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We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities,
and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We
employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the
virial expansion of a nonideal gas for matter at low density. For this EOS we use the RMF effective interaction
FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction
has a lower pressure at high densities compared to the NL3 interaction. We calculate the resulting EOS at over
100 000 grid points in the temperature range T = 0 to 80 MeV, the density range ng = 1078 to 1.6 fm~3, and the
proton fraction range Y, = 0 to 0.56. We then interpolate these data points using a suitable scheme to generate
a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this
EOS, our NL3-based EOS, and previous EOSs by Lattimer-Swesty and H. Shen et al. for the thermodynamic
properties, composition, and neutron star structure. The original FSUGold interaction produces an EOS, which
we call FSU1.7, that has a maximum neutron star mass of 1.7 solar masses. A modification in the high-density
EOS is introduced to increase the maximum neutron star mass to 2.1 solar masses and results in a slightly different

EOS that we call FSU2.1. The EOS tables for FSU1.7 and FSU2.1 are available for download.
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I. INTRODUCTION

The evolution of compact stellar objects provides a unique
laboratory to study matter at extremely high densities, temper-
atures, and/or neutron fractions. Neutron stars (NS) in binary
systems emitting x-ray bursts or super bursts provide a wealth
of information on the NS crust, its composition, and transport
properties [1]. Core collapse supernovae (SN) release gigantic
amounts of gravitational energy through the emission of
neutrinos. Their dynamics depends on detailed understanding
of neutrino interactions in dense matter [2]. NS-NS and
black hole-NS mergers produce strong gravitational waves that
depend on the equation of state (EOS) of dense matter [3]. The
EOS gives the pressure as a function of density, temperature,
and proton fraction. The historic detection of gravitational
waves is anticipated soon, as the advanced LIGO and VIRGO
detectors become operational [4].

For the past two decades, there have been several attempts
to construct complete EOS tables over a wide range of
temperatures, densities, and compositions. However, most
realistic supernova simulations have used only two EOS
tables: the Lattimer-Swesty (L-S) EOS [5], which is based
on a compressible liquid drop model with a Skyrme force,
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and the Shen et al. (S-S) EOS [6,7], which is based on
a relativistic mean field (RMF) model with Thomas-Fermi
approximation and variational method. Recently, Hempel and
Schaffner-Bielich have built an EOS table by matching a
nuclear statistical equilibrium model, at low densities, directly
to uniform nuclear matter at high densities [8]. In addition, the
S-S EOS has been extended to include hyperons [9,10].

In a series of papers [11-14], two of the present authors pre-
sented a new complete EOS. This is based on an RMF model,
NL3 [15], to self-consistently calculate nonuniform matter at
intermediate density and uniform matter at high density. Matter
at low density is described with a virial expansion for a non-
ideal gas of nucleons [16] and nuclei [17]. This virial approach
uses elastic scattering phase shifts and nuclear masses as input
and includes Coulomb corrections that can be important for
neutrino interactions [18,19]. The virial expansion is exact in
the low-density limit. Altogether, our RMF and virial EOS
models cover the large range of temperatures, densities, and
proton fractions necessary for astrophysical simulations. This
EOS table is available for download [14].

In this work, we use a different RMF effective interaction
FSUGold [20] to study matter at intermediate and high
densities. This replaces the NL3 effective interaction used
in our previous work. The low-density EOS from the virial
expansion is unchanged. FSUGold reproduces ground-state
properties of nuclei across the periodical table very well. The
differences between NL3 and FSUGold have been extensively
studied, for example, in Ref. [21]. It was observed that
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FSUGold is consistent with most known constraints, which
include the universal behavior of dilute Fermi gases with
large scattering lengths, heavy-ion experiments that probe
both the low- and the high-density domains of the EOS.
NL3 may not satisfy these constraints as good as FSUGold.
However, there are still large controversies in these theoretical
and experimental constraints. Therefore, it is very useful to
have EOS produced with both effective interactions. The
astrophysical simulations with the two EOS could potentially
provide more constraints on the EOS, which are correlated
with various astrophysical observables. The FSUGold EOS
is considerably softer than NL3 at high density, but stiffer
at subnuclear density. The original FSUGold EOS supports a
maximum NS mass of 1.7Mg, which is in contradiction to
the recent observation of 2 solar mass NS [22]. We introduce
a modification term to the original FSUGold interaction that
increases the pressure at high densities so that the maximum
NS mass is increased to 2.1 M.

The paper is organized as follows. In Sec. II we present
the RMF models for NL3 and FSUGold effective interactions.
Then a modification to the FSUGold effective interaction is
presented, which results in a maximum NS mass of 2.1 M.
We also summarize numerical details for the interpolation
scheme we use to generate the full EOS table. Section III
shows results for our EOS, including various thermodynamic
properties and the composition. The 7 = 0 B equilibrium EOS
is also presented and used to calculate the NS mass-radius
relation. We compare our EOS and existing L-S and S-S EOS
tables. Section I'V presents a summary of our results and gives
an outlook for future work. In the Appendix the public access
to our EOS table is given.

