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Angular distributions of neutron-nucleus collisions
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We derive the total and the differential cross sections with respect to angle for neutron-induced reactions
from an analytical model having a simple functional form to demonstrate the quantitative agreement with the
measured cross sections. The energy dependence of the neutron-nucleus interaction cross sections are estimated
successfully for energies ranging from 5 to 600 MeV. In this work, the effect of the imaginary part of the nuclear
potential is treated more appropriately compared to our earlier work. The angular distributions for neutron
scattering also agree reasonably well with the experimental data at forward angles.
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The total and reaction cross sections of neutron-nucleus
collisions for energies up to 600 MeV or more, are required
in a number of fields of study in basic science [1,2] as well
as many of applied nature [3–9]. Often, these cross sections
are evaluated using phenomenological optical potentials, and
much effort has gone into defining global sets of parameter
values for those optical potentials with which to estimate
cross sections as yet unmeasured. In this context it would
be useful to study the systematics of neutron absorption and
scattering cross sections on various nuclei well approximated
by a simple convenient functional form [10,11]. The present
model is an easy-to-use analytical parametrization that may
be adequate to produce the scattering cross sections needed
in Monte Carlo neutron transport calculations at energies
higher than 150–200 MeV. It is worth noticing that the most
important forward-scattering part of the angular distribution
is reasonably described; however, the current model does not
give a good accuracy for the whole angular range. Present
results allow one to easily obtain good estimates of the total
and inelastic cross sections from 5 to 600 MeV.

The optical potential for nuclear n-N interaction can be
written as −V − iW with V and W as positive quantities,
and contains no Coulomb interaction. The phase shift δ in a
WKB approximation is [

∫
K ′dr − ∫

k′dr] and the real part
of it to a zeroth-order approximation [12] for a square well
with radius R is (K − k)R, where K is the real part of K ′
and k′ = k is real due to absence of potential. The real wave
numbers inside and outside the nucleus are, therefore, given by
K2 = 2m(E + V )/h̄2 and k2 = 2mE/h̄2, respectively, where
E is the incident neutron energy in the center-of-mass system
and m is the reduced mass of the neutron-nucleus system.
Hence β, which is two times the real part of the phase shift, is
determined by the real potential V ,

β = 2(K − k)R = 2
(2m)

1
2

h̄
[
√

E + V −
√

E]R, (1)
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whereas the attenuation factor α is determined primarily by
the imaginary potential W ,

α = e−R̄/λ = e−2mWR̄/h̄2K, (2)

where λ is the mean free path of the neutron inside the nucleus.
The average chord length R̄ of a neutron passing through a
nucleus can be derived as

R̄ =
∫ R

0 2
√

R2 − x2(I2πx dx)∫ R

0 I2πx dx
= 4

3
R, (3)

where I is the neutron flux that is the number of neutrons
incident per unit area. Since R ∝ A

1
3 (R ∼ r0A

1
3 ), the above

arguments imply that

β = β0A
1
3 [

√
E + V −

√
E], (4)

where β0 = 2r0(2m)
1
2

h̄
whose value is approximately 0.6, and the

attenuation factor which is much less than unity but increases
with energy (which is obvious from its expression) is given by

α = exp
[−α0r0A

1
3 W/

√
E + V

]
, (5)

where α0 = 4(2m)
1
2

3h̄ whose value turns out to be 0.2929 and
r0 is the nuclear radius parameter. The first term VA =
V0 + V1(1 − 2Z/A) + V2/A of the real potential V = VA +
VE

√
E contains both the isoscalar and the isovector [13,14]

components of the optical potential [15,16] where Z is the
atomic number of the target nucleus, whereas the second term
accounts for its energy dependence. The imaginary potential
W is taken as W = W0 + WE

√
E + V since the total kinetic

energy of the neutron inside the nucleus with an attractive
potential well of depth V is E + V . As the magnitude of the
real part of the optical potential decreases with energy while
the same for imaginary part increases, this implies that VE is
negative, whereas WE is positive.

From partial-wave analysis of scattering theory, we know
the standard expressions for scattering σsc and reaction σr cross
sections as

σsc = π

k2

∑
l

(2l + 1)|1 − ηl|2, σr = π

k2

∑
l

(2l + 1)[1 − |ηl|2],

(6)
dσsc

d�
= 1

4k2

∣∣∣∣∣
∑

l

(2l + 1)(1 − ηl)Pl(cos θ )

∣∣∣∣∣
2

,
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FIG. 1. (Color online) Total cross sections σtot vs incident neutron
energies for 238U, 184W, 90Zr, and 40Ca target nuclei. The hollow
circles represent the experimental data [20–22] for σtot, whereas
the lines represent the same obtained theoretically with the present
formulation which show good agreement with the measured cross
sections.

where the quantity ηl = e2iδl , Pl(cos θ ) are the Legendre
polynomials of order l, and θ is the scattering angle. With
the assumption of the semiclassical optical model (or the
so-called nuclear Ramsauer model) that the phase shift δl

is independent of l and the summation over partial waves
is performed up to the sharp cutoff kRch only, it follows
that σsc = π (Rch + λ-)2(1 + α2 − 2α cos β) and σr = π (Rch +
λ-)2(1 − α2) [17–19], where λ- = 1/k, Rch is the channel radius
beyond which partial waves do not contribute, β = 2 Re δl =
2 Re δ, and α = e−2 Im δl = e−2 Im δ; and summing over l from
0 to kRch yielded

∑kRch
l=0 (2l + 1) = (kRch + 1)2. Thus

σtot = σsc + σr = 2π (Rch + λ-)2(1 − α cos β),
(7)

dσsc

d�
= λ-2

4
(1 + α2 − 2α cos β)

[
kRch∑
l=0

(2l + 1)Pl(cos θ )

]2

.

