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Electron capture rates in a plasma

R. F. Sawyer
Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA

(Received 21 March 2011; published 13 June 2011)

A new general expression is derived for nuclear electron capture rates within dense plasmas. Its qualitative
nature leads us to question some widely accepted assumptions about how to calculate the effects of the plasma
on the rates. A perturbative evaluation, though not directly applicable to the strongly interacting case, appears to
bear out these suspicions.
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I. INTRODUCTION

Calculation of electron capture rates in plasmas is of
importance in many astrophysical systems. The influence of
the surrounding plasma on the capture rates is completely
understood for the case of a weakly coupled plasma in
which the electrons are not degenerate, as long as the energy
release in the reaction Q is sufficiently large. These conditions
are well fulfilled in the solar core, where the capture rate
of electrons on 7Be has been studied in detail. Here the
weak-screening Salpeter factor [1], with a multiplicative factor
of exp(−e2ZκD/T ) ≈ (1 − e2ZκD/T ), gives a 16% rate
reduction [2–4].1 These calculations of reduction factors are
all really just calculations of a screening-induced reduction of
the expectation of the electron density at the position of the ion.
The methods of the above references are not applicable to cases
with (a) strong plasma coupling � or (b) small energy release
Q in relation to other energies in the problem (or negative
Q). Indeed, as we explicitly show below, the plasma-induced
change of the electron density at the position of the ion is no
longer the determining factor in the rate when condition (b)
prevails. Also, of the approaches in the above references, only
that of Ref. [4] can incorporate high electron degeneracy.2

In the parameter region relevant to explosions and collapse
of O-Ne-Mg stellar cores, for example, both conditions (a)
and (b) apply, and the electrons are very degenerate. Indeed,
Q is here negative for important capture reactions; they
become enabled when the Fermi energy increases nearly to
the value −Q. In Ref. [5], addressing these systems, we find
a simple statement of a procedure that appears to be widely
followed [6–9], namely, to calculate the capture rate for an
individual electron as in vacuum, except replacing the vacuum
Q value for the decay by an effective value Q + E1 − E2,
where E1 and E2 are the respective energies of interaction
of the initial and final ions in the plasma. There exist more
or less standard expressions for these energies derived from
classical simulations. For the purpose of our present discussion
we designate this correction, with energies calculated as
for a classical plasma, as the “ionic energy correction.” In

1The question of whether or not the exponentiation of the perturba-
tive result is justified is numerically irrelevant in this case.

2However, we know of no very interesting set of conditions that are
highly degenerate without also embodying condition (a) or condition
(b).

applications, it appears that this correction has been applied
sometimes with accompanying initial-state Coulomb effects
involving the electrons, which we loosely characterize as
“screening,” and sometimes without them.

The present work begins with the derivation of a new
expression for the rate of electron capture, one that we think
should be the basis of future calculation of rates in the presence
either of strong degeneracy or of strong plasma coupling.
Just looking at the form of the result, we believe, should be
enough to make one profoundly skeptical about assumptions
being made in the literature. We then carry out a systematic
perturbative evaluation in the weakly coupled case for cases
of arbitrary electron degeneracy, retaining terms of relative
order e2ZκD/T in the rates (or of order “Salpeter,” as we
shall henceforth designate them). The results appear to be in
complete disagreement with the assumptions that lead to the
ionic energy correction, had they been applied to a weakly
coupled problem.

We use the notation κD for the screening wave number
throughout. In the presence of some degree of degeneracy its
square is given by [10]

κ2
D = 4π

[
β

∑
s

e2
s ns + e2 ∂

∂µe

∫
dp

(2π )3
f (Ep)

]
, (1)

where es = eZs is the charge of ionic species s, ns is the
number density of that species, and f (Ep) is the Fermi
distribution. In the nondegenerate limit this gives the Debye
wave number, and in the strongly degenerate limit, the
electronic part would give the square of the Thomas-Fermi
screening wave number.

II. GENERAL FORMULATION

Our general methods follow those introduced in Ref. [10].
We take the electron capture interaction Hamiltonian for the
process of a nonrelativistic electron plus ion Ia going into
neutrino plus ion Ib to be given by a zero-range Fermi-type
coupling (all the effects of Coulomb interactions in what
follows are the same for the Gamow-Teller case),

HW =
∫

dr[K(r, t) + K†(r, t)], (2)
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where

K(r, t) = ge−iQtψ†
ν (r, t)ψe(r, t)ψ†

b (r, t)ψa(r, t) (3)

and Q is the energy release in the reaction. There are
suppressed spin indices contracted with each other on the
electron and neutrino fields. Here ψ{a,b} are nonrelativistic
quantum fields that describe creation or annihilation of the
respective ions. All fields are in a Heisenberg picture with
respect to the complete Hamiltonian. The ionic fields could be
Fermi or Bose, but we shall remain in a domain of temperature
and density in which deviation from Boltzmann statistics of
the ions is inconsequential.