II. FORMALISM

In this section we describe our RMF interaction, computa-
tional method, and interpolation scheme.

A. Relativistic mean field interactions: FSUGold and NL3

In this section we discuss the RMF interactions FSUGold
and NL3. Atlow density the virial expansion is the same in both
EOS and has been discussed in a previous work [13]. We note
there are more low-temperature (<1 MeV) data in virial gas in
the FSU EOS, which only induces a small difference between
NL3 and FSU EOS. The comparison between NL3 and
FSUGold effective interactions has been discussed extensively
in Ref. [23]. For completeness, we briefly present the RMF
models to motivate this work.

The RMF theory that we use is based on Ref. [24] supple-
mented with an isoscalar-isovector coupling, as introduced in
Ref. [25]. The basic ansatz of the RMF theory is a Lagrangian
density where nucleons interact via the exchange of sigma
(¢), omega (V,,), and rho (b, ) mesons, and also photons (A,,),
given by [24,25]

e
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TABLE I. Bulk parameters of infinite nuclear matter at saturation
density p,. The quantities ¢, and K, represent the binding energy
per nucleon and incompressibility coefficient of symmetric nuclear
matter, whereas J and L represent the symmetry energy and derivative
of the symmetry energy with respect to density at p,.

Model po (fm™3) & (MeV) Ky (MeV) J (MeV) L (MeV)
NL3 0.148 —16.24 271.5 37.29 118.2
FSU 0.148 —16.30 230.0 32.59 60.5

The values for various parameters in the interacting Lagrangian
can be found in Table I of Ref. [23]. Here we duplicate
the bulk properties of infinite nuclear matter in Table I. The
incompressibility, symmetry energy, and its slope at nuclear
saturation density predicted by FSUGold are considerably
smaller than NL3; that is, the FSUGold EOS is much softer
than NL3 at saturation density and above. Therefore, FSUGold
gives a smaller maximum NS mass, which is discussed in
following sections. However, we note that FSUGold gives
slightly stiffer nuclear EOS at subnuclear density than NL3.
As aresult, FSUGold predicts a smaller neutron skin thickness
in 29%8Pb, 0.21 fm compared to 0.28 fm given by NL3 [23].
The experimental constraints on these nuclear properties at
best can only be inferred indirectly. The incompressibility is
constrained by giant resonance of nuclei, while the symmetry
energy and its derivative can be constrained, for example, by
studying the neutron skin thickness of 2% Pb or comparing with
microscopic calculations using chiral perturbation theory or
quantum Monte Carlo method. Both constraints on FSUGold
and NL3 have been studied extensively in Ref. [23]. Again,
FSUGold is consistent with these constraints.

To better describe low-density neutron matter, which is
close to a unitary gas, we also introduced a density dependent
coupling g, between scalar mesons and nucleons for FSUGold,
which is the same as that for NL3 in Ref. [12]. Then we
solve the Hartree problem at finite temperature for nonuniform
nuclear matter at intermediate densities and uniform nuclear
matter at high densities, following Ref. [12].

B. Modified FSUGold effective interaction: FSU2.1

The recent observation of a 1.97 + 0.04 M NS [22] puts a
new constraint on the maximum mass allowed by effective
interactions. The original FSUGold interaction predicts a
maximum NS mass of only 1.7My. The FSUgold interaction
is fitted to many observables near nuclear density, and the
extrapolation to high densities is incompletely constrained.
We consider a modification at high densities that increases the
maximum NS mass. We assume additional repulsion between
nucleons at short distances that is primarily isoscalar. This
will lead to a correction to the pressure that is approximately
independent of proton fraction. Furthermore, matter is de-
generate at high densities so that the correction should be
nearly independent of temperature. For simplicity we add the
following term to the pressure,

dP =a(p®> - p;)). 2)
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where p is the baryon density and py is a constant correspond-
ing to 0.2 fm 3. Note that the extra pressure is zero for p < .
The corresponding change to the energy is determined from
the density integral of d P. The constanta = 2 x 1075 MeV 2
was chosen to increase the maximum NS mass to about 2.1 M.
We refer to the EOS built with the original FSUGold effective
interaction as FSU1.7, while the EOS with the modified
effective interaction is called FSU2.1.

This procedure makes no corrections at low densities. This
leaves unchanged all of the FSUgold predictions for nuclear
observables. An alternative, and more consistent, procedure is
to refit the effective interaction with a smaller ¢ coupling in
Eq. (1). This will increase the pressure at high densities and
lead to a larger maximum NS mass [23]. An EOS with this
modified interaction will be presented in future work. How-
ever, we expect our simple prescription to give similar results.