The present model can be fitted to the experimental
neutron total cross section σtot. The radius of the nuclear
potential is given by R = r0A

1
3 , whereas the channel radius

can be parametrized as Rch = r0A
1
3 + rA

√
E + r2 with rA =

r10lnA + r11/lnA. The fits yield r10 = −22.98 × 10−3, r11 =
10.27 × 10−2, r2 = 23.22 × 10−2, V0 = 46.51, V1 = 6.74,
V2 = −117.52, VE = −3.22, and β0 = 0.5928. These values
are very close to or within the limit of the parameter values
listed in Ref. [11]. The value of α0 is kept fixed at 0.2929, and
the nonlinear least-squares fits yield the value for the imaginary
potential W0 = 5.293 MeV and its energy dependence WE =
33.88 × 10−2. The nuclear radius parameter r0 is also fitted
reasonably well to 1.378Aγ fm, which means that the nuclear
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FIG. 2. (Color online) Theoretical (lines) and experimental (hol-
low circles) [23] angular distributions for neutron scattering for 238U.

potential radius R = r ′
0A

1
3 +γ where γ = 7.93 × 10−3 is a very

small number (needed for fine tuning) compared to 1
3 . In our

earlier work [11] the effect of the imaginary potential was
included in the parameter α in a somewhat ad hoc manner
lacking justification for it to be weakly mass dependent. The
present work is an improvement over our earlier work, since
the imaginary part of the nuclear potential is now treated
appropriately with the explicit appearance of the imaginary
part of the nuclear potential. It is not that the predictions of
the cross sections are greatly improved by the impact of these
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FIG. 3. (Color online) Same as Fig. 2, but for 90Zr. The experi-
mental data are from Ref. [24].
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FIG. 4. (Color online) Same as Fig. 2, but for 40Ca. The
experimental data are from Ref. [25].

changes but that the present form of α, with imaginary potential
appearing explicitly, has a profound theoretical basis.

Each calculation is performed at neutron incident energy
intervals of 1 MeV and for various elements. The total cross
sections (σtot) calculated with the present formalism show good
agreement with the measured cross sections for the entire range
of target nuclei. For illustration we show only four plots here. In
Fig. 1, the variations of the total cross section σtot with incident
neutron energy are plotted for 238U, 184W, 90Zr, and 40Ca
target nuclei. The hollow circles represent the experimental
data [20–22] for total cross sections σtot, whereas the lines
represent the same obtained theoretically with present formu-
lation which show good agreement with the measured cross
sections. Figures 2–4 show the comparison of the theoretical
and experimental [23–25] angular distributions for neutron
scattering for different target nuclei in the center-of-mass
(c.m.) system. The present model also compares favorably

with the optical model calculations [25] for the forward
maximum (0◦–25◦) in the elastic scattering distribution. This
is not surprising, since the present model which fits the total
neutron cross section quite accurately (within a few percent)
predicts the zero-degree elastic cross section which relates the
zero-degree cross section to the total cross section (imaginary
part of the forward-scattering amplitude [Imf (0◦) = kσtot

4π
].

The average elastic cross section is also well described (to
a few percent) by the present semiclassical optical model,
since the model is able to fit the oscillations in the total cross
section to the order of a few percent and these oscillations are
due to variations in the elastic cross section. However, beyond
30◦, there are large discrepancies in the angular distributions
between the calculated and the measured values.

In summary, we constructed an analytical model, justified it
from the optical model and nuclear reaction theory approach,
and applied it to derive the systematics and performed calcu-
lations of neutron-nucleus total cross section, the scattering
cross section, and the reaction cross section, and we then
estimated these cross sections for a wide range of target nuclei.
The extracted parameters for the present analytical model
provide global fits to the neutron total cross sections spanning
quite a large number of nuclei. The angular distribution is
also well estimated at forward angles (0◦–30◦). We conclude
that the present estimates of neutron scattering cross sections
are very important for the reactor physics calculations [3–9]
of the Accelerator Driven Sub-critical Systems (ADSS) ap-
plications. The neutron-nucleus reaction cross sections are
very useful for the theoretical calculations of radioactive ion
beam [1,2] production or for performing Hauser-Feshbach [26]
calculations with Monte Carlo simulations [27] to estimate
the cross sections for neutron-induced fission and neutron
multiplicities [28], and they may serve as inputs to intranuclear
cascade codes such as the MCNPX package. Although the
simple semiclassical optical model obtained to calculate total
cross sections up to 600 MeV are very useful and almost
as accurate as the phenomenological optical model potentials
which are limited to 150–200 MeV, the results for the angular
distributions (differential cross sections) agree reasonably with
the experimental data only at forward angles below 30◦,
implying that they are expected to be more accurate for optical
model calculations.
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