We are interested in the time rate of change of the electron
density induced by (2). Since the medium is translationally
invariant, we can choose to evaluate this time derivative at at
point r = 0 and choose time to be zero as well. Directly from
the Heisenberg equations, we obtain the rate of change w of
the electron density at the origin, ne(0, 0) = ψ

†
e (0, 0)ψe(0, 0),

w = 〈ṅe(0, 0)〉β = −i

∫
dr〈[ne(0, 0),K(r, 0)]〉β

= i〈[K(0, 0) − K†(0, 0)]〉β. (4)

The notation 〈· · ·〉β indicates the thermal average in the
medium, such that for an operator O we have 〈O〉β ≡
Z−1

P Tr{O exp[−β(H + HW − µeNe)]}, where ZP is the parti-
tion function and where H + HW is the complete Hamiltonian.
We wish to calculate the rate to lowest nonvanishing order, i.e.,
to second order in the weak-coupling parameter g. So it is it
clear that one power of g must come from the weak interaction
HW within the statistical factor. Thus we now must consider
the linear response [11] of the medium average of the operator
[K(0) − K†(0)] to this perturbation,

w = −i

∫ 0

−∞
dt

∫
(dr)〈[ṅe(0, 0),HW (r]〉β

= −
∫ 0

−∞
dt

∫
dr〈[K(0, 0) − K†(0, 0)],

× [K(r, t) + K†(r, t)]〉β, (5)

where now the thermal average in the medium is to be
calculated using H alone. H conserves electron number, so
that,

〈[K(0, 0),K(r, t)]〉β = 〈[K†(0, 0),K†(r, t)]〉β = 0. (6)

Using in addition the space-time translational invariance of the
medium and the antisymmetry of the commutator,

〈[K†(0, 0),K(r, t)]〉β = −〈[K(0, 0),K†(−r,−t)]〉β, (7)

we can write the rate as

w = −
∫ ∞

−∞
dt

∫
dr〈[K(0, 0),K†(r, t)]〉β. (8)

When we take the medium to contain no ions of type b, so
that there is no reverse reaction, we can omit the first term in
the commutator in (8), which, after inserting (3), gives

w = g2
∫ ∞

−∞
dt

∫
dr e−iQt 〈ψ†

e (r, t)ψ†
a (r, t)

×ψν(r, t)ψb(r, t)ψ†
b (0, 0)ψ†

ν (0, 0)ψa(0, 0)ψe(0, 0)〉β

= g2
∫ ∞

−∞
dt

∫
dr eiQt

∫
d3pν

(2π )6
eipν ·r+iEν t

×〈ψ†
e (r, t)ψ†

a (r, t)ψb(r, t)ψ†
b (0, 0)ψa(0, 0)ψe(0, 0)〉β.

(9)

For almost any purposes the thermal motions and recoil of
the reacting ions are ignorable. We distinguish the ion Ia on
which an electron is captured and the capture product Ib from
the other ions in the plasma, taking a single Ia fixed at the
origin, replacing r = 0 in all of the explicit fields in (9) and
adding an allover factor of density of ions of type a, na . The
products of the field operators ψa,b that occur in (9) now serve
only to change one ion into the other. We substitute

ψ†
a (0, t)ψb(0, t) = eiHt |a〉〈b| e−iH t , (10)

where the time dependence reflects the fact that the plasma
interactions of the two ions are different. We obtain

w = g2na

2π2

∫ ∞

−∞
dt e−iQt

∫
dpν pνe

iEν tM(t), (11)

where

M(t) = Z−1
P Tr[〈a|−βH eiHtψ†

e (0, 0)|a〉〈b|e−iH t |b〉
× 〈a|ψe(0, 0)|a〉]. (12)

The ionic states |a〉, |b〉 in (12) serve to determine the coupling
to the fixed ion in the interaction Hamiltonian. The trace in (12)
is over all of the other coordinates. We write

M(t) = Z−1
P Tr[e−(β−it)Haψ†

e (0, 0)e−iHbtψe(0, 0)], (13)

where

ZP = Tr [e−βHa+βµeNe ]. (14)

Here Ha is the Hamiltonian for the initial system (with HW

turned off since our expressions are already of order g2) and
Hb is that for the final system, not counting the constant Q.
The space of states in which the trace in (13) is to be evaluated
is just what we have defined as the “plasma”; all electrons and
all ions, except ions a and b. To restate the definitions of Ha

and Hb, they are the Hamiltonians for the complete plasma
in the presence of the respective fixed Coulomb fields of the
nuclei a, b.