C. Computational methods

We calculate the FSU EOS for many points in the parameter
spaces of density np, temperature T, and proton fraction Y,
using the procedure in our previous paper [12]. There are a total
of 107 000 points in the three-dimensional parameter spaces of
T,Y,,and ng. The overall FSU EOS took about 200 000 CPU
hours and was run primarily on the Teragrid supercomputer
cluster Ranger. Details about these parallel computations have
been discussed in previous work [12,13].

D. Bicubic interpolation

As discussed in our previous paper [14], we use a hybrid
method of interpolation to generate an EOS table on a finer
grid of density and temperature points. The thermodynamic
pressure Py, can be obtained numerically from the free energy
per baryon F/A,

d(F/A
Py = n (M) . 3)
T.,Y,

Bnb

For the zero-temperature EOS, we smooth the pressure as a
function of density for the calculated data points in Table II.
Note the upper limit in densty is 10%2 and 10%* fm~3 for
FSU2.1 and FSUL.7, respectively. This smoothing involves
comparing the pressure at a given density to the pressure
interpolated from neighboring points. We smooth the pressure
in a 10-points-per-decade table by removing points that differ
significantly (>1073) from the geometric mean of neighboring
points and replace them with interpolated ones. Then we
interpolate these smoothed pressures to create a finer table with

TABLE II. Range of temperature 7', baryon density np, and
proton fraction Y, in the coarse EOS table.
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40 points per decade of density. The resulting energy at zero
temperature is easily obtained by integration of these pressures
with respect to density. The pasta phase has very close
thermodynamic properties as normal nuclei [11]. Therefore,
we do not expect the smoothing procedure will lose important
features of pasta phase. The purpose of smoothing is just to
smooth the fluctuations in numerical evaluation of pressure
and entropy.

Next, we calculate the entropy at finite temperatures 7 <
12.5 MeV. From the free energy at temperature 7', density np,
and proton fraction Y, as in Table II, the entropy per baryon
St can be obtained numerically,

a(F/A
S = S/A = — (F/4) . 4
ar np, Y,
Finally, the energy per baryon ey, is
e = F/A — Tsu. )

For the finite temperature EOS with T < 12.5 MeV, we
smooth the entropy, as a function of density, while ensuring
thermodynamic stability. Then we perform monotonic cubic
Hermite interpolation [26] on this small table of entropy with
ten points per decade, to generate a larger table with 40 points
per decade in both the temperature and the density axes, as in
Table III. Now we integrate this smoothed entropy table as a
function of temperature to get values of the free energy (adding
the energy at zero temperature to make the full free energy).
Thus, we obtain the free energy on this finer 40 by 40 points
per decade grid in a thermodynamically consistent fashion.

Note that for higher temperatures 7 > 12.5 MeV, matter is
uniform for all proton fractions and densities. For uniform mat-
ter, all thermodynamic quantities can be obtained directly from
RMEF calculations, with good thermodynamic consistency.

Finally, we carry out bicubic interpolation of the previous
free energy values (as in Table III) to generate the entropy
and pressure by thermodynamic derivatives Egs. (3) and (4).
This prescription guarantees the monotonicity of entropy and
pressure in the final table and conserves the first law of
thermodynamics in adiabatic compression tests.

We first apply bicubic interpolation [27] for the free
energy. The first derivatives on the grid points are generated
from monotonic cubic Hermite interpolation [26]. The second
derivative, the cross derivative 82 F /0naT, on the grid points
is generated as in Ref. [27]. The bicubic interpolation can
then fit free energies with cubic functions in temperature
and density coordinates and provides the first and second
(cross) derivatives. Then the entropy and pressure are obtained
from Egs. (3) and (4). Finally, the boundary points at the
highest temperature or density are discarded to avoid boundary

TABLE III. Range of temperature T, density ng, and proton
fraction Y, in the finely spaced interpolated EOS table.

Parameter Minimum Maximum No. of points Parameter Minimum Maximum No. of points
T (MeV) 0,107%8 1019 36 T (MeV) 0,10703 10187 109
logip(ng) (fm=3) —8.0 0.2 (0.4) 83 (85) logio(np) (fm=3) —8.0 0.175 (0.375) 328 (336)
Y, 0, 0.05 0.56 53 Y, 0, 0.05 0.56 1Y, =0)+52
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FIG. 1. (Color online) Free energy per baryon at temperatures of 7 = 1 (a), 3.16 (b), 6.31 (c), and 10 (d) MeV. The proton fraction ranges
from Y, = 0.05 to 0.5. The transitions between the virial expansion and the Hartree calculations are vertical dashed lines. The transitions
between Hartree calculations and the uniform matter calculations are vertical solid lines.

artifacts in the interpolation. We note that our interpolation
procedure is general and should work independent of the
approximations used to calculate the original free-energy
values. We test the thermodynamic consistency of our table
in Sec. III D.

