
we take a moderate value of the surface tension, SMPs cannot
exist because of the charge screening effect. They referred
to this phenomenon as mechanical instability. However, they
used a linear approximation to solve the Poisson equation.

We have presented the equation of state (EOS) for the mixed
phase taking into account the charge screening effect [16]
without recourse to any approximation. The EOS is similar
to that obtained from the Maxwell construction (MC). The
allowed region of the mixed phase should then be narrow due
to the charge screening effect.
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Recently “black stars” have been proposed by Barcelo et al.
[17], who suggested that quantum effects prevent a star from
collapsing into a “Black hall.” Therefore, the EOS of hadron
matter in the high-density states plays an important role in
determining the quantum effects within compact stars.

In this paper, we apply our EOS to study the structure of
hybrid stars and demonstrate how charge screening affects
the physical properties of the hybrid stars. We use the EOS
given in our previous paper [16], which also presented our
framework. Therefore, our approach is only briefly explained
here. Thermal equilibrium is implicitly achieved at T = 0.
We consider that both hadron and quark matter and the mixed
phase are β stable. We employ density functional theory (DFT)
under the local density approximation [18,19].

We consider the geometrically structured mixed phase
(SMP) in which one phase is embedded in the other phase
with a certain geometrical form. We divide the whole space
into equivalent Wigner-Seitz cells with radius RW. Such cells
include an embedded phase with size R. We impose total
charge neutrality and chemical equilibrium to satisfy the GC.
Therefore, adjacent cells do not interact with each other.

The quark phase consists of u, d, and s quarks and electrons
in β equilibrium. We consider that u and d quarks are massless
and s quarks are massive (ms = 150 MeV), and consider
one-gluon exchange for quark interaction. The hadron phase
consists of nucleons and electrons in β equilibrium. We use an
effective potential parametrized to reproduce the saturation
property of nuclear matter. We use empirical values for
the binding energy (εbind = −15.6 MeV), saturation density
(ρ0 = 0.16 fm−3), symmetry energy (S0 = 18 MeV), and
compression modulus (K0 = 285 MeV).

To account for the confinement, we introduce a sharp
boundary between the two phases employing the bag model
with surface tension parameter σ . Determination of the surface
tension between hadron and quark matter is a difficult problem;
thus, many authors [13,14,20] have treated the surface tension
as a free parameter and observed its effect. We take the same
approach in this study. We use the bag constant of B =
120 MeV/fm3, which is the same as that used in Refs. [13,16].

As we need to account for the Coulomb interaction, the
Coulomb potential appears in the total thermodynamic poten-
tial. Differentiating the thermodynamic potential �total with
respect to each constituent density ρi (i = u, d, s, n, p, e) or
the Coulomb potential V (�r) with r being the radial coordinate,
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we obtain the equations of motion (EOMs) for ρi and V (�r).
We then numerically solve these EOMs under the conditions
of chemical equilibrium in each phase and at the hadron-quark
boundary. In particular, we fully solve the Poisson equation
without any approximation. Note that the Poisson equation
becomes highly nonlinear because charged particle densities
are complicated functions of the Coulomb potential.

Here, we must determine eight variables; i.e., the six
chemical potentials µu, µd , µs , µp, µn, and µe and the
radii R and RW. First, we fix R and RW. We then have four
conditions due to the β equilibrium, expressed by the chemical
equilibrium. Therefore, once the two chemical potentials µB

and µe are given, we can determine the other four chemical
potentials µu, µd , µs , and µp. Next, we determine µe

according to the global charge neutrality condition:

fV ρ
Q
ch + (1 − fV )ρH

ch = 0, (1)

where the superscripts “Q” and “H” denote the quark and
hadron phases, respectively. The volume fraction is given
by fV = ( R

RW
)d , and d denotes the dimensionality of each

geometrical structure. At this point, fV is still fixed.
The pressure obtained from the surface tension is given by

Pσ = σ
dS

dVQ
, (2)

where S is the surface area of the interface and VQ is the
volume of the quark matter. We then find the optimal value of R

(RW is fixed and fV thus changes with R) using one of the GC:

P Q = P H + Pσ . (3)

The pressure in each phase, P Q or P H, is given by the
thermodynamic relation P Q(H) = −�Q(H)/VQ(H), where �Q(H)

is the thermodynamic potential for each phase. Finally, we
determine RW by minimizing the thermodynamic potential.
Therefore, once µB is given, all other µi (i = u, d, s, p, e)
can be obtained along with R and RW. Note that we keep the
GC throughout the numerical procedure.

To elucidate the charge screening effect, we also make
the calculation without the screening effect. We refer to
this calculation as the “no-screening” calculation and the
calculation with the screening effect as the “screening”
calculation for convenience.

We then apply the EOS derived in our recent paper [16]
to the Tolemann-Oppenheimer-Volkov (TOV) equation. We
present the results for the screening and no-screening cases.
Figure 1 shows the mass-radius relations of stars in the cases
of screening and no screening using the MC, and in the case
of pure hadron matter, there is no notable difference in the
low-mass region because there is no phase transition. On the
other hand, there is a slight difference in the region around
the maximum mass. The difference in the maximum masses
between the cases of screening and no screening is about
0.05M�. This difference is small compared with the total mass
of the star. Thus, charge screening does not greatly affect the
bulk properties of the star.