The result (13) for the function M(t), in conjunction with
the rate expression (11), is our fundamental result. We show
the details of the perturbation evaluation in the Appendix,
retaining terms of order Salpeter (e2ZκD). This calculation
appears to be very inefficient, given the simplicity of the result,
but we have found no other path to the answer. We state the
results in terms of two subsidiary functions, M0(t) and MA(t),

M0(t) =
∫

dp1 dp
(2π )3

〈a†
p1

ape
iEpt 〉 =

∫
d3p

(2π )3
f (Ep)eiEpt ,

(15)

MA(t) =
∫

d3p

(2π )3
[f (Ep)]2eiEpt , (16)

where f (p) is the Fermi distribution,

f (Ep) = [1 + eβ(Ep−µe)]−1. (17)
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The kernel of the rate expression (11) is now given by

M(t) = M0(t) − e eaκDβ[M0(t) − MA(t)], (18)

and the rate is given by

w = 23/2πg2m3/2
∫ ∞

min(0,−Q)
dE E1/2 (Q + E)

×{f (E) − eeaκDβ[f (E) − f 2(E)]}. (19)

We note that to the order that we are working, the result (19)
agrees exactly with Eq. (1.21) of Ref. [4] except for the
additional term E in the factor Q + E in our result and
the inclusion of all vacuum Coulomb effects in Ref. [4]. (In the
present work we just stated that vacuum Coulomb effects could
be treated additively.) In the vacuum case the extra E term just
puts in corrected kinematics. But, as we see more explicitly
in the next section, once we make this trivial modification,
the rate is no longer determined by the electron density at the
location of the ion. References [3] and [4] calculate only the
perturbation of the density. Thus it is of some interest that
this modification is screened by the same factor (under the E

integral) as the Q term, but it is perhaps not unexpected. What
is more of note is not what our result contains but what it does
not contain. We discuss this at some length in the next section.

III. DISCUSSION

We return to the basic result for the kernel of the capture
rate formula,

M(t) = Z−1
P Tr[eβµeNee(−β+it)Ha ψ†

e (0, 0)e−iHbtψe(0, 0)].

(20)

If we were to replace both factors exp(iHat) and exp(−iHbt)
by unity, i.e., evaluate at t = 0, then M would be precisely
the electron density at the position of the ion. Then, in accord
with the remarks at the end of the last section, we get the
standard screening results, where Q + E in (19) is replaced
by Q. In our mechanics this replacement comes from the fact
that Hamiltonians Ha and Hb both contain electron kinetic
energy terms and that there is an electron creation operator
standing between the factors containing them, thus producing
an exp[−iEt]. But Ha and Hb also contain pieces in which the
initial and final ions interact with the plasma. So in parallel
fashion, why do we not see another addition to Q in the results,
namely, �Q = �Ea − �Eb, due to the ionic interaction shifts
in the plasma? After all, one can infer energy shifts for the
ions at the Salpeter level. For an ion with charge ea we have
�Ea = e2

aκD/2 so that the difference between the energy shifts
of the initial and final ions in our case would be eeaκD . But
there is no such term in the result (19).

This is our first criticism of the “ionic energy shift” ansatz.
It should have manifested itself at our level of approximation,
but it did not. A reader might comment, “I look at (19), say,
in the nondegenerate limit, and I see just Salpeter screening,
an effect that pertains only to physics in the initial state. But
we know that the energies of these ions are shifted differently
by the plasma interactions, and when these shifts are of order
Q, they must matter a lot. So the author cannot have put in

all of the physics.” But if one wades through the calculations
in the Appendix, one finds that such terms come and go; they
all cancel in the end. What is left out of the ansatz (initial-
state effects + final-state effects) is the fact that many of the
individual terms in the development, even to this order, involve
one Coulomb interaction with the initial ion and one with the
final one. These terms cancel almost all of what comes from
the ansatz. We see no valid reason to believe that the ionic
energy shift correction by itself, as it is applied in Refs. [6–9],
will serve us any better in the strongly coupled case than in
our case in which we can really calculate.