The neutron chemical potential is derived from u, =
d(npF/A)/0n,]7.,. while p,=[F/A+ p/ng — pa(l -
Y/ Yy.

III. RESULTS

In this section we present results for the free energy,
composition, pressure, NS structure, and adiabatic index
predicted by our FSU EOS. We compare our results for the
FSU EOS together with NL3 EOS to those for the L-S or
H. Shen et al. EOS.

A. Free energy and composition

In this section we discuss the free energy, average mass
number of heavy nuclei, and mass fractions of different

components (n, p, «, and nuclei) for the FSU EOS. In Fig. 1,
the free energy per baryon F/A for matter at 7 = 1, 3.16,
6.31, and 10 MeV with different proton fractions is shown as a
function of density np. The free energy F/A is obtained from
virial gas, nonuniform Hartree mean field, and uniform matter
calculations. This figure resembles Fig. 1 in our previous paper
for the NL3 EOS [14]. The transitions between the virial
expansion and the Hartree calculations (vertical dashed lines),
or between the Hartree calculations and the uniform matter
calculations (vertical solid lines) are at the densities where
Hartree or uniform matter calculations give the lower free
energy. The transition between virial EOS and RMF EOS is
pretty smooth, as discussed in Ref. [13]. However, there are
errors in calculating the pressure and entropy numerically. It
is the purpose of smoothing procedure outlined in Sec. IID to
remove these numerical errors.

Figure 2 shows the average mass number A of heavy nuclei
(with A > 4) versus baryon density at different temperatures
and proton fractions. Note that o particles are not counted as
heavy nuclei. Let us first look at panel (a), where T = 1 MeV.
Nuclear shell effects give rise to several approximate plateaus

in A vs density for each Y, for example, A ~50, ~80, and
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FIG. 2. (Color online) Average mass number of heavy nuclei at temperatures of 7 = 1 (a), 3.16 (b), 6.31 (c), and 10 (d) MeV. The proton

fraction ranges from ¥, = 0.1t0 0.5.

~110. Usually A is larger in matter with smaller Y,. There
are oscillations in A in the Hartree mean field regime. This
is attributable to both nuclear shell effects and small errors
in the free energy minimization owing to our using a finite
step in the Wigner Seitz cell size [12]. The average mass A
can be as large as 4000 at high density. These large A values
represent shell states or spherical pasta configurations [11]. At
higher temperatures, as shown in the other panels [(b)—(d)] of
Fig. 2, A grows rapidly to several thousand in a narrow range
of density before A drops abruptly at the transition to uniform
matter.

In Fig. 3, the mass fractions of unbound neutrons, unbound
protons, « particles, and heavy nuclei are shown versus baryon
density for a proton fraction of ¥, = 0.05. The solid lines are
for the FSU EOS while the dashed lines are for NL3 EOS.
Note that for Hartree mean field calculations there is only a
single nucleus associated with each Wigner-Seitz cell. We
define a nuclear level to be unbound when it has positive
energy. Panels (a) and (b) are for 7 =1 and 3.16 MeV.
The difference between NL3 and FSU EOS appears around
3x 107*fm3 for T =1 MeV and 1073 fm~3 for T = 3.16
MeV, when the virial gas to Hartree mean field transition
occurs. One can see that FSU and NL3 EOS differ in the
mass fractions of heavy nuclei in the Hartree calculations.

For T =3.16 MeV, FSU and NL3 EOS also differ in the
mass fractions of protons and « particles, owing to different

0.1k + Hou1

0.01f L Ho.01
E X, § E
000t v i T4l L ]

- 3 - - > —10.001
10 10° 10 10 10 10

n, [fm”] n, [fm”]
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j |
= r
\I
v>‘<
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FIG. 3. (Color online) Mass fractions of unbound neutrons,
unbound protons, « particles and heavy nuclei versus baryon density
at four different temperatures 7' = 1 (a), 3.16 (b), 6.31 (c), and 10
(d) MeV, and fixed proton fraction ¥, = 0.05. The solid lines are for
FSU(1.7) EOS while the dashed lines are for NL3 EOS.
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FIG. 4. (Color online) Mass fractions of unbound neutrons,
unbound protons, « particles, and heavy nuclei versus baryon density
at four different temperatures 7 =1 (a), 3.16 (b), 6.31 (c), and 10
(d) MeV, and fixed proton fraction Y, = 0.5. The solid lines are for
FSU(1.7) EOS while the dashed lines are for NL3 EOS.

transition densities. Panels (c) and (d) give the mass fractions of
different species at higher temperatures, 7 =6.31 and 10 MeV.
The differences between FSU and NL3 EOS are small at high
temperatures. Figure 4 shows the mass fractions as were shown
in Fig. 3, but for matter with higher proton fraction ¥, =0.5.
Again, there are small differences between the FSU and NL3
EOS for the mass fractions, particularly for « particles, owing
to their different transition densities from virial to Hartree.