On the contrary, we find that the inner structure is greatly
affected by charge screening. Figure 2 shows the inner core
region of a hybrid star in the case without screening. The
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FIG. 1. (Color online) Mass-radius relation of stars. The maxi-
mum masses in the cases of pure hadron matter and screened and not
screened mixed phases are 2.51, 1.73, and 1.68M�, respectively. Note
that we use a simple model for each type of matter. The difference
between screened and not screened mixed phases is clearly small.

mixed phase appears in a wide region of the star. In this case,
the mixed phase is spread over a radius of about 6 km, and we
scarcely see the quark matter phase. In the case of screening
shown in Fig. 3, on the other hand, there is mixed phase over
only 3 km. The region of mixed phase clearly becomes more
narrow and there is a quark matter phase in the central region
because of the charge screening.

These results have possible implications for star phenom-
ena. It has been stated that the strong magnetism of a neutron
star is due to the spin polarization of quark matter [3], in which
case pure quark matter should extend far into the core region.
Our results suggest that quark matter could exist in the inner
region of compact stars, and it is thus plausible to attribute the
magnetism of compact stars to spin polarization.

Moreover, Bejger et al. [21] estimated the region of
mixed phase in a hybrid star and suggested that the glitch
phenomenon is caused by the presence of the mixed phase.
Their results show that the mixed phase is constrained to
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FIG. 2. (Color online) Structure size and cell size in the core
region of hybrid stars in the case of no screening. There is about
6 km of mixed phase in this figure. The radius is 12.6 km. Thick lines
denote R and thin lines denote RW.
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FIG. 3. (Color online) Structure size and cell size in the core
region of hybrid stars in the case of screening. The mixed phase is
restricted by the charge screening. The radius is 12.9 km.

a narrow region. In another study, gravitational waves have
been commonly used to probe density discontinuities [22].
There should be a discontinuity in the hadron-quark phase
transition if we use the MC. Although the MC is not valid
strictly speaking, the EOS of the mixed phase is close to that
obtained using the MC due to the finite size. In addition,
many theoretical studies have used other models for the
glitch phenomenon and gravitational waves. We cannot simply
apply our EOS to studying these phenomena. However, it
is interesting to compare our results with those of other
studies [23].

It is, however, plausible to use our results in investigating
the cooling problems of neutron stars. If there is nonuniformity
in the core region of a hybrid star, it is interesting to investigate
whether neutrinos would be scattered by the lumps. Cooling
would then be prevented and the cooling curve should change.
Although the results strongly depend on the region of the mixed
phase, we suggest new cooling curves by taking into account
the finite-size effects.

In this study, we demonstrated how charge screening affects
the hadron-quark mixed phase in the core region of hybrid
stars. We examined the effect by numerically solving the
EOM for particle densities and the Poisson equation for
the Coulomb potential. We demonstrated, by taking various
SMPs as examples, that the charge screening effect and the
rearrangement of charge densities play an important role in
determining the inner structures of hybrid stars. We applied
our EOS to the TOV equation and found that charge screening
did not greatly affect the bulk properties of the star, such as the

radius and mass. However, we found that the inner structures
are greatly affected. The region of the mixed phase in the star
is highly restricted by the charge screening. If we ignore the
charge screening effect, the mixed phase would appear in a
wide region. On the basis of this result, some authors have
suggested structured mixed phase with various geometrical
structures, simply by including the finite-size effects and the
surface and Coulomb energies [13,14,20,24]. However, once
we take into account the charge screening effect, the mixed
phase is restricted to a narrow region. In particular, the core
could consist of quark matter and could appear due to the
charge screening effect. As another case in which there is
more than one chemical potential, kaon condensation has
been studied [25] and the results are similar to those in our
paper [16].

We considered surface tension, but its definite value is not
yet clear and many authors treat it as a free parameter. If we use
smaller (larger) values of the surface tension, the mixed phase
is favored (disfavored). Here we use the value of 40 MeV/fm2,
but the mixed phase is disfavored if we use ∼90 MeV/fm2 [13].
There are also many estimations of the surface tension at the
hadron-quark interface in lattice QCD [26,27], in shell-model
calculations [28–30], in model calculations based on the dual
Ginzburg-Landau theory [31], and in a sigma model [32].
If we have a realistic value of the surface tension, we can
reasonably deduce SMPs in the hadron-quark matter phase
transition. Moreover, we can determine the region of mixed
phase in hybrid stars. We are then able to provide important
information for the EOS of the deconfinement phase transition,
and clarify the phenomena of neutron stars and black stars.

We have assumed in relation to phenomenological impli-
cations that the temperature is zero. It would be interesting
to include the finite-temperature effect. We could then study
the structure of the protoneutron star and present new cooling
curves of the neutron stars.

In this study, we used a simple model for quark matter to
determine the finite-size effects acting on the SMP in a hybrid
star. However, it has been suggested that color superconduc-
tivity is a ground state of quark matter [1,20]. To obtain a more
realistic picture of the hadron-quark phase transition, we need
to take into account color superconductivity. The description
of nuclear matter needs to be improved; for example, we need
to take into account the relativistic mean field theory [33]. We
will then be able to provide more realistic results.

Dr. T. Maruyama, Dr. S. Chiba, and Dr. T. Tatsumi are
acknowledged for our early work. This work was supported in
part by Division of Physics, Department of General Education,
Kagawa National College of Technology.

[1] M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys. B 64,
443 (1999); D. Bailin and A. Love, Phys. Rep. 107, 325 (1984);
see recent reviews, M. Alford, A. Schmitt, K. Rajagopal, and
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