In addition to this ionic energy shift, there exists a second
plausible correction recommended in some papers dealing
with extremely dense and degenerate systems [7,9], namely,
an electron energy shift resulting from the screening of the
potential seen by the electron. The qualitative description of
how this screening should affect the rates is now nothing like
the description in weak screening theory; in the latter case the
effects are entirely due to the change in electron density at
the ionic position and are not directly connected to the energy
spectrum of the electrons. But when we address a degenerate
case in which Q < 0 and we get captures only as the Fermi
energy approaches −Q, it is the energy distribution rather than
the electron density that would seem to be the critical feature.

To discuss this suggested effect, we first note that in the
derivation of our perturbative results, given in the Appendix,
we did need to calculate a change in the electron chemical
potential δµe. Our primary calculation was for fixed chemical
potential, and we thereafter made a correction to get the
results for fixed electron density. The outcome is that we
obtain the Salpeter correction with no explicit δµ appearance,
with the stipulation that the chemical potential to be used
is obtained from the number density by doing the integral
ne = ∫

dp(2π )−3f (Ep) and then solving for µe as a function
of ne. It appears to us that this gives the statement of results in
the best form for applications, and there is no explicit chemical
potential shift in the result.

Thus we find reasons to question both of the above
corrections; they do not contribute in the weakly coupled
case, and we see no reason for them to be the dominant
correction in the strongly coupled case. That is not to say
that the physical reasoning behind them is incorrect; other
corrections are equally important.

Turning to specific applications, we first focus our attention
on Ref. [9], which is a comprehensive treatment of electron
capture in the infall phase of a type II supernova event, with a
full range of nuclear species, temperatures, and densities. Here
the screening corrections are a relatively minor feature of the
work; still, they give effects ranging from a 25% decrease
in rates for a density of 1010gc−3, temperature of 0.75 MeV
(with plasma parameter � ≈ 1) to a factor of 2 at a density of
1012, T = 1.5 MeV, � ≈ 3. Our suggestion here is that these
corrections be taken as an estimate of the magnitude of the
unknown error in either direction due to plasma effects. If this
turns out to create important uncertainties in the outcome of
the collapse, then it will be time to worry.

In another setting, the accretion of matter onto the surface
of a neutron star, the problems could be much more serious.
Here, at a depth where nuclear reactions stimulating transient
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explosive phenomena can occur, it may be that electron capture
on a particular nuclear species is the stimulator, and the rates
will be extremely density and temperature dependent [12,13].
In this environment, the plasma coupling � will be much
stronger than those cited in the previous example, and we
can expect the effects on rates to be larger, and harder to
estimate, even in magnitude. Furthermore, it is the temperature
dependence more than the absolute rate that rules in most
explosion calculations. Since the plasma corrections, whatever
else, will be strongly temperature dependent, we could say that,
knowing nothing about them, we equally know nothing about
the effective exponent in the temperature dependence of the
rate.

There is a body of literature that presents unorthodox results
on the effects of the plasma on reaction rates, even in the case
of the weakly coupled solar plasma. These results, if correct,
would have significant impact on solar models. We wish it to
be clear that the work of the present paper does not support any
of these claims. One can find a critique in Ref. [14] as well as
a list of some of the articles in this category, though there are
more recent examples that cover the same topic [15]. There are,
in addition, a few papers of the same genre addressing electron
capture [16–18]. The last of these engendered a response in
Ref. [19], one with which we completely agree. But, that said,
the reply in [19] was more in the vein of “We did a correct
calculation and had no such terms; therefore your calculation
is wrong,” rather than tracking down specific mistakes. The
same could be said of the arguments given in Ref. [14]. Thus it
may be worth adding my own conclusion about one thing that
has gone wrong in at least some contributions of this genre. Let
me characterize as an “S-matrix approach” one in which one
starts the correction of a two-body reaction rate by putting in
some more bodies from the plasma in the calculation, working
out the multibody reaction rate in some perturbative way, and
then doing the thermal average (typically) over the momentum
states of the plasma particles. Looking at the actual mechanics
in these papers, it appears to me that the assumptions are
tantamount to entirely leaving out Coulomb forces in the factor
exp[−βHa] in (13). It is a mistake to do this. We could put the
conclusion qualitatively as follows: A treatment strictly from
a multiparticle S matrix, followed by averaging over thermal
distributions, misses essential physics coming from the fact
that the initial particles sit in an interacting medium.