B. Neutron star structure

Here we present the zero-temperature EOS of nuclear
matter in B equilibrium and the resulting NS mass radius
relation. The results for the FSU1.7, FSU2.1, and NL3 EOS
are compared. Figure 5 shows the pressure versus density for
zero-temperature nuclear matter in 8 equilibrium. The FSU1.7
and FSU2.1 EOS are stiffer (higher pressure) than the NL3
EOS for intermediate densities above 10~ fm™3 and then
softer than NL3 when the density is above 5 x 1072 fm™>.
FSU2.1 becomes stiffer than FSU1.7 when the density is above
0.2 fm~3. The stiffness of the EOS at high density determines
the maximum NS mass. Therefore FSU1.7, FSU2.1, and
NL3 predict maximum NS masses of 1.7, 2.1, and 2.8M,
respectively, as shown in panel (a) of Fig. 6. The FSU1.7,
FSU2.1, and NL3 EOS predict radii of roughly 13, 14, and
15 km, respectively, for a 1.4M NS. Panel (b) of Fig. 6 shows
the NS mass vs central density. For a NS with given mass, the
central density of the NS is inversely related to the stiffness of
the EOS at high density.

C. Adiabatic index

In this section we discuss the adiabatic index I" of nuclear
matter, at constant entropy, for several different EOS. Figure 7
shows the temperature of the adiabat, with entropy S/A =1,
for nuclear matter with proton fractions of ¥, =0.1, 0.2, 0.3,

PHYSICAL REVIEW C 83, 065808 (2011)
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FIG. 5. (Color online) Pressure versus density for zero-
temperature nuclear matter in 8 equilibrium, for FSU1.7, FSU2.1,
and NL3 EOS.

and 0.4. Note that baryon, electron, positron, and photon
contributions to S are included. The solid lines are for the
FSU1.7 EOS while the dashed lines are for the NL3 EOS.
Above saturation density FSUIL.7 gives a slightly higher
temperature than NL3. Because the modification term, Eq. (2),
in FSU2.1 does not depend on temperature, there is no
difference between FSU1.7 and FSU2.1 in the adiabats.
The adiabatic index I,

r — dlnP ©)

~ \dlnn /,°
describes the stiffness of the EOS at constant entropy. In
Fig. 8 a =2 x 1073, the adiabatic index is shown versus
density for nuclear matter with constant entropy S/A =1

and Y,=0.1, 0.2, 0.3, and 0.4. At subnuclear density, I"
has only small fluctuations with density. It then rises rapidly
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FIG. 6. (Color online) Mass versus radius (a) and mass versus
central density (b) for NSs using FSU1.7 (solid), FSU2.1 (dot-
dashed), and NL3 (dashed) EOS as shown in Fig. 5.
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FIG. 7. (Color online) Temperature of adiabat with S =1 for
different proton fractions Y;: (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4.
Dashed (red) lines are for NL3 based EOS and solid (black) lines are
for FSUGold EOS in this work.

at the transition from nonuniform to uniform matter. This
characterizes the stiffening of the EOS owing to the large
nuclear incompressibility. Beyond saturation density, NL3 has
a larger value of I' than FSUL.7. For FSUGold EOS, we
incorporated more data for virial EOS at low temperatures,
which leads to small variations in the numerical evaluation
of pressure and entropy at low density. This induces small
differences between NL3 and FSU EOS in the adiabatic index
and temperature at low densities.

In Fig. 9 we present the adiabatic index of various EOS
assuming an initial entropy so that 7 = 0.7 MeV at a density
ng=10"* fm=> for ¥, = 0.3. All EOS show a rapid rise of
I" beyond the transition to uniform matter ~0.1 fm~—3, owing
to the incompressibility of nuclear matter. There are different
versions of the L-S EOS depending on the assumed value for
the incompressibility of nuclear matter. We refer to LS180,
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FIG. 8. (Color online) Adiabatic index I' along adiabat for
different proton fractions Y,: (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4.
Dashed (red) lines are for NL3 based EOS and solid (black) lines are
for FSU1.7 EOS in this work.
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FIG. 9. (Color online) Adiabatic index I' for different EOS
assuming an initial entropy so that T = 0.7 MeV atng = 107* fm .
The proton fraction is ¥, = 0.3. The FSUL.7 and FSU2.1 EOS are
from this work and are identical below nz = 0.2 fm~3, while NL3 is
from Ref. [14] and S-S is from Ref. [7]. For the L-S EOS [5] three
curves are shown for different versions with incompressibilities K,
of 180, 220, and 375 MeV, as indicated.

