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We present theoretical results for the 25Al(p, γ )26Si resonance-capture rate. The isobaric mass multiplet
equation is used to determine the energies and J π values of states in 26Si based upon those observed in 26Mg and
26Al together with sd shell calculations for the c coefficients. Three Hamiltonians for the sd shell, USD, USDA
and USDB, are used to estimate the theoretical uncertainties in the γ -decay and proton-decay widths that go into
the resonance-capture rate.
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I. INTRODUCTION

The production mechanism and production site for the
long-lived radioactive isotope 26Al has been of interest
since the first indications of 26Al enrichment in meteoritic
inclusions were observed [1]. Understanding its origin would
serve as a unique signature for nucleosynthesis in novae
and supernovae. The main reaction sequence leading to
26Al is 24Mg(p,γ )25Al(β+ + ν)25Mg(p,γ )26Al. At the high-
temperature conditions expected for shell carbon burning and
explosive neon burning, the 25Al(p,γ )26Si reaction becomes
faster than the 25Al β decay. Since 26Si β decays to the
short-lived 0+ state of 26Al, the production of the long-lived
(5+) state is bypassed.

In a recent paper [2], energies of levels in 26Si were
measured and used together with previous data and theoretical
input to obtain a cross section for the 25Al(p,γ )26Si reaction.
In previous work, stellar rates were obtained using shell-model
calculations and analog state information [3]. The current
paper focuses on the theoretical aspects of the input and its
uncertainties. The isobaric-mass-multiplet equation (IMME)
is used to obtain the expected position of the levels in 26Si based
upon the observed energies of levels of the analog states in
26Al and 26Mg, together with a calculation of the c coefficient.
The γ -decay and proton-decay widths are calculated with
several Hamiltonians to find their values and to estimate their
theoretical uncertainties.

This paper follows from recent theoretical work on the
properties of (0d5/2, 0d3/2, 1s1/2) sd shell nuclei that include
new Hamiltonians [4], a comprehensive study of electromag-
netic and β-decay observables [5], and a comprehensive study
of the properties of states in 26Mg [6]. For 26Mg, assignments
between theory and experiment for about 50 levels in 26Mg
levels up to 10 MeV in excitation have been made, based on a
comparison of the experimental and theoretical level energies,
electromagnetic transition strengths, and electron scattering
data [6].

In Sec. II, we discuss the determination of the energies and
Jπ values for states in 26Si based upon use of the IMME and

related levels in 26Mg and 26Al. In Sec. III, we show results for
the resonance-capture rates based upon the universal sd-shell
Hamiltonians called USD, USDA and USDB in [4]. In Sec. IV,
we discuss the results for various regions of temperature and
the uncertainties for each region coming from the sd shell
Hamiltonians, the decay energies, and the comparison with
other related experimental data. In Sec. V, we give a summary
of our results and make comparisons to other recent results for
this reaction rate.

II. PROCEDURE FOR DETERMINING 26SI
ENERGY LEVELS.

In the present work, we make use of the IMME to calculate
the expected energy of levels in 26Si by using the measured
binding energies of the T = 1 partners and a theoretical value
of the c coefficient of the IMME [7].

According to the IMME,

B = a + bTz + cT 2
z , (1)

where B is the binding energy of a state. For the three T = 1
isobaric states in A = 26, one can then write, with Tz = (N −
Z)/2,

Bn = a + b + c, (2)

where Bn applies to the neutron-rich member (26Mg),

Bo = a (3)

for 26Al, and

Bp = a − b + c (4)

for the proton-rich member (26Si). Then,

c = (Bn + Bp − 2Bo)/2. (5)