IV. THINKING ABOUT THE STRONGLY COUPLED
AND VERY DEGENERATE CASE

A. Ionic energy shift

Returning to the basic equation (20) that determines the
kernel of the capture rate formula, we go back and think
qualitatively about the ionic energy shift. We first state the
case for the shift assumption and then the counter-argument.
We take only electron kinetic energies and ionic potential
energies in Ha,b, the electron potential energies not being
relevant in the extremely degenerate system, at least not to
the effect that we are considering. Now we look first at Hb

where there is a term ebφI (0), the energy of ion b in the fields
of all of the other ions. If we forget about where b came

from and when it came into being and consider a problem
in which it has been at r = 0 all along, we can, in principle,
calculate the potential of the plasma ions at the position of b;
it is, of course, a function of the charge eb = eZb. In classical
simulations the energy shift is given by �Eb = T g(�b), where
g(x) is of order x and �b = Z

5/3
b e23−1/3(4πne)1/3. We can

calculate the corresponding energy shift for initial ion a. From
the time-dependent exponentials in (20) we would infer that
these corrections change the effective Q value by an amount
�Ea − �Eb.

But the actual term in the interaction, say, Ha , that induces
an energy shift for ion a is eaφ(0). First, through this term, the
plasma redistributes itself around the ion, creating a potential,
which then shifts the energy of the ion through another action
of Ha . In a perturbative calculation the plasma is thereupon
returned to its original state. If we let Ha act only once, it
will transfer a bit of momentum from ion a to the plasma. Of
course, the whole expression is a trace, so everything has to
be returned to its initial value. But that bit of momentum can
be returned to the plasma particles after the electron capture,
through the interaction Hb. In the weakly coupled case there
is substantial cancellation between these categories of effects.
We cannot argue that in the strongly coupled case they would
cancel in any particular way. But we would not trust a result
that takes one part and discards the other

B. Ab initio numerical calculations?

We take a box containing NI ions, not including a or
b, and Ne electrons. The initial and final ions a and b that
participate in the capture process are at the point r = 0 and
manifest themselves only in the potentials Ha and Hb. In one
respect we are at an advantage here, in comparison with a
parallel treatment of the nuclear fusion problem, because we
probably do not care about regions in the space of the ions
Ri that are classically inaccessible or nearly unaccessible at
the temperature of the medium. Thus we can plausibly take
the ions to be absolutely classical and entirely omit the ionic
kinetic energy terms from Ha and Hb. We take a basis set
of Ne electrons at positions r1, r2, . . . , rNe

and NI ions at
positions R1, R2, . . . , RNI

. Using the cyclic invariance of the
trace in (20) to move ψ(0, 0) from the last position to the first
and putting in the position basis, we have

M(t) = Z−1
P

∫
dR1, . . . , dRNI

, . . . , dr2, . . . , drNe

×
∫

dr′
2, . . . , dr′

Ne
〈{0, r2, . . . , rNe

}, R1, . . . , RNI

× |e−(β−it)Ha |{0, r′
2, . . . , r′

Ne
}R1, . . . , RNI

〉
× 〈{r′

2, . . . , r′
Ne

}, R1, . . . , RNI
|e−itHb |{r2, . . . , rNe

},
× R1, . . . , RNI

〉. (21)

We have here shifted from the grand canonical ensemble to the
canonical ensemble, with a definite number of electrons. The
{· · ·} around the electron basis states signify a total antisym-
metrization. The ionic part requires no symmetrization. Note
that the intermediate integration is over electronic positions
only. We have taken the classical limit for the ions, in which the

065804-4



ELECTRON CAPTURE RATES IN A PLASMA PHYSICAL REVIEW C 83, 065804 (2011)

ionic kinetic energy term is omitted and the ionic coordinates
within Ha and Hb remain at their external values.

Could we in principle use the trick of Ref. [20],
exp(−βH ) = [exp(−βH/NS)]NS , taking NS to be sufficiently
large so that we can make a lowest-order perturbative expan-
sion in the Coulomb potentials in each individual factor? Each
factor would then be at a sufficiently high temperature NST

to validate this lowest-order expansion. This would be at best
an expensive calculation because N1, Ne, and NI all have to
be fairly large, and between each of the N1 factors in the
product one must integrate over the full manifold of some
r′

1, . . . , r′
Ne

, not to mention the enormous antisymmetrizations
required. And the final blow to this suggestion is probably that,
because of the real-time exponentials, we would have rapidly
oscillating integrands.