L.S220, and LS375 for the L-S EOS with K, = 180, 220,
and 375 MeV, respectively. The LS180, LS220, LS375, and
H. Shen EOS have a significant dip in I" at densities just below
the transition to uniform matter. In contrast, the NL3, FSU1.7,
and FSU2.1, EOS, do not show an obvious dip.

The L-S EOS is based on a simple liquid drop model and
assumes a first-order phase transition between a low-density
vapor phase and a high-density liquid phase. During this
transition the pressure is independent of density so I" is small.
Indeed, a first-order phase transition may be appropriate for
small systems such as heavy-ion collisions. For small systems,
Coulomb effects are relatively mild so that one can form a
single uniform liquid phase. However, for large astrophysical
systems, Coulomb interactions play a crucial role and prevent
the formation of a uniform liquid phase. Instead, one must
form a nonuniform phase with average proton density equal
to the electron density. For this nonuniform phase, our RMF
calculations give an adiabatic index that increases with density
and does not show a decrease. Therefore, we believe that
the decrease in I' for the LS EOS may be an artifact of
the approximations that they use and their assumption of a
first-order phase transition. The behavior of I" for the H. Shen
EOS may be related to their Thomas-Fermi approximation.
For example, it is not clear if they considered a full range of
possible shapes for nonuniform matter such as the shell states
[11] that could be present in this density range. We emphasize
that the H. Shen EOS involves variational calculations and
Thomas Fermi approximations to the RMF formalism that we
calculate directly.

The FSU1.7 and FSU2.1 EOS have a larger I' compared
to NL3 in the density range nz = 0.07 to 0.1 fm~3. This is
probably related to differences in the density dependence of
the symmetry energy; see L in Table I. Because L is smaller
for the FSU EOS, it actually has a larger symmetry energy
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FIG. 10. (Color online) Temperature (a) and entropy (b) versus density in the adiabatic compression for nuclear matter with fixed proton
fraction 0.15, for H. Shen EOS, NL3 EOS, and FSU1.7 EOS. (c),(d) Same as (a),(b), respectively, but with proton fraction 0.5.

and pressure at low densities than NL3. This could lead to the
larger I' at low densities. Nuclear measurements can constrain
L and reduce the model uncertainty in I at low densities. For
example, L can be constrained by measuring the neutron radius
of 2%8Pb with parity violating electron scattering [28,29] or
with measurements of isospin diffusion in heavy-ion collisions
[30]. The possible impact of the density dependence of the
symmetry energy on the EOS should be studied further.

The rising of T' for FSU2.1 at ng = 0.2 fm~, owing to
the modification term to the pressure (and energy) beyond this
density, indicates stiffening of EOS at high density. In a more
consistent way to increase the pressure at high densities by
refitting the effective interaction as discussed in Sec. IIB, I
may rise more gently with density, which we will explore in
future work. However, the rise of I" in FSU2.1 does not violate
any physical principle we are aware of, especially the causality.
Moreover, the peak at 0.2 fm ™~ becomes smaller and the small
kink disappears if the EOS table has a lower resolution, for
example 20 points per decade in temperature and density.

D. Adiabatic compression tests

It is important that an EOS table is thermodynamically
consistent. Otherwise, small errors in the table can lead
to artificial increases in entropy during an astrophysical
simulation. Here we present adiabatic compression test results
for FSUL.7 and FSU2.1 EOS. The details of this test have
been discussed in a previous paper [14]. The entropy should
be conserved in this adiabatic compression independent of the
density. In Fig. 10, the temperature and entropy versus density
during adiabatic compression are shown for nuclear matter
with fixed proton fraction Y, = 0.15 (left) and Y, = 0.50
(right). The initial density is 5.167 38 x 107® fm~ and initial
T = 0.5 MeV. The FSU and NL3 EOS conserve entropy
within 1%, except for a slight rise in S/A at extremely high
density when Y, =0.5. For a comparison test results for
the H. Shen EOS are also shown (as red dashed curves) for
similar initial conditions. Note that it is important to use an
accurate interpolation scheme with the EOS table to ensure

that the first law is satisfied so that entropy is conserved. The
adiabatic compression test result for the H. Shen EOS was
obtained using the routine developed in Ref. [31]. In typical
adiabatic compression tests, one has to interpolate the existing
tables. For nuclear matter at high densities with high Y, the
thermodynamic properties change fast as density rises. The
NL3, FSU, and H. Shen EOS used for this plot have 40 points
per decade in density and temperature axes. For a finer table
with 80 points per decade, we find the entropy is conserved
better at high densities (within 1% deviation). However, this
would increase the volume of table by a factor of four. Because
this region is most likely not relevant in typical supernova
simulations, we decided to generate the smaller 40 points per
decade table.