It also follows that

Bp = 2Bo − Bn + 2c. (6)
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For the calculation of the b and c coefficients of the
IMME, we use the USDB Hamiltonian [4] for the charge-
independent part and add the Coulomb, charge-dependent, and
charge-asymmetric nuclear Hamiltonian obtained by Ormand
and Brown for the sd shell [7]. For the nuclei considered
in [7], A = 18–22 and A = 34–39, the 42 b coefficients
were reproduced with an rms deviation of 27 keV and the
26 c coefficients were reproduced with an rms deviation
of 9 keV. There is considerable state dependence in the c

coefficients (ranging in values from 130 keV to 350 keV) that
is nicely reproduced by the calculations (see Fig. 9 in [7]). In
Fig. 1, values of c from experiment and theory are compared
for T = 1 states A = 26, ordered according to increasing
experimental energy. The experimental values are obtained
for states where all three members of the multiplet are known.
In general, a good correspondence can be seen with the largest
deviations being less than 30 keV. There is considerable state
dependence with c values, ranging from 300 keV (for the 0+
ground state) down to 180 keV. This IMME method was used
in [8] for the T = 1 states of the odd-odd nuclei with masses
28, 32, and 36. The agreement with experiment (Fig. 1) for our
even-even case appears to be better than that obtained in [8]
for the odd-odd cases.

Where data is not available in 26Si to determine the c

coefficient from experiment, a value can be obtained from
a theoretical calculation using Eq. (5). The binding energies
for states in 26Si can be then be obtained from Eq. (6), with
experimental values of binding energy for corresponding states
in 26Al and 26Mg (when they are known in both). Specifically,

Bth(26Si) = 2Bexpt(
26Al) − Bexpt(

26Mg) + 2cth. (7)

Figure 2 shows the typical assignment of states in 26Si on
the basis of known states in the mirror nucleus 26Mg. Such
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FIG. 1. c coefficients from the IMME vs state number (in order
of increasing energy) in 26Si based on experimental energies (closed
circles) and energies calculated from USDB (open circles).

assignments are indicated by dashed lines. The data are from
Ref. [2]. There are shifts on the order of 300 keV. To improve
on this procedure, we determine 26Si energies from Eq. (7).
Figure 3 shows the excitation energies for 26Si obtained from
Eq. (7) on the right compared to experiment on the left. The
calculated values can then be used as a guide to the correct
spin/parity assignments for measured levels in 26Si. Where no
levels in 26Si are known, levels can be predicted. Two such
levels (the 2+ and 4+) are indicated on the right-hand side
of Fig. 3. The energy of the 3+ state shown in the right-hand
side of Fig. 3 was obtained from the average shift (250 keV)
of the five highest states in Fig. 2. Above 8 MeV where the
property of states in 26Mg 26Al become uncertain, we use the
energies obtained from the USDB Hamiltonian. This includes
the addition of about 170 states with Jπ � 5+ up to 14 MeV
in excitation energy.

The 0+ state at 6.461 MeV [2] is much lower than
the predicted energy of the fifth 0+ state with USDB (at
8.040 MeV). It could be an intruder state. But theory predicts
the second 1+ state (at 6.620 MeV) which has no experimental
counterpart. For the purpose of the present calculations, we
associate the theoretical second 1+ state with the state observed
at 6.461 MeV (see Table I). Our conclusions are insensitive to
this choice.

The three levels that are just above the proton-decay
separation energy of 5.51 MeV and of potential importance
for the capture reaction at low temperatures are indicated by
the arrows in Fig. 3. The Jπ of levels 16 and 17 are from
the recent analysis of Wrede [9] where arguments for the Jπ

are based on all available data for these states. This included
the analysis of Bardayan et al. [10] for the 28Si(p, t) data where
an assignment Jπ = 2+ or 3+ was made for state 16. From the
associations made in Fig. 3, we can rule out 2+.

III. RESULTS FOR THE REACTION RATE

The resonant reaction rate for capture on a nucleus in an
initial state i, NA〈σv〉res i , for isolated narrow resonances is
calculated as a sum over all relevant compound nucleus states
f above the proton threshold [11]:

NA〈σv〉res i = 1.540 × 1011(µT9)−3/2

×
∑

f

ωγif e−Eres/(kT ) cm3 s−1mole−1. (8)

Here, T9 is the temperature in GK, Eres = Ef − Ei

is the resonance energy in the center-of-mass system,
and the resonance strengths in MeV for proton
capture are

ωγif = (2Jf + 1)

(2Jp + 1)(2Ji + 1)

�p if �γf

�total f
. (9)