Perhaps instead, we could start by taking a very degenerate
plasma. The electron sea is so stiff that it does nothing,
except that one electron gets captured, creating an electron
hole in the final state. Should we be worried about the effects
of the (ionically) irregular plasma on what that hole does?
Perhaps somewhat symbolically, we can write a much simpler
equation,

M(t) = Z−1
P

∫
dR1, . . . , dRNI

〈R1, . . . , RNI
|e−(β−it)Ha

× |R1, . . . , RNI
〉〈r̄ = 0, R1, . . . , RNI

|e−itHb

× |r̄ = 0, R1, . . . , RNI
〉. (22)

Is it possible to calculate the matrix elements for the hole to
go from the origin back to the origin in time t under the action
of Hb for a big set of irregular distributions of ions? If one had
to know the answer, the eikonal method might serve.
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APPENDIX : PERTURBATION CALCULATIONS

To demonstrate the methods we divide the respective
Hamiltonians as Ha,b = H0 + HI

a,b, in which the interaction
term contains all Coulomb interactions of the electrons in the
plasma and the interactions of the distinguished ions Ia and
Ib with both electrons and plasma ions. Coulomb interactions
among the ions in the plasma are retained in H0.3 We denote
the charges of the electron and two ions, respectively, as e, ea,

and eb, where eb = ea − 1, obtaining

HI
a =

∫
dr{−e[φI (r) + 1

2
φe(r)]ne(r)

+ eInI (r)φ(r)} + eaφ(0), (A1)

3In our terminology, the distinguished ions Ia and Ib are not part of
the “plasma.” Since Fermi statistics prevents us from distinguishing
an electron, we include all electrons in the “plasma.”

HI
b =

∫
dr{−e[φI (r) + 1

2
φe(r)]ne(r)

+ eInI (r)φ(r)} + ebφ(0). (A2)

Here φe and φI are the respective electric potentials
produced by the electrons, and φ = φI + φe is the total
potential of the plasma. We have not included the basic
Coulomb interactions between electrons and Ia and Ib. But
if we repeated the calculations to come using Coulomb wave
functions instead of plane waves, we would not find any
medium-dependent terms that are of leading order e2κD . There
is, of course, a conventional Coulomb correction in the absence
of the plasma; perturbatively, it begins at order e2, and for
solar core capture in 7Be it is larger than the order e2κD

screening corrections. At the level of the present paper this
vacuum contribution can just be added to the answer; Coulomb
wave functions are not needed for calculating the rest of the
corrections.

We introduce the interaction picture through the identities

e−Ha (β−it) = e−H0(β−it)�+(−iβ, t) , (A3)

e−iHbt = �−(0, t)e−iH0t , (A4)

where

�(+)
a (−iβ, t) = exp

[
i

∫ t

−iβ

dt ′Ĥ I
a (t ′)

]
+

, (A5)

Ĥ I
a (t) = eiH0(t+iβ)HI

a e−iH0(t+iβ). (A6)

In (A5) the subscript + stands for time ordering of the integrals.
Similarly, we have

�
(−)
b (0, t) = exp

[
−i

∫ t

0
dt ′Ĥ I

b (t ′)
]

−
, (A7)

where

Ĥ I
b (t) = eiH0tH I

b e−iH0t , (A8)

and now the integral is anti-time-ordered. Substituting in (13),
we obtain

M(t) = Z−1
P Tr[e−Ha (β−it)ψ†

e (0, 0)e−iHbtψe(0, 0)]

= Z−1
P Tr[e−H0(β−it)�(+)

a (−iβ, t)ψ†
e (0, 0)�(−)

b

× (0, t)e−iH0tψe(0, 0)]

= Z−1
P Tr[e−H0β�(+)

a (−iβ, t)ψ†
e (0, 0)

×�
(−)
b (0, t)e−iH0tψe(0, 0)eiH0t ]. (A9)

We expand the � factors in powers of the coupling, retaining
only terms of order e2 (or e2

a, eea, e
2
a, etc.). Schematically, each

will have powers of e coming from the thermal expectation of a
product of two ion-electric-potential φ(r) operators; these are
determined by the Hamiltonian H0. If this potential-potential
correlator is itself expanded in powers of e, the expansion
begins with terms of order e2, so that the rate corrections
would be of order e4, but the terms have an infrared singularity
from the long-range Coulomb force, and when that is properly
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regulated, the entire correction to the rate will be of order e3. In
the present paper we pursue only these e3 terms; the neglected
terms will go as power e4 or higher. For this purpose we shall
need the part of the field correlation function that is the most
singular as κD goes to zero,