E. Comparisons with existing EOS

It is useful to compare the thermodynamics of the new FSU
EOS with the NL3 EOS, the L-S EOS, that uses a simple
liquid drop model, and the H. Shen ef al. EOS (S-S), that uses
the Thomas Fermi approximation and variational calculations
with approximating shapes for nuclei. The L-S EOS quoted
in this section corresponds to the one with incompressibility
coefficient Ky = 180 MeV, that is, LS180. The comparisons
for pressure, entropy, and heavy nuclei fractions between NL3,
LS180, and S-S EOS have been discussed in a previous paper
[14]. In this section, we focus on the differences between
the FSU1.7 and the other EOS. The only difference between
FSU1.7 and FSU2.1 EOS is the pressure and energy at densities
above 0.2 fm~3, as explained in Sec. II B.

In Fig. 11, the pressure for matter at 7 = 1, or 6.31 MeV
and Y, = 0.05 or 0.4 is shown for the FSU EOS, NL3 EOS,
LS180, and S-S EOS. The pressure includes contributions
from electrons, positrons, and photons. For neutron-rich matter
at subnuclear density as in panel (a) for 7 =1 Mev and
Y, = 0.05, the FSU EOS gives slightly larger pressure than
all the other EOS. As the temperature and/or proton fraction
grows, this difference becomes less obvious. However, for
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FIG. 11. (Color online) Pressure versus baryon density from
our EOS, Lattimer-Swesty’s (L-S) and H. Shen et al.’s (S-S) EOS,
with T =1MeV, Y, =005 (a); T=1MeV, ¥, =04 (b); T =
6.31 MeV, Y, =0.05(c);and T = 6.31 MeV, Y, = 0.4 (d).

nuclear matter above saturation density, the FSU EOS gives
the smallest pressure among all of these EOS.

Figure 12 compares the mass fraction of heavy nuclei from
the FSU EOS, NL3 EOS, LS180 EOS, and S-S EOS for matter
atT = lor6.31 MeV,and Y, = 0.05 or 0.4. The mass fraction
of heavy nuclei can be very different among the various
EOS and this causes the differences in entropy. However,
the FSU and NL3 EOS only differ in the mass fraction of
heavy nuclei for neutron-rich matter at subnuclear density and
low temperature as shown in panel (a) for 7 = 1 Mev and
Y, = 0.05. This is also discussed in Fig. 3. Note possible
reasons for the differences in the mass fractions between NL3,
LS180, and S-S EOS have been discussed in the previous
paper [14]. The sharp rise in the mass fraction for FSU and
NL3EOSwithT = 6.31MeVandY, =0.4,alsoT = 1MeV
and Y, = 0.05, is attributable to transition from virial to RMF
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ng [fm-sl

FIG. 12. (Color online) mass fraction of heavy nuclei versus
baryon density from our EOS, Lattimer-Swesty’s, and H. Shen et al.’s
EOS, with T =1 MeV, ¥, =0.05 (a); T =1 MeV, Y, = 0.4 (b);
T =631MeV,Y,=0.05();and T = 6.31 MeV, Y, = 0.4 (d).
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FIG. 13. (Color online) Average mass number A (black upper
curves) and atomic number Z (red lower curves) of heavy nuclei
for the FSU EOS (double dash-dot), NL3 EOS (solid), L-S’s (dot-
dashed), and H. Shen et al.’s EOS (dashed) for T = 1MeV, Y, = 0.4.

results. For RMF, we solved the nuclear energy levels in
nonuniform nuclei exactly and denoted nucleon as freewhen
its energy is positive. This is different from virial EOS and
it is possible the composition is not smooth everywhere. The
average A and Z of heavy nucleifor7 = 1MeVand Y, = 0.4
is shown in Fig. 13. This figure shows the effects of shell
structure, thatis included in FSU and NL3 EOS butis neglected
in both LS180 and S-S EOS. As aresult, A and Z for our EOS
have a series of steps while A and Z for LS180 and S-S EOS
increase smoothly with density. Note the NL3 EOS gives larger
A and Z in the Hartree nonuniform region compared to the
FSU EOS. NL3 also shows somewhat of a plateau in A and Z,
where nuclei are in the shell shape [11], while the FSU EOS
does not give shell shape nuclei for this value of Y, (it does
for most values of Y, ). More detailed discussion about shell
shape nuclei can be found in Ref. [11].

Figure 14 compares the entropy from FSU EOS, NL3 EOS,
LS180 EOS, and S-S EOS, for nuclear matter at 7 =1 or
6.31 MeV, and Y, = 0.05 or 0.4. Note that heavy nuclei have
low entropy at low temperatures so the difference in entropy
between the FSU and NL3 EOS is small. While at higher
temperatures, the entropy is dominated by unbound nucleons
and photons and the two EOS agree very well.