�total f = �p if + �γf is a total width of the resonance
level and Ji , Jp, and Jf are the target (25Al), the proton
projectile (Jp = 1/2), and the states in the final nucleus
(26Si), respectively. The proton-decay width depends on
the resonance energy via the single-particle proton width
and can be calculated from the proton spectroscopic factor
C2Sif and the single-particle proton width �sp if as �p if =
C2Sif �sp if . The single-particle proton widths were calculated
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FIG. 2. Experimental excitation energies in 26Si and 26Mg [2].
Solid lines are for the states in 26Si with firm J π values. Dashed lines
are for states in 26Si with uncertain J π values with the most likely
mirror associations in 26Mg with known J π values. The three states
indicated by lines to the right do not have known counterparts in 26Si.

from [12]

�sp = 2γ 2P (�, Rc), (10)

with γ 2 = h̄2c2

2µR2
c
, and where the �-dependent channel radius

Rc was chosen to match the widths obtained from an exact
evaluation of the proton scattering cross section from a
Woods-Saxon potential well for 25Al for Q = 0.1–0.4 MeV.
The simpler model of Eq. (10) matches the results obtained
from the scattering cross sections as well as those used in [2] to
within about 10%. We use a Coulomb penetration code from
Barker [13].

The total resonance-capture reaction rates have been calcu-
lated for each of the interactions USD, USDA, and USDB. We
use the Q value of 5.5123(10) MeV from [14]. The energies for
states in 26Si are based on the results of Sec. II. The energies
for the states up to 8 MeV are given in the column labeled
Ex(expt.) in Table I.

Figure 4 shows the results for the resonance-capture rate
obtained using the properties of 26Si given in Table I. The �p

and �γ in this case are all based on the USDB Hamiltonian.
In Fig. 5, we show some sensitivity studies. The upper two
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FIG. 3. Experimental excitation energies in 26Si [2] vs predicted
energies Eth based on Eq. (7). Dashed lines are for states in 26Si with
uncertain J π values with the most likely mirror associations in 26Mg
with known J π values. The three states indicated by lines to the right
do not have known counterparts in 26Mg. The energies of two of these
(2+ and 4+) are based on Eq. (7). The energy of the 3+ is shifted down
by 250 keV from its position in 26Mg. Level number 20 in Table I
is not shown in this figure (see the discussion in the text).

panels (a) and (b) show the results based on �p and �γ from
the USDA and USD Hamiltonians, respectively, relative to
USDB. In panel (c), we compare the rate obtained when
the theoretical �γ (26Si) are replaced by �γ (26Mg) with the
excitation energies the same in both cases. These �γ differ
because the electromagnetic matrix elements have a small
mirror asymmetry. This comparison shows that at the level
of 10%, it is adequate to take the �γ information from the
mirror nucleus when it is known. One could also correct for a
γ -decay phase-space change due to the difference in excitation
energies between the mirror nuclei (Fig. 2). This correction is
typically less than 10% and will not be included here.

IV. UNCERTAINTIES IN THE RESONANT CAPTURE
REACTION RATES

In this section, we discuss the uncertainties for the various
regions of temperature and the resulting recommendations for
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TABLE I. Properties of states up to 8 MeV in 26Si obtained with the USDB Hamiltonian. k is the number ordering for a given J π value.
The experimental energies are from Tables II and III of [2], except those as indicated by the footnotes.

n J π k Ex(USDB) Ex(expt.) Eres C2S C2S �γ �p ωγ

(MeV) (MeV) (MeV) � = 0 � = 2 (eV) (eV) (eV)

1 0+ 1 0 0 0 0 2.5
2 2+ 1 1.897 1.797 3.4 × 10−2 3.6 × 10−1 9.3 × 10−4

3 2+ 2 3.007 2.785 4.6 × 10−1 8.0 × 10−2 6.6 × 10−3

4 0+ 2 3.635 3.334 0 2.3 × 10−1 1.2 × 10−4

5 3+ 1 3.883 3.757 2.7 × 10−1 3.1 × 10−1 3.7 × 10−4

6 2+ 3 4.450 4.139 2.4 × 10−2 5.2 × 10−2 1.1 × 10−2

7 3+ 2 4.317 4.187 7.0 × 10−2 6.7 × 10−2 7.7 × 10−3

8 4+ 1 4.365 4.446 0 8.5 × 10−2 9.2 × 10−4

9 4+ 2 4.939 4.799 0 1.3 × 10−1 1.3 × 10−2

10 2+ 4 4.883 4.809 6.3 × 10−2 4.5 × 10−2 1.0 × 10−2

11 0+ 3 5.033 4.830 0 4.0 × 10−2 1.5 × 10−3

12 2+ 5 5.386 5.146 1.2 × 10−2 4.6 × 10−1 6.5 × 10−2

13 4+ 3 5.523 5.289 0 2.0 × 10−1 2.0 × 10−2

14 4+ 4 5.893 5.517 0.005 0 3.6 × 10−2 5.7 × 10−3

15 1+ 1 5.716 5.675 0.163 0 3.5 × 10−3 1.2 × 10−1 6.3 × 10−9 1.6 × 10−9

16 3+ 3 6.180 5.915 0.403 1.4 × 10−1 3.3 × 10−1 1.2 × 10−1 3.5 6.8 × 10−2

17 0+ 4 6.133 5.946 0.434 0 3.9 × 10−2 8.8 × 10−3 1.6 × 10−2 4.7 × 10−4

18 2+ 6 6.677 6.300 0.788 8.7 × 10−3 1.0 × 10−1 9.6 × 10−2 5.3 × 101 4.0 × 10−2

19 4+ 5 6.730 6.382 0.870 0 1.5 × 10−2 2.4 × 10−2 2.2 1.7 × 10−2

20 1+ 2 6.620 6.461a 0.949 0 4.6 × 10−2 1.1 × 10−1 1.2 × 101 2.8 × 10−2

21 5+ 1 7.068 6.880 1.368 0 1.4 × 10−2 2.3 × 10−2 4.0 × 101 2.1 × 10−2

22 2+ 7 6.910 6.890b 1.378 5.7 × 10−4 4.4 × 10−4 1.2 × 10−1 6.3 × 101 4.8 × 10−2

23 3+ 4 7.296 7.019 1.507 3.9 × 10−3 5.5 × 10−2 2.1 × 10−1 8.7 × 102 1.2 × 10−1

24 2+ 8 7.149 7.152 1.640 4.5 × 10−2 4.3 × 10−2 7.3 × 10−2 1.0 × 104 3.0 × 10−2

25 5+ 2 7.388 7.197 1.685 0 1.0 × 10−2 3.4 × 10−2 9.0 × 101 3.1 × 10−2

26 4+ 6 7.434 7.418 1.906 0 2.4 × 10−1 2.2 × 10−1 4.1 × 103 1.6 × 10−1

27 3+ 5 7.699 7.442c 1.930 1.1 × 10−3 4.7 × 10−2 1.4 × 10−1 1.3 × 103 8.4 × 10−2

28 4+ 7 7.856 7.489b 1.977 0 5.7 × 10−2 1.9 × 10−1 1.1 × 103 1.4 × 10−1

29 2+ 9 7.573 7.494 1.982 5.7 × 10−2 1.0 × 10−1 5.0 × 10−1 2.8 × 104 2.1 × 10−1

aFor this level which is assigned J π = 0+ [2], we use the calculated values �p and �γ of the J π = 1+
2 state.

bThe energies of these states observed in 26Mg and not yet in 26Si are taken from the present IMME calculations based on Eq. (7).
cThe energy of this state is based on its energy in 26Mg with a downward shift of 250 keV that is the average of the upper five level shifts shown
in Fig. 2.

the rate and error. In addition to the uncertainties coming from
�γ and the spectroscopic factors, there are uncertainties related
to the reaction Q values for �p and the Eres dependence in
Eq. (8). We use Qnew

0 = 5.5123 MeV from [14]. As discussed
in [14], it differs by 5 keV from the older results Qold

0 =
5.5177 MeV. The excitation energy error for the two levels
just above the proton-decay threshold is [2] 2.2 keV for the
5.675 MeV 1+ state and 1.8 keV for the 5.916 MeV 3+ state.
In order to estimate the energy uncertainty in the capture rate,
we redo the rate calculation with a 5 keV higher Q value. The
results for the ratio are shown in Fig. 6.

A. Region of LogT9 < −0.8

For these lowest T9 values, the resonance-capture rate
comes entirely from the 5.675 MeV 1+ state (number 15 in
Table I). Since �γ � �p for this case, the rate is determined by
�p. The large change shown on the left-hand side of panels (a)
and (b) in Fig. 5 is due to the change in the relatively small spec-

troscopic factors: 0.0048 (USDB), 0.0027 (USDA), and 0.0035
(USD). For this region of T9, we recommend the USD rate with
an uncertainty of 40% coming from the spread of the theoret-
ical spectroscopic factors. From Fig. 6, the uncertainty in the
rate from the Q value uncertainties are on the order of 50%.

The direct-capture rate becomes important below a logT9

of about −1.5 (below the scale of Fig. 4). For comparison to
other results discussed in the next section, we use the direct-
capture rate taken from Table VII of [2]. This is based on the
USDB spectroscopic factors for the bound states in Table I.
The uncertainty in the direct-capture rate is about 20% since
the USD Hamiltonians give spectroscopic factors for these
bound states that are the same within about 20%.

B. Region of −0.7 < LogT9 < 0.5

The resonance-capture rate in this region is dominated by
the properties of the 3+ state at 5.915 MeV (number 16 in
Table I). Since �γ < �p, the rate is determined by �γ .
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The γ -decay half-life of the analog 3+ level in the mirror nu-
cleus 26Mg has been measured [15]. Experiment and theory are
compared in Table II which also includes some results for other
states above 5.8 MeV. Experiment and theory are compared
for lower energy states of 26Mg in Table I and Fig. 2 of [6].

The experimental half-life of this 3+ level in 26Mg of
14(6) ps [15] is larger than the USDB result of 4.0 ps.
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FIG. 6. Ratio given by the rate calculated with Q = 5.5123 MeV
divided by the rate obtained with Q = 5.5173 MeV.

The USDA and USD values for the half-life are 4.5 and
5.0 fs, respectively. Based on the comparisons shown in
Fig. 2 of [6] for the lifetimes of other levels in 26Mg
above 5 MeV (levels 10–22), this deviation is larger than
expected. However, the experimental uncertainty is relatively
large for this lifetime. It has only been measured once
by the Doppler shift attenuation method [15]. Thus, we
choose to use the USDB value. It would be important to
improve the experimental uncertainty in this lifetime. In
addition, one could measure the γ -decay branching for the
403 keV resonance in 26Si, which is predicted to be 3% relative
to proton decay.

The theoretical uncertainty for this energy range coming
from �γ is about 20%. But as discussed above, one should
confirm the experimental result for 26Mg which deviates from
the theory outside of this error. In the lower end of this
temperature range, there is an uncertainty of about 40% coming
from a possible Q value error of 5 keV.

C. Region of 0.7 < LogT9

For 0.7 < logT9, the rate comes from the contribution
of many states with �γ << �p. The ωγ depends on the
(2Jf + 1) level density and the associated �γ . In Fig. 7, we
show the result for logT9 = 1. ωγ increases exponentially due
to increasing level density, but with the exponential factor
e−Eres/(kT ), about 80% of the total contribution comes from
states below 10 MeV in excitation energy (Eres = 4.5 MeV). The
sd shell provides a fairly realistic model for the positive-parity
level density up to 10 MeV, but there will be contributions
from pf shell intruder states starting with the possible state at
7.2 MeV in 26Mg [6]. Starting with the known 3− state in 26Mg
at 6.8 MeV, there will be contributions from negative-parity
states. At logT9 = 1, we estimate that the effective level
density and the effective rate are about a factor of 2 higher
than that given by the sd shell model. Above logT9 = 1, one
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TABLE II. Properties of some states in 26Mg.

J π k Ex(USDB) Ex(expt.) T1/2(USDB) T1/2(expt.) [16] �γ (USDB) �γ (expt.)
(MeV) (MeV) (fs) (fs) (eV) (ev)

1+ 1 5.716 5.691 3.1 <8 0.147 <0.06

3+ 3 6.180 6.124 4.0 14(6) 0.114 0.033+0.024
−0.10

0+ 4 6.133 6.256 58 52(24) 0.0078 0.009+0.007
−0.003

2+ 6 6.677 6.745 5.3 16(8) 0.086 0.028+0.028
−0.009

4+ 5 6.730 6.622 20 19(5) 0.023 0.024+0.009
−0.005

(0−4)+ 2 6.620(1+)a 6.634 4.4 <7 0.104 <0.06
2+ 7 6.910 6.746 3.2 16(8) 0.143 0.028+0.028

−0.009

aFor this level, which is assigned J π = (0 − 4)+ [16], we use the calculated value for the J π = 1+ state at 6.620 MeV.

should base the rate on a Hauser-Feshbach formulation with
level densities adjusted to match the known level density in
the region of 6 to 9 MeV excitation energy.

V. DISCUSSION AND CONCLUSION

The calculation the reaction rate for 25Al(p,γ )26Si requires
a knowledge of the levels in 26Si. The experimental properties
of levels in 26Si are uncertain and incomplete compared to
those in the mirror nucleus 26Mg. In cases where the analog
T = 1 levels are known in both 26Mg and 26Al, we use the
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IMME with the c coefficient calculated from theory in order
to predict the level properties of 26Si. For levels where all
three members of the isobaric triplet are known, we find
good agreement between the calculated and theoretical c

coefficients. For the higher states, we can affirm some of the
spin assignments for known levels in 26Si, and predict the
location of several levels not yet observed up to 7.6 MeV.
We obtained the spectroscopic factors and γ -decay lifetimes
for rate calculations from shell-model calculations using the
USD sd shell Hamiltonian as well as the newer USDA and
USDB Hamiltonians. Reaction rates as well as contributions
from individual states in 26Si were then obtained for the
different interactions. The variation in the rates calculated
give an indication of the theoretical uncertainty. It was shown
that using theoretical γ widths from the mirror nucleus 26Mg
instead of 26Si is an adequate approximation.
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We have discussed the problem that the experimental γ -
decay lifetime of the 6.124 MeV 3+ level in 26Mg of 14(6)
fs is larger than the theoretical USDB value of 4.0 fs. For
the resonant-capture rate, we use the γ -decay width in 26Si
from the USDB calculation. The lifetime in 26Mg has only
been measured once [15]. It would be important to improve
the experimental uncertainty in this lifetime. In addition, one
should try to measure the γ -decay decay branching for the
403 keV resonance in 26Si, which is predicted to be 3% relative
to proton decay.

Our final 25Al(p,γ )26Si rate is compared to that of Matic
et al. [2] and to the rate recommended in the 2010 Evaluation
of Monte Carlo Based Thermonuclear Reaction Rates [17] in
Fig. 8. In the region of logT9 = −0.7 to 0.7, our rate is a factor
of about 3 higher than Matic et al. due to the fact that they use
the experimental value of the 3+ lifetime in 26Mg. We have
discussed in Sec. IV B the reason for our preference for using
the theoretical value.

Above logT9 of 0.5, our cross section increases relative
to [2] and [17] since we include more positive-parity sd shell
levels. But above logT9 of about 0.8, our cross section is
still a lower limit since negative-parity states have not been
included.

Below logT9 of 0.8, our results are consistent with the
Monte Carlo Based Thermonuclear Reaction Rates [17]. We
note that these rates use the spectroscopic factors and �γ

obtained from the USD Hamiltonian. As we have shown, the

values obtained with USDB are within 20% of those obtained
with USD, with the exception of the spectroscopic factor for
the 1+ state just above threshold for which we use the USD
value with a 40% error accounting for the spread between
USD, USDA, and USDB.

The astrophysical implications for novae and x-ray bursts
in terms of the competition between the 25Al(p,γ )26Si
and the 25Al β-decay rates are shown in Fig. 9 of [2].
Our factor of 3 higher rate for 25Al(p,γ )26Si compared
to that of [2] in the temperature range of interest,
logT9 = 0.1–0.3, will relatively reduce the population
of the long-lived 5+ state of 26Al by bypassing its
production. It would be interesting to apply these new rates
to various astrophysical scenarios to find the quantitative
consequences.

For the next generation of rapid-proton capture cross
section calculations, it will be important to consider theoretical
errors coming from uncertainties within the model-space
assumptions as well as those that come from the limitations of
the model-space truncations.
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