〈φ(k, t ′)φ(−k′, t ′′)〉IR ≈ 4πδ(k − k′)β−1κ2
D

1(
k2 + κ2

D

)
k2

,

(A10)

which is time independent.
We now expand �(+)

a ,

�(+)
a (−iβ, t) = 1 − i

∫ t

−iβ

dt1Ĥ
I
a (t1) −

∫ t

−iβ

dt1Ĥ
I
a (t1)

×
∫ t1

−iβ

dt2Ĥ
I
a (t2), (A11)

and �
(−)
b ,

�
(−)
b (0, t) = 1 + i

∫ t

0
dt1Ĥ

I
b (t1) −

∫ t

0
dt1Ĥ

I
b (t1)

×
∫ t1

0
dt2Ĥ

I
b (t2). (A12)

Before getting bogged down in the evaluation of a multiplicity
of terms we think for a moment about the general form of the
expressions generated by the expansion. Leaving out most of
the arguments of the functions and not concerning ourselves
with orders of factors, we note that the form is the expectation
value,〈{

−e

∫
ne

[
φI + 1

2
φe

]
+ e{a,b}φ(0)

}

×
{
−e

∫
ne

[
φI + 1

2
φe

]
+ e{a,b}φ(0)

}
ψ†

eψe

〉
.

(A13)

Now we state some results of peering into the term-by-term
outcome:

(1) The electron operators within ψe,ψ
†
e each get paired

with an electron operator in an ne or φe term earlier in
the expression. The terms in which they eat each other
are “disconnected”; i.e., their contribution gets canceled by
a perturbation in the partition function in the denominator
of (A9), in conjunction with an unperturbed numerator.

(2) Terms where both ψ and ψ† pair with the operators
from the same curly braces in (A13) are not infrared divergent
in the absence of screening and will therefore not contribute
in leading order.

(3) Bearing in mind point (2) above, when a single ψ or ψ†

is to be paired with an operator from the product

1

2

∫
drφe(r)ne(r) =

∫
dr

∫
dr′|r − r′|−1ne(r)ne(r′),

(A14)

then the pairing will be, in effect, the same when it is with an
operator in ne or when it is with one in φe. Thus, if we add

a stipulation to the calculation of (A13) that the explicit ψe

and ψ† are never to be paired with φe in this kind of term, we
can compensate by multiplying the φe in (A13) by 2. To put it
more simply, we can replace Ha,b of (A1) and (A2) by

HI
a =

∫
dr[−eφ(r)ne(r)] + eaφ(0),

(A15)

HI
b =

∫
dr[−eφ(r)ne(r)] + ebφ(0),

with the above stipulation on computation. These operators
Ĥ I

a,b(t) in the interaction picture are now given in terms of the
electron creation and annihilation operators a†(p) and a(p) by

Ĥ I
a,b(t) =

∫
d3k

(2π )3
φ(k, τ )

[
ea,b − e

∫
d3p

(2π )3

× a
†
p+kape

i(Ep+k−Ep)τ

]
, (A16)

where τ = t + iβ for the incoming system a and τ = t for
the final system. In the the small k limit we can set τ = 0
in the final bracket in (A16). We do keep an infinitesimal
k in the indices of the operators ap+k, as we shall see
below. Since the infrared part of the correlator is also
time independent, there is, in effect, no time dependence.
Putting (A16) into (A11) and (A12) and then putting the results
into (A9) and using (A10), we obtain

M(t)=M0(t) − 4π

∫
dk

(2π )3

β−1κ2
D

k2
(
k2 + κ2

D

) [(
t2

2
+ iβt − β2

2

)

× M1(t) − (t + iβ)tM2(t) + t2

2
M3(t)

]
, (A17)

where

M1(t) = limk→0

〈[
ea − e

∫
dp3 a

†
p3+kap3

]

×
[
ea − e

∫
dp4 a

†
p4−kap4

] ∫
dp1dpeiEpta†

p1
ap

〉
,

(A18)

M2(t) = limk→0

〈[
ea − e

∫
dp3 a

†
p3+kap3

]

×
∫

dp1a
†
p1

[
eb − e

∫
dp4 a

†
p4−kap4

] ∫
dpeiEptap

〉
,

(A19)

M3(t) = limk→0

〈∫
dp1a

†
p1

[
eb − e

∫
dp3 a

†
p3+kap3

]

×
[
eb − e

∫
dp4 a

†
p4−kap4

] ∫
dpeiEptap

〉
,

(A20)
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and M0 is the unperturbed part,

M0(t) =
∫

dp1 dp〈a†
p1

ape
iEpt 〉 =

∫
d3pf (p)eiEpt .