IV. SUMMARY

In this paper we present a second EOS of nuclear matter for
a wide range of temperatures, densities, and proton fractions
for use in SN, NS-NS mergers, NS-black hole mergers, and
black hole formation simulations. We use a density-dependent
RMF model, FSUGold, for nuclear matter at intermediate and
high density with a spherical Wigner-Seitz approximation for
nonuniform matter, which incorporates nuclear shell effects
[12]. For nuclear matter at low density [13], we use a virial
expansion for a nonideal gas consisting of neutrons, protons,
o particles, and thousands of heavy nuclei from the finite
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FIG. 14. (Color online) Entropy per baryon versus baryon density
from our EOS, L-S’s and H. Shen er al.’s EOS, with T =1 MeV,
Y,=005(), T =1MeV,Y, =04 (b), T =6.31MeV, Y, =0.05
(¢),and T = 6.31 MeV, Y, = 0.4 (d).

range droplet model (FRDM) mass table [32]. The difference
from the first EOS is that here we use the RMF effective
interaction FSUGold, whereas our first EOS was based on the
NL3 effective interaction. The virial gas part is common and
has been discussed in a previous paper [13].

We tabulate the resulting EOS at over 100 000 grid points
in the temperature range 7 = 0 to 80 MeV, the density range
np = 1078 to 1.6 fm~>, and the proton fraction range ¥, = 0
to 0.56. We present differences between our FSUGold-based
EOS and our NL3-based EOS along with some existing
EOS, for the thermodynamic properties, composition, and NS
structure. In particular, we focus on the differences between the
FSU and NL3 EOS. The FSUGold EOS is considerably softer
than NL3 EOS in the high density, but stiffer at subnuclear
density, as shown in Fig. 11. The FSU EOS also predicts
different mass fractions and average A and Z of heavy nuclei
from NL3 EOS, as shown in Figs. 3, 4, and 13.

As for the NL3 EOS, we use a hybrid interpolation scheme
to generate a full table for the FSU EOS on a fine grid that is
thermodynamically consistent. This ensures that the first law
of thermodynamics is satisfied and that entropy is conserved
during adiabatic compression.

Moreover, the original FSUGold EOS has a maximum NS
mass of 1.7M. We introduce a modification in the pressure at
high density, which accommodates a 2.1M NS as shown in
Fig. 6. The EOS based on the original FSUGold is therefore
called FSU1.7 while the modified EOS is called FSU2.1,
according to their different maximum NS masses. Note in
the final EOS tables the upper limit in density is 10%!7> and
10°37 fm=3 for FSU2.1 and FSU1.7, respectively.

Finally, the EOS tables for FSU1.7 and FSU2.1 are
available for download as described in the Appendix. Our
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goal in constructing EOS tables is twofold. First, we intend
to calculate EOS tables with different pressures. This will
allow one to correlate features of astrophysical simulations
with EOS properties. In this paper we calculate a new EOS
that has a lower pressure, at high densities, than our previous
NL3 EOS. Second, we aim to provide detailed composition
information in future EOS tables. This can be important for
neutrino interactions. Historically, most EOS tables, used in
astrophysical simulations, have only provided mass fractions
for neutrons, protons, ’s, and a single average heavy nucleus.
However, electron capture on a range of heavy nuclei may be
important for the proton fraction Y, during the infall phase of
a supernova [33]. In addition, mass 3 and other light nuclei
can be important for antineutrino opacities [34,35]. Deuterons
have been included in current virial EOS via the second virial
coefficient between neutrons and protons [13], and we plan to
include mass 3 and other light nuclei in future work. Note that
the EOS table described in this paper only provides a single
average heavy nucleus. This is done to be compatible with
existing simulations and neutrino opacity codes. However,
we will make available additional composition information
in future work.
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APPENDIX: FORMAT OF EOS TABLES

Here we describe where the tables FSU1.7EOSb1.01.dat
FSU1.7EOS1.01.dat, FSU2.1EOS1.0l1.dat and FSU2.
1EOS1.01.dat can be downloaded. The entries in these tables
are the same as those in NL3 EOS tables and explained
in a previous paper [14]. One should download the gzip
compressed files (that are about 100 MB each) and use gunzip
to decompress them. The grid structures of these tables are
indicated in Table III and contain approximately 517 MB of
data each. The tables, a sample FORTRAN computer program,
and a readme file are available for download both at our web
site, [http://cecelia.physics.indiana.edu/gang_shen_eos/], and
from the supplemental materials web site [36]. Please check
our web site for any updated information regarding these EOS
tables. The entries in the table are the same as that for the NL3
EOS and have been discussed in the appendix of Ref. [14].
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