(A21)

Here f (p) is the Fermi distribution, f (Ep) = (1 +
eβ(Ep−µe))−1, and the electron chemical potential is determined
from the electron density to zeroth order in e by ne =∫

dp(2π )−3f (p). When we calculate perturbative corrections,
we must explicitly include a correction that readjusts the
relation between chemical potential and density, which we
shall do below.

The thermal averages in (A18)–(A20) are readily calcu-
lated. A number of terms are disconnected and canceled by
perturbative corrections to the partition function: (a) all terms
of order e2 in which p = p1, i.e., in which operators in ψ(0)
are paired with those in ψ†(0), and (b) some more that are
discussed below. The rest of the terms can be expressed in
terms of M0 in (15), the function MA,

MA(t) =
∫

d3p

(2π )3
[f (p)]2eiEpt , (A22)

and a time-independent constant R,

M1(t) = M2(t) = M3(t)

= (ea − e)2M0(t) + (2eae − e2)MA(t) + e2RM0(t) ,

(A23)

where R is a time-independent constant that is proportional to
the system volume and that will be canceled by a corresponding
perturbation of the partition function.

We reconstitute the complete time-dependent function
M(t), which, when inserted in (11), gives the rate:

M(t) = [
1 + 1

2 (ea − e)2κDβ
]
M0(t) + 1

2 (2eea − e2)κD

×βMA(t) − 1
2κDβe2RM0(t). (A24)

Now we calculate the changes of the same order to the partition
function, where the system is governed by Ha ,

ZP = 〈e−βH0�+
a (−iβ, 0)〉β =

〈
e−βH0

{
1

+
∫ 0

−iβ

dt1

∫ t2

−iβ

dt2

[
eaφ(0, t1) + e

∫
drφ(r, t1)ne(r, t1)

]

×
[
eaφ(0, t2) + e

∫
dr′φ(r′, t2)ne(r′, t2)

] }〉
β

. (A25)

The calculation follows the lines outlined above, but it
is simpler. We obtain a contribution of order e2

a that is the
same as the order e2

a term in (A24), but without the factor of
M0(t). Therefore, in conjunction with the 1M0(t) term in (A9),
we see that the partition function perturbation removes the

e2
aκDβM0(t) term from (A24). The other nonvanishing term

coming from (A25) is of order e2, and it exactly removes the
final term, proportional to R, from (A24).

Next we must recognize that in our calculation the chemical
potentials were held fixed while we calculated perturbations
to the rates. But the relation between number density and
chemical potential has corrections of exactly the same order
as the rates. In the next section we calculate the changes in
this relation, and we find that the reexpression of the results in
terms of the corrected densities removes the remaining terms of
order e2 from (A24),4 leaving the final result for the corrections
of leading order as simply

M(t) = M0(t) − e eaκDβ[M0(t) − MA(t)]. (A26)

C. Keeping ne fixed

In Sec. IV we used a relation between the change in
the electron number density δne when we turn on Coulomb
interactions in the medium while keeping the chemical
potential fixed and the chemical potential change δµe that is
then required to restore the original electron density. Then this
δµe, inserted as a correction into the Fermi distribution in the
unperturbed rate function F0(t), generates a change that must
be added to the terms shown in (A24) so that the complete
result gives the change in rate induced by the Coulomb forces
while keeping the number density, rather than the chemical
potential, constant. We have

ne = Z−1Tr[eβH ψ†(0)ψ(0)]

= Z−1Tr[eβH0�+
e (0,−iβ)ψ†(0)ψ(0)], (A27)

where the operator �+
e (0,−iβ) is expanded in exactly the form

shown in (A11), except that we omit the interaction of the ion
with the plasma in the calculation; that is, we take ea = eb = 0.
Only the second order in the expansion contributes, and we
see that the answer is given in terms of functions that we have
already exhibited, now evaluated at t = 0,

ne = n(0)
e + 1

2e2κDβ[M0(0) − MA(0)]. (A28)

This gives a density shift that is compensated by a chemical
potential shift,

δµe = 1
2e2κD. (A29)

We must compensate with a shift δµe in the function M0(t).
Expanding, this gives a shift in the function that determines
the rate,

δeM(t) = − 1
2e2βκD[M0(t) − MA(t)]. (A30)

4This mirrors the situation in the case of a perturbative calculation
of plasma corrections to fusion rates, as discussed in Ref. [